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8 Timing Closure 

The layout of an integrated circuit (IC) must not only satisfy geometric requirements, 
e.g., non-overlapping cells and routability, but also meet the design’s timing 
constraints, e.g., setup (long-path) and hold (short-path) constraints. The 
optimization process that meets these requirements and constraints is often called 
timing closure. It integrates point optimizations discussed in previous chapters, such 
as placement (Chap. 4) and routing (Chaps. 5-7), with specialized methods to 
improve circuit performance. The following components of timing closure are 
covered in this chapter. 
 
– Timing-driven placement (Sec. 8.3) minimizes signal delays when assigning 

locations to circuit elements. 
– Timing-driven routing (Sec. 8.4) minimizes signal delays when selecting 

routing topologies and specific routes. 
– Physical synthesis (Sec. 8.5) improves timing by changing the netlist. 

– Sizing transistors or gates: increasing the width:length ratio of transistors 
). to decrease the delay or increase the drive strength of a gate (Sec. 8.5.1

– Inserting buffers into nets to decrease propagation delays (Sec. 8.5.2). 
– Restructuring the circuit along its critical paths (Sec. 8.5.3). 

Sec. 8.6 integrates these optimizations in a performance-driven physical design flow. 

duced 
delays, making high-quality placement and routing critical for timing closure. 

circuit 
omponents, with the primary goal of satisfying timing constraints, including 

– 
teady) before the clock edge for each storage element 

–  data 
input signal should be stable after the clock edge at each storage element. 

 8.1

 

8.1 Introduction 

For many years, signal propagation delay in logic gates was the main contributor to 
circuit delay, while wire delay was negligible. Therefore, cell placement and wire 
routing did not noticeably affect circuit performance. Starting in the mid-1990s, 
technology scaling significantly increased the relative impact of wiring-in

Timing optimization engines must estimate circuit delays quickly and accurately to 
improve circuit timing. Timing optimizers adjust propagation delays through 
c
 

Setup (long-path) constraints, which specify the amount of time a data input 
signal should be stable (s
(e.g., flip-flop or latch). 
Hold-time (short-path) constraints, which specify the amount of time a
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Setup constraints ensure that no signal transition occurs too late. Initial phases of 
timing closure focus on these types of constraints, which are formulated as follows. 

tcycle  tcombDelay + tsetup + tskew 

Here, tcycle is the clock period, tcombDelay is the longest path delay through 
combinational logic, tsetup is the setup time of the receiving storage element (e.g., 
flip-flop), and tskew is the clock skew (Sec. 7.4). Checking whether a circuit meets 
setup constraints requires estimating how long signal transitions will take to 
propagate from one storage element to the next. Such delay estimation is typically 
based on static timing analysis (STA), which propagates actual arrival times (AATs) 
and required arrival times (RATs) to the pins of every gate or cell. STA quickly 
identifies timing violations, and diagnoses them by tracing out critical paths in the 
circuit that are responsible for these timing failures (Sec. 8.2.1). 

Motivated by efficiency considerations, STA does not consider circuit functionality 
and specific signal transitions. Instead, STA assumes that every cell propagates 
every 0-1 (1-0) transition from its input(s) to its output, and that every such 
propagation occurs with the worst possible delay1. Therefore, STA results are often 
pessimistic for large circuits. This pessimism is generally acceptable during 
optimization because it affects competing layouts equally, without biasing the 
optimization toward a particular layout. It is also possible to evaluate the timing of 
several competing layouts with more accurate techniques in order to choose the best 
solution. 

One approach to mitigate pessimism in STA is to analyze the most critical paths. 
Some of these can be false paths – those that cannot be sensitized by any input 
transition because of the logic functions implemented by the gates or cells. IC 
designers often enumerate false paths that are likely to become timing-critical to 
exclude them from STA results and ignore them during timing optimization. 

STA results are used to estimate how important each cell and each net are in a 
particular layout. A key metric for a given timing point g – that is, a pin of a gate or 
cell – is timing slack, the difference between g’s RAT and AAT: slack(g) = RAT(g) 

 AAT(g). Positive slack indicates that timing is met – the signal arrives before it is 
required – while negative slack indicates that timing is violated – the signal arrives 
after its required time. Algorithms for timing-driven layout guide the placement and 
routing processes according to timing slack values. 

Guided by slack values, physical synthesis restructures the netlist to make it more 
suitable for high-performance layout implementation. For instance, given an 
unbalanced tree of gates, (1) the gates that lie on many critical paths can be upsized 
to propagate signals faster, (2) buffers may be inserted into long critical wires, and 
(3) the tree can be restructured to decrease its overall depth. 

                                                           
1 Path-based approaches for timing optimizations are discussed in Secs. 8.3-8.4. 
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Hold-time constraints ensure that signal transitions do not occur too early. Hold 
violations can occur when a signal path is too short, allowing a receiving flip-flop to 
capture the signal at the current cycle instead of the next cycle. The hold-time 
constraint is formulated as follows. 

tcombDelay  thold + tskew

Here, tcombDelay is the delay of the circuit’s combinational logic, thold is the hold time 
required for the receiving storage element, and tskew is the clock skew. As clock skew 
affects hold-time constraints significantly more than setup constraints, hold-time 
constraints are typically enforced after synthesizing the clock network (Sec. 7.4). 

Timing closure is the process of satisfying timing constraints through layout 
optimizations and netlist modifications. It is common to use verbal expressions such 
as “the design has closed timing” when the design satisfies all timing constraints. 

This chapter focuses on individual timing algorithms (Secs. 8.2-8.4) and 
optimizations (Sec. 8.5), but in practice, these must be applied in a carefully 
balanced design flow (Sec. 8.6). Timing closure may repeatedly invoke certain 
optimization and analysis steps in a loop until no further improvement is observed. 
In some cases, the choice of optimization steps depends on the success of previous 
steps as well as the distribution of timing slacks computed by STA. 

8.2 8.2 Timing Analysis and Performance Constraints 

Almost all digital ICs are synchronous, finite state machines (FSM), or sequential 
machines. In FSMs, transitions occur at a set clock frequency. Fig. 8.1 “unrolls” a 
sequential circuit in time, from one clock period to the next. The figure shows two 
types of circuit components: (1) clocked storage elements, e.g., flip-flops or latches, 
also referred to as sequential elements, and (2) combinational logic. During each 
clock period in the operation of the sequential machine, (1) present-state bits stored 
in the clocked storage elements flow from the storage elements’ output pins, along 
with system inputs, into the combinational logic, (2) the network of combinational 
logic then generates values of next-state functions, along with system outputs, and 
(3) the next-state bits flow into the clocked elements’ data input pins, and are stored 
at the next clock tick. 

Clock

FF FF FF
Combinational 

Logic
Copy 2

Combinational 
Logic
Copy 1

Combinational 
Logic
Copy 3

 
Fig. 8.1 A sequential circuit, consisting of flip-flops and combinational logic, “unrolled” in time. 
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The maximum clock frequency for a given design depends upon (1) gate delays, 
which are the signal delays due to gate transitions, (2) wire delays, which are the 
delays associated with signal propagation along wires, and (3) clock skew (Sec. 7.4). 
In practice, the predominant sources of delay in standard signals come from gate and 
wire delays. Therefore, when analyzing setup constraints, this section considers 
clock skew negligible. A lower bound on the design’s clock period is given by the 
sum of gate and wire delays along any timing path through combinational logic – 
from the output of a storage element to the input of the next storage element. This 
lower bound on the clock period determines an upper bound on the clock frequency. 

In earlier technologies, gate delays accounted for the majority of circuit delay, and 
the number of gates on a timing path provided a reasonable estimate of path delay. 
However, in recent technologies, wire delay, along with the component of gate delay 
that is dependent on capacitive loading, comprises a substantial portion of overall 
path delay. This adds complexity to the task of estimating path delays and, hence, 
achievable (maximum) clock frequency. 

For a chip to function correctly, path delay constraints (Sec. 8.3.2) must be satisfied 
whenever a signal transition traverses a path through combinational logic. The most 
critical verification task faced by the designer is to confirm that all path delay 
constraints are satisfied. To do this dynamically, i.e., using circuit simulation is 
infeasible for two reasons. First, it is computationally intractable to enumerate all 
possible combinations of state and input variables that can cause a transition, i.e., 
sensitize, a given combinational logic path. Second, there can be an exponential 
number of paths through the combinational logic. Consequently, design teams often 
signoff on circuit timing statically, using a methodology that pessimistically assumes 
all combinational logic paths can be sensitized. This framework for timing closure is 
based on static timing analysis (STA) (Sec. 8.2.1), an efficient, linear-time 
verification process that identifies critical paths. 

After critical paths have been identified, delay budgeting2 (Secs. 8.2.2 and 8.3.1) sets 
upper bounds on the lengths or propagation delays for these paths, e.g., using the 
zero-slack algorithm [8.19], which is covered in Sec. 8.2.2. Other delay budgeting 
techniques are described in [8.29]. 

8.2.1 Static Timing Analysis  

In STA, a combinational logic network is represented as a directed acyclic graph 
(DAG) (Sec. 1.7). Fig. 8.2 illustrates a network of four combinational logic gates x, 
y, z and w, three inputs a, b and c, and one output f. The inputs are annotated with 
times 0, 0 and 0.6 time units, respectively, at which signal transitions occur relative 

                                                           
2 This methodology is intended for layout of circuits directly represented by graphs rather than 

circuits partitioned into high-level modules. However, this methodology can also be adapted to 
assign budgets to entire modules instead of circuit elements.  



  8.2 Timing Analysis and Performance Constraints          225 

to the start of the clock cycle. Fig. 8.2 also shows gate and wire delays, e.g., the gate 
delay from the input to the output of inverter x is 1 unit, and the wire delay from 
input b to the input of inverter x is 0.1 units. For modern designs, gate and wire 
delays are typically on the order of picoseconds (ps). 

(0.15)

(0.1) (0.3)

(0.2)

b <0>

a <0>

c <0.6>

f
y (2)

w (2)

(0.1)

(0.2)
(0.1)

(0.25)x (1)
z (2)

 
Fig. 8.2 Three inputs a, b and c are annotated with times at which signal transitions occur in angular 
brackets. Each edge and gate is annotated with its delay in parentheses. 

Fig. 8.3 illustrates the corresponding DAG, which has one node for each input and 
output, as well as one node for each logic gate. For convenience, a source node is 
introduced with a directed edge to each input. Nodes corresponding to logic gates 
are labeled with the respective gate delays (e.g., node y has the label 2). Directed 
edges from the source to the inputs are labeled with transition times, and directed 
edges between gate nodes are labeled with wire delays. Because this DAG 
representation has one node per logic gate, it follows the gate node convention. The 
pin node convention, where the DAG has a node for each pin of each gate, is more 
detailed and will be used later in this section. 

(0.15)

(0.1)

(0.1)

(0.1) (0.2)

(0.25)

(0.2)(0)

(0)

(0.6) (0.3)

x (1)

y (2)

z (2)

w (2) f (0)

a (0)

b (0)

c (0)

s

 
Fig. 8.3 DAG representation using gate node convention of the circuit in Fig. 8.2. 

Actual arrival time. In a circuit, the latest transition time at a given node v  V, 
measured from the beginning of the clock cycle, is the actual arrival time (AAT), 
denoted as AAT(v). By convention, this is the arrival time at the output side of node 
v. For example, in Fig. 8.3, AAT(x) = 1.1 because of the wire delay from input b 
(0.1) and the gate delay of inverter x (1.0). For node y, although the signal transitions 
on the path through a will arrive at time 2.15, the arrival time is dominated by 
transitions along the path through x. Hence, AAT(a) = 3.2. Formally, the AAT of 
node v is 
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),()(max)(
)(

vutuAATvAAT
vFIu

 

where FI(v) is the set of all nodes from which there exists a directed edge to v, and 
t(u,v) is the delay on the (u,v) edge. This recurrence enables all AAT values in the 
DAG to be computed in O(|V| + |E|) time or O(|gates| + |edges|). This linear scaling 
of runtime makes STA applicable to modern designs with hundreds of millions of 
gates. Fig 8.4 illustrates the AAT computation from the DAG in Fig. 8.3. 
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Fig. 8.4 Actual arrival times (AATs) of the DAG, denoted with ‘A’, of Fig. 8.3. 

Although STA is pessimistic, i.e., the longest path in the DAG of a circuit might not 
actually be sensitizable, the design team must satisfy all timing constraints. An 
algorithm to find all longest paths from the source in a DAG was proposed by 
Kirkpatrick in 1966 [8.18]. It uses a topological ordering of nodes – if there exists a 
(u,v) edge in the DAG, then u is ordered before v. This ordering can be determined 
in linear time by reversing the post-order labeling obtained by depth-first search. 
 

Longest Paths Algorithm [8.18] 
Input: directed graph G(V,E) 
Output: AATs of all nodes v  V based on worst-case (longest) paths 
1. foreach (node v  V) 
2.   AAT[v] = -       // all AATs are by default unknown 
3. AAT[source] = 0     //   except source, which is 0 
4. Q = TOPO_SORT(V)     // topological order 
5. while (Q != Ø) 
6.   u = FIRST_ELEMENT(Q)   // u is the first element in Q 
7.   foreach (neighboring node v of u) 
8.     AAT[v] = MAX(AAT[v],AAT[u] + t[u][v]) // t[u][v] is the (u,v) edge delay 
9.   REMOVE(Q,u)     // remove u from Q 

 

Required arrival time. The required arrival time (RAT), denoted as RAT(v), is the 
time by which the latest transition at a given node v must occur in order for the 
circuit to operate correctly within a given clock cycle. Unlike AATs, which are 
determined from multiple paths from upstream inputs and flip-flop outputs, RATs 
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are determined from multiple paths to downstream outputs and flip-flop inputs. For 
example, suppose that RAT(f ) for the circuit in Fig 8.2 is 5.5. This forces RAT(w) to 
be 5.3, RAT(y) to be 3.1, and so on (Fig. 8.5). Formally, the RAT of a node v is 

),()(max)(
)(

vutuRATvRAT
vFOu

 

where FO(v) is the set of all nodes with a directed edge from v. 
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Fig. 8.5 Required arrival times (RATs) of the DAG, denoted with ‘R’, of Fig. 8.3. 

Slack. Correct operation of the chip with respect to setup constraints, e.g., 
maximum path delay, requires that the AAT at each node does not exceed the RAT. 
That is, for all nodes v  V, AAT(v)  RAT(v) must hold. 

(0.15)

(0.1)

(0.1)

(0.1) (0.2)

(0.25)

(0.2)(0)

(0)

(0.6) (0.3)

x (1)

y (2)

z (2)

w (2) f (0)

a (0)

b (0)

c (0)

s

A 0
R 0.95
S 0.95

A 0
R -0.35
S -0.35

A 0
R -0.35
S -0.35

A 0.6
R 0.95
S 0.35

A 1.1
R 0.75
S -0.35

A 3.4
R 3.05
S -0.35

A 3.2
R 3.1
S -0.1

A 5.65
R 5.3
S -0.35

A 5.85
R 5.5
S -0.35

 
Fig. 8.6 The STA result of the DAG of Fig. 8.3, showing the actual (A) and required (R) arrival 
times, and the slack (S) of each node. 

The slack of a node v, defined as 

slack(v) = RAT(v) – AAT(v) 
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is an indicator of whether the timing constraint for v has been satisfied. Critical 
paths or critical nets are signals that have negative slack, while non-critical paths 
or non-critical nets have positive slack. 

Timing optimization (Sec. 8.5) is the process by which (1) negative slack is 
increased to achieve design correctness, and (2) positive slack is reduced to 
minimize overdesign and recover power and area. Fig 8.6 illustrates the full STA 
computation, including slack, from Fig. 8.3. 

A DAG labeled with the pin node convention facilitates a more detailed and 
accurate timing analysis, as the delay of a gate output depends on which input pin 
has switched. Fig. 8.7 shows the circuit of Fig. 8.2 annotated with the pin node 
convention, where vi is the ith input pin of gate v, and vO is the output pin of v. 
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Fig. 8.7 Circuit of Fig. 8.2 annotated with the pin node convention. For a logic gate v, vi denotes its 
ith input pin, and vO denotes its output pin. 

Fig. 8.8 shows the result of STA constructed using the pin node convention. 
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Fig. 8.8 STA result for the circuit of Fig. 8.2, with a DAG constructed using the pin node 
convention. Each node in the DAG is an input pin or an output pin of a logic gate. 

Current practice. In modern designs, separate timing analyses are performed for 
the cases of rise delay (rising transitions) and fall delay (falling transitions). 
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Signal integrity extensions to STA consider changes in delay due to switching 
activity on neighboring wires of the path under analysis. For signal integrity 
analysis, the STA engine keeps track of windows (intervals) of AATs and RATs, 
and typically executes multiple timing analysis iterations before these timing 
windows stabilize to a clean and accurate result. 

Statistical STA (SSTA) is a generalization of STA where gate and wire delays are 
modeled by random variables and represented by probability distributions [8.21]. 
Propagated AATs, RATs and timing slacks are also random variables. In this 
context, timing constraints can be satisfied with high probability (e.g., 95%). SSTA 
is an increasingly popular methodology choice for leading-edge designs, due to the 
increased manufacturing variability in advanced process nodes. Propagating 
statistical distributions instead of intervals avoids some of STA’s inherent 
pessimism. This reduces the costly power, area and schedule impacts of overdesign. 

The static verification approach is continually challenged by two fundamental 
weaknesses – (1) the assumption of a clock and (2) the assumption that all paths are 
sensitizable. First, STA is not applicable in asynchronous contexts, which are 
increasingly prevalent in modern designs, e.g., asynchronous interfaces in 
systems-on-chips (SoCs), asynchronous logic design styles to improve speed and 
power. Second, optimization tools waste considerable runtime and chip resources – 
e.g., power, area and speed – satisfying “phantom” constraints. In practice, designers 
can manually or semi-automatically specify false and multicycle paths – paths 
whose signal transitions do not need to finish within one clock cycle. Methodologies 
to fully exploit the availability of such timing exceptions are still under development. 

 8.2.2 Delay Budgeting with the Zero-Slack Algorithm 

In timing-driven physical design, both gate and wire delays must be optimized to 
obtain a timing-correct layout. However, there is a chicken-and-egg dilemma: (1) 
timing optimization requires knowledge of capacitive loads and, hence, actual 
wirelength, but (2) wirelengths are unknown until placement and routing are 
completed. To help resolve this dilemma, timing budgets are used to establish 
delay and wirelength constraints for each net, thereby guiding placement and 
routing to a timing-correct result. The best-known approach to timing budgeting is 
the zero-slack algorithm (ZSA) [8.19], which is widely used in practice. 

Algorithm. Consider a netlist consisting of logic gates v1, v2, … , vn and nets e1, e2, 
… , en, where ei is the output net of gate vi. Let t(v) be the gate delay of v, and let 
t(e) be the wire delay of e.3 The ZSA takes the netlist as input, and seeks to 
decrease positive slacks of all nodes to zero by increasing t(v) and t(e) values. 
These increased delay values together constitute the timing budget TB(v) of node 
v, which should not be exceeded during placement and routing. 

                                                           
3 A multi-fanout net ei has multiple source-sink delays, so ZSA must be adjusted accordingly. 
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TB(v) = t(v) + t(e) 

If TB(v) is exceeded, then the place-and-route tool typically (1) decreases the 
wirelength of e by replacement or rerouting, or (2) changes the size of gate v. The 
delay impact of a wire or gate size change can be estimated using the Elmore 
delay model [8.13]. If most arcs (branches) of a timing path are within budget, 
then the path may meet its timing constraints even if some arcs exceed their 
budgets. Thus, another approach to satisfying the timing budget is (3) rebudgeting. 
As in Sec. 8.2.1, let AAT(v), RAT(v) and slack(v) denote respectively the AAT, 
RAT, and slack at node v in the timing graph G. 
 

Zero-Slack Algorithm (Late-Mode Analysis) 
Input: timing graph G(V,E) 
Output: timing budgets TB for each v  V 
1. do 
2.   (AAT,RAT,slack) = STA(G) 
3.   foreach (vi  V) 
4.     TB[vi] = DELAY(vi) + DELAY(ei) 
5.   slackmin =  
6.   foreach (v  V) 
7.     if ((slack[v] < slackmin) and (slack[v] > 0)) 
8.       slackmin = slack[v] 
9.       vmin = v 
10.   if (slackmin  ) 
11.     path = vmin 
12.     ADD_TO_FRONT(path,BACKWARD_PATH(vmin,G)) 
13.     ADD_TO_BACK(path,FORWARD_PATH(vmin,G)) 
14.     s = slackmin / |path| 
15.     for (i = 1 to |path|) 
16.       node = path[i]       // evenly distribute 
17.       TB[node] = TB[node] + s     // slack along path 
18. while (slackmin  ) 

 

The ZSA consists of three major steps. First, determine the initial slacks of all nodes 
(lines 2-4), and select a node vmin with minimum positive slack slackmin (lines 5-9). 
Second, find a path path of nodes that dominates slack(vmin), i.e., any change in 
delays in path’s nodes will cause slack(vmin) to change. This is done by calling the 
two procedures BACKWARD_PATH and FORWARD_PATH (lines 12-13). Third, 
evenly distribute the slack by increasing TB(v) for each v in path (lines 14-17). Each 
budget increment s will decrement a node slack slack(v). By repeating the process 
(lines 1-18), the slack of each node in V will end up at zero. The resulting timing 
budgets at all nodes are the final output of ZSA. Further details of ZSA, including 
proofs of correctness and complexity analyses, are given in [8.19]. 

FORWARD_PATH(vmin,G) constructs a path starting with node vmin, and iteratively 
adds a node v to the path from among the fanouts of the previously-added node in 
path (lines 2-10). Each node v satisfies the condition in line 6, where RAT(vmin) is 
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determined by RAT(v), and AAT(v) is determined by AAT(vmin) – changing the delay 
of either node affects the slack of both nodes. 
 

Forward Path Search (FORWARD_PATH(vmin,G)) 
Input: node vmin with minimum slack slackmin, timing graph G 
Output: maximal downstream path path from vmin such that no node v  V affects  
        the slack of path 
1. path = vmin 
2. do 
3.   flag = false 
4.   node = LAST_ELEMENT(path) 
5.   foreach (fanout node fo of node) 
6.     if ((RAT[fo] == RAT[node] + TB[fo]) and (AAT[fo] == AAT[node] + TB[fo])) 
7.       ADD_TO_BACK(path,fo) 
8.       flag = true 
9.       break 
10. while (flag == true) 
11. REMOVE_FIRST_ELEMENT(path)    // remove vmin 

 

BACKWARD_PATH(vmin,G) iteratively finds a fanin node of the current node so that 
both nodes’ slacks will change if either node’s delay is changed. 
 

Backward Path Search (BACKWARD_PATH(vmin,G)) 
Input: node vmin with minimum slack slackmin, timing graph G 
Output: maximal upstream path path from vmin such that no node v  V affects the  
        slack of path 
1. path = vmin 
2. do 
3.   flag = false 
4.   node = FIRST_ELEMENT(path) 
5.   foreach (fanin node fi of node) 
6.     if ((RAT[fi] == RAT[node] – TB[fi]) and (AAT[fi] == AAT[node] – TB[fi])) 
7.       ADD_TO_FRONT(path,fi) 
8.       flag = true 
9.       break 
10. while (flag == true) 
11. REMOVE_LAST_ELEMENT(path)    // remove vmin 

 

Early-mode analysis. ZSA uses late-mode analysis with respect to setup 
constraints, i.e., the latest times by which signal transitions can occur for the circuit 
to operate correctly. Correct operation also depends on satisfying hold-time 
constraints on the earliest signal transition times. Early-mode analysis considers 
these constraints. If the data input of a sequential element changes too soon after the 
triggering edge of the clock signal, the logic value at the output of that sequential 
element may become incorrect during the current clock cycle. As geometries shrink, 
early-mode violations have become an overriding concern. While setup violations 
can be avoided by lowering the chip’s operating frequency, the chip’s cycle time 
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does not affect hold-time constraints (Sec. 8.1). Violations of hold-time constraints 
typically result in chip failures. 

To correctly analyze this timing constraint, the earliest actual arrival time of 
signal transitions at each node must be determined. The required arrival time of a 
sequential element in early mode is the time at which the earliest signal can arrive 
and still satisfy the library-cell hold-time requirement.  

For each gate v, AATEM(v)  RATEM(v) must be satisfied, where AATEM(v) is the 
earliest actual arrival time of a signal transition, and RATEM(v) is the required 
arrival time in early mode, at gate v. The early-mode slack is then defined as 

slackEM(v) = AATEM(v) – RATEM(v) 

When adapted to early-mode analysis, ZSA is called the near zero-slack 
algorithm. The adapted algorithm seeks to decrease TB(v) by decreasing t(v) or 
t(e), so that all nodes have minimum early-mode timing slacks. However, since 
t(v) and t(e) cannot be negative, node slacks may not necessarily all become zero. 
 

Near Zero-Slack Algorithm (Early-Mode Analysis) 
Input: timing graph G(V,E) 
Output: timing budgets TB for each v  V 
1. foreach (node v  V) 
2.   done[v] = false 
3. do 
4.   (RATEM,AATEM,slackEM) = STA_EM(G)  // early-mode STA 
5.   slackmin =  
6.   foreach (node vi  V) 
7.     TB[vi] = DELAY(vi) + DELAY(ei) 
8.   foreach (node v  V) 
9.     if ((done[v] == false) and (slackEM[v] < slackmin) and (slackEM[v] > 0)) 
10.       slackmin = slackEM[v] 
11.       vmin = v 
12.   if (slackmin  ) 
13.     path = vmin 
14.     ADD_TO_FRONT(path,BACKWARD_PATH_ EM(vmin,G)) 
15.     ADD_TO_BACK(path,FORWARD_PATH _EM(vmin,G)) 
16.     for (i = 1 to |path|) 
17.       node = path[i] 
18.       path_E[i] = FIND_EDGE(V[node],E) // corresponding edge of vi 
19.     for (i = 1 to |path|) 
20.       node = path[i] 
21.       s = MIN(slackmin / |path|,DELAY(path_E[i])) 
22.       TB[node] = TB[node] – s    // decrease DELAY(node) or 

         // DELAY(path_E[node]) 
23.       if (DELAY(path_E[i]) == 0) 
24.         done[node] = true 
25. while (slackmin < ) 
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In relation to the ZSA pseudocode, the procedure BACKWARD_PATH_EM(vmin,G) 
is equivalent to BACKWARD_PATH(vmin,G), and FORWARD_PATH_EM(vmin,G) is 
the equivalent to FORWARD_PATH(vmin,G), except that early-mode analysis is 
used for all arrival and required times. 

Compared to the original ZSA, the two differences are (1) the use of early-mode 
timing constraints and (2) the handling of the Boolean flag done(v). Lines 1-2 set 
done(v) to false for every node v in V. If t(ei) reaches zero for a node vi, done(vi) is 
set to true (lines 23-24). In subsequent iterations (lines 3-25), if vi is the minimum 
slack node of G, it will be skipped (line 9) because t(ei) cannot be decreased 
further. After the algorithm completes, each node v will either have slack(v) = 0 or 
done(v) = true. 

In practice, if the delay of a node does not satisfy its early-mode timing budget, the 
delay constraint can be satisfied by adding additional delay (padding) to appropriate 
components. However, there is always the danger that additional delay may cause 
violations of late-mode timing constraints. Thus, a circuit should be first designed 
with ZSA and late-mode analysis. Early-mode analysis may then be used to confirm 
that early-mode constraints are satisfied, or to guide circuit modifications to satisfy 
such constraints. 

8.3 8.3 Timing-Driven Placement 

Timing-driven placement (TDP) optimizes circuit delay, either to satisfy all timing 
constraints or to achieve the greatest possible clock frequency. It uses the results of 
STA (Sec. 8.2.1) to identify critical nets and attempts to improve signal propagation 
delay through those nets. Typically, TDP minimizes one or both of the following. (1) 
worst negative slack (WNS) 
 

)(min slackWNS

 
where  is the set of timing endpoints, e.g., primary outputs and inputs to flip-flops, 
and (2) total negative slack (TNS) 
 

0)(,

)(
slack

slackTNS  

Algorithmic techniques for timing-driven placement can be categorized as net-based 
(Sec. 8.3.1), path-based or integrated (Sec. 8.3.2). There are two types of net-based 
techniques – (1) delay budgeting assigns upper bounds to the timing or length of 
individual nets, and (2) net weighting assigns higher priorities to critical nets during 
placement. Path-based placement seeks to shorten or speed up entire timing-critical 
paths rather than individual nets. While more accurate than net-based placement, 
path-based placement does not scale to large, modern designs because the number of 
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paths in some circuits, such as multipliers, can grow exponentially with the number 
of gates. Both path-based and net-based approaches (1) rely on support within the 
placement algorithm, and (2) require a dedicated infrastructure for (incremental) 
calculation of timing statistics and parameters. Some placement approaches facilitate 
integration with timing-driven techniques. For instance, net weighting is naturally 
supported by simulated annealing and all analytic algorithms. Netlist partitioning 
algorithms support small integer net weights, but can usually be extended to support 
non-integer weights, either by scaling or by replacing bucket-based data structures 
with more general priority queues. 

Timing-driven placement algorithms often operate in multiple iterations, during 
which the delay budgets or net weights are adjusted based on the results of STA. 
Integrated algorithms typically use constraint-driven mathematical formulations in 
which STA results are incorporated as constraints and possibly in the objective 
function. Several TDP methods are discussed below, while more advanced 
algorithms can be found in [8.8], [8.17], [8.20], and Chap. 21 of [8.5]. 

In practice, some industrial flows do not incorporate timing-driven methods during 
initial placement because timing information can be very inaccurate until locations 
are available. Instead, subsequent placement iterations, especially during detailed 
placement, perform timing optimizations. Integrated methods are commonly used; 
for example, the linear programming formulation (Sec. 8.3.2) is generally more 
accurate than net-weighting or delay budgeting, at the cost of increased runtime. A 
practical design flow for timing closure is introduced in Sec. 8.6. 

 8.3.1 Net-Based Techniques 

Net-based approaches impose either quantitative priorities that reflect timing 
criticality (net weights), or upper bounds on the timing of nets, in the form of net 
constraints (delay budgets). Net weights are more effective at the early design stages, 
while delay budgets are more meaningful if timing analysis is more accurate. More 
information on net weighting can be found in [8.12]. 

Net weighting. Recall that a traditional placer optimizes total wirelength and 
routability. To account for timing, a placer can minimize the total weighted 
wirelength, where each net is assigned a net weight (Chap. 4). Typically, the higher 
the net weight is, the more timing-critical the net is considered. In practice, net 
weights are assigned either statically or dynamically to improve timing. 

Static net weights are computed before placement and do not change. They are 
usually based on slack – the more critical the net (the smaller the slack), the greater 
the weight. Static net weights can be either discrete, e.g., 
 

0 if  
0 if  

2

1

slack
slack

w , where 1 > 0, 2 > 0, and 2 > 1 
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where 1 < 2 are constants greater than zero, or continuous, e.g., 
 

1
t

slackw  

 
where t is the longest path delay and  is a criticality exponent. 

In addition to slack, various other parameters can be accounted for, such as net size 
and the number of critical paths traversing a given net. However, assigning too 
many higher weights may lead to increased total wirelength, routability difficulties, 
and the emergence of new critical paths. In other words, excessive net weighting 
may eventually lead to inferior timing. To this end, net weights can be assigned 
based on sensitivity, or how each net affects TNS. For example, the authors of [8.27] 
define the net weight of net as follows. Let 
 
– w (net) be the original net weight of net o

– slack(net) be the slack of net 
– slack  be the target slack of the design target

– SLACK(net) be the slack sensitivity to the net weight of net ws

– TNS
ws

–  and  be constant bounds on the net weight change that control the tradeoff 
between WNS and TNS 

(net) be the TNS sensitivity to the net weight of net 

 
hen, if slack(net)  0, T

 
w(net) = w (net) +  · (slack  – slack(net)) ·o target

SLACK
ws (net) +  · net) TNS

ws (
 
Otherwise, if slack(net) > 0, then w(net) remains the same, i.e., w(net) = w (net). o

Dynamic net weights are computed during placement iterations and keep an updated 
timing profile. This can be more effective than static net weights, since they are 
computed before placement, and can become outdated when net lengths change. An 
example method updates slack values based on efficient calculation of incremental 

ack for each net net [8.7]. For a given iteration k, let  sl
 
– slackk–1(net) be the slack at iteration k – 1 
– DELAY

Ls (net) be the delay sensitivity to the wirelength of net 
– L(net) be the change in wirelength between iteration k – 1 and k for net  

hen, the estimated slack of net at iteration k is 
 

 
T

slackk(net) = slackk–1(net) – DELAY
Ls (net) · L(net) 
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After the timing information has been updated, the net weights should be adjusted 
accordingly. In general, this incremental method of weight modification is based on 
revious iterations. For instance, for each net net, the authors of [8.14] first compute 

the net criticality ti
 

+ 1) ong the 3% most critical nets 
k(net) =

p
 at itera on k as 

( k–1(net) if net is am

1
2
1

herwise 

and then update the net w

Variants include using the previous j iterations and using different relations between 

of 
placer; their computation is integrated with the placement algorithm. To be scalable, 

od to calculate delay budgets is 
the zero-slack algorithm (ZSA), previously discussed in Sec. 8.2.2. Other advanced 

 are in balance with those forces on 
other nets. More advanced algorithms for min-cut and force-directed placers on TDP 
can be found in [8.16] and [8.26], respectively. 

2 k–1(net) ot

 
eights as 

 
wk(net) = wk–1(net) · (1 + k(net)) 

 

the net weight and criticality. 

In practice, dynamic methods can be more effective than using static net weights, 
but require careful net weight assignment. Unlike static net weights, which are 
relevant to any placer, dynamic net weights are typically tailored to each type 

the re-computation of timing information and net weights must be efficient [8.7]. 

Delay budgeting. An alternative to using net weights is to limit the delay, or the 
total length, of each net by using net constraints. This mitigates several drawbacks 
of net weighting. First, predicting the exact effect of a net weight on timing or total 
wirelength is difficult. For example, increasing weights of multiple nets may lead to 
the same (or very similar) placement. Second, there is no guarantee that a net’s 
timing or length will decrease because of a higher net weight. Instead, net-constraint 
methods have better control and explicitly limit the length or slack of nets. However, 
to ensure scalability, net constraints must be generated such that they do not 
over-constrain the solution space or limit the total number of solutions, thereby 
hurting solution quality. In practice, these net constraints can be generated statically, 
before placement, or dynamically, when the net constraints are added or modified 
during each iteration of placement. A common meth

methods for delay budgeting can be found in [8.15]. 

The support for constraints in each type of placer must be implemented carefully so 
as to not sacrifice runtime or solution quality. For instance, min-cut placers must 
choose how to assign cells to partitions while meeting wirelength constraints. To 
meet these constraints, some cells may have to be assigned to certain partitions. 
Force-directed placers can adjust the attraction force on certain nets that exceed a 
certain length, but must ensure that these forces
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 8.3.2 Embedding STA into Linear Programs for Placement 

Unlike net-based methods, where the timing requirements are mapped to net weights 
or net constraints, path-based methods for timing-driven placement directly optimize 
the design’s timing. However, as the number of (critical) paths of concern can grow 
quickly, this method is much slower than net-based approaches. To improve 
scalability, timing analysis may be captured by a set of constraints and an 
optimization objective within a mathematical programming framework, such as 
linear programming. In the context of timing-driven placement, a linear program 
(LP) minimizes a function of slack, such as TNS, subject to two major types of 
constraints: (1) physical, which define the locations of the cells, and (2) timing, 
which define the slack requirements. Other constraints such as electrical constraints 
may also be incorporated. 

Physical constraints. The physical constraints can be defined as follows. Given the 
set of cells V and the set of nets E, let 
 
– xv and yv be the center of cell v  V 
– V  be the set of cells connected to net e  E e

– left(e), right(e), bottom(e), and top(e) respectively be the coordinates of the left, 
right, bottom, and top boundaries of e’s bounding box 

– x(v,e) and y(v,e) be pin offsets from xv and yv for v’s pin connected to e 
 

hen, for all v  VT
 

e, 

),()(

),()(
),()(
),()(

evyetop

evyebottom
evxeright
evxeleft

yv

yv

xv

xv

 

 
That is, every pin of a given net e must be contained within e’s bounding box. Then, 
’s half-perimeter wirelength (HPWL) (Sec. 4.2) is defined as e

 
)()()()()( ebottometopelefterighteL  

Timing constraints. The timing constraints can be defined as follows. Let 
 
– tGATE(vi,vo) be the gate delay from an input pin vi to the output pin vo for cell v 
– tNET(e,uo,vi) be net e’s delay from cell u’s output pin uo to cell v’s input pin vi 
 AAT(v ) be the arrival time on pin j of cell v 

onstraints – those that account for input pins, and 
those that account for output pins. 

– j
 
Then, define two types of timing c



238 8 Timing Closure 

For every input pin vi of cell v, the arrival time at each vi is the arrival time at the 
previous output pin uo of cell u plus the net delay. 
 

AAT(vi) = AAT(uo) + tNET(uo,vi) 

For every output pin vo of cell v, the arrival time at vo should be greater than or equal 
to the arrival time plus gate delay of each input vi. That is, for each input vi of cell v, 

 
AAT(vo)  AAT(vi) + tGATE(vi,vo) 

For every pin p in a sequential cell , the slack is computed as the difference 
between the required arrival time RAT( p) and actual arrival time AAT( p). 
 

slack( p)  RAT( p) – AAT( p) 
 
The required time RAT( p) is specified at every input pin of a flip-flop and all 
primary outputs, and the arrival time AAT( p) is specified at each output pin of a 
flip-flop and all primary inputs. To ensure that the program does not over-optimize, 
i.e., does not optimize beyond what is required to (safely) meet timing, upper bound 
all pin slacks by zero (or a small positive value). 
 

slack( p)  0 

Objective functions. Using the above constraints and definitions, the LP can 
optimize (1) total negative slack (TNS) 
 

),(

)(:max
Pins

p
p

slack  

 
where Pins( ) is the set of pins of cell , and  is again the set of all sequential 
elements or endpoints, or (2) worst-negative slack (WNS) 
 

WNS:max  
 
where WNS  slack( p) for all pins, or (3) a combination of wirelength and slack 
 

Ee

WNSeL )(:min  

 
where E is the set of all nets,  is a constant between 0 and 1 that trades off WNS 
and wirelength, and L(e) is the HPWL of net e. 
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8.4 8.4 Timing-Driven Routing 

In modern ICs, interconnect can contribute substantially to total signal delay. Thus, 
interconnect delay is a concern during the routing stages. Timing-driven routing 
seeks to minimize one or both of (1) maximum sink delay, which is the maximum 
interconnect delay from the source node to any sink of a given net, and (2) total 
wirelength, which affects the load-dependent delay of the net’s driving gate.  

For a given signal net net, let s0 be the source node and sinks = {s1, …,sn} be the 
sinks. Let G = (V,E) be a corresponding weighted graph where V = {v0,v1, … ,vn} 
represents the source and sink nodes of net, and the weight of an edge e(vi,vj)  E 
represents the routing cost between the terminals vi and vj. For any spanning tree T 
over G, let radius(T) be the length of the longest source-sink path in T, and let 
cost(T) be the total edge weight of T. 

Because source-sink wirelength reflects source-sink signal delay, i.e., the linear and 
Elmore delay [8.13] models are well-correlated, a routing tree ideally minimizes 
both radius and cost. However, for most signal nets, radius and cost cannot be 
minimized at the same time. 

s0 s0 s0
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(a) radius(T) = 8
cost(T) = 20

(b) radius(T) = 13
cost(T) = 13

(c) radius(T) = 11
cost(T) = 16  

Fig. 8.9 Delay vs. cost, i.e., “shallow” vs. “light”, tradeoff in tree construction. (a) A shortest-paths 
tree. (b) A minimum-cost tree. (c) A compromise with respect to radius (depth) and cost. 

Fig. 8.9 illustrates this radius vs. cost (“shallow” vs. “light”) tradeoff, where the 
labels represent edge costs. The tree in Fig. 8.9(a) has minimum radius, and the 
shortest possible path length from the source to every sink. It is therefore a 
shortest-paths tree, and can be constructed using Dijkstra’s algorithm (Sec. 5.6.3). 
The tree in Fig. 8.9(b) has minimum cost and is a minimum spanning tree (MST), 
and can be constructed using Prim’s algorithm (Sec. 5.6.1). Due to their respective 
large cost and large radius, neither of these trees may be desirable in practice. The 
tree in Fig. 8.9(c) is a compromise that has both shallow and light properties. 
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 8.4.1 The Bounded-Radius, Bounded-Cost Algorithm 

The bounded-radius, bounded-cost (BRBC) algorithm [8.11] finds a shallow-light 
spanning tree with provable bounds on both radius and cost. Each of these 
parameters is within a constant factor of its optimal value. From graph G(V,E), the 
algorithm first constructs a subgraph G’ that contains all v  V, and has small cost 
and small radius. Then, the shortest-paths tree TBRBC in G’ will also have small 
radius and cost because it is a subgraph of G’. TBRBC is determined by a parameter  

 0, which trades off between radius and cost. When  = 0, TBRBC has minimum 
radius, and when  = , TBRBC has minimum cost. More precisely, TBRBC satisfies 
both 

 
)()1()( SBRBC TradiusTradius  

 
where TS is a shortest-paths tree of G, and 
 

)(21)( MBRBC TcostTcost  

 
where TM is a minimum spanning tree of G. 

 
BRBC Algorithm 
Input: graph G(V,E), parameter   0 
Output: spanning tree TBRBC

1. TS = SHORTEST_PATHS_TREE(G) 
2. TM = MINIMUM_COST_TREE(G) 
3. G’ = TM 
4. U = DEPTH_FIRST_TOUR(TM) 
5. sum = 0 
6. for (i = 1 to |U|  1) 
7.   uprev = U[i] 
8.   ucurr = U[i + 1] 
9.   sum = sum + costTM[uprev][ucurr]  // sum of uprev ~ ucurr costs in TM 
10.   if (sum >  · costTS[v0][ucurr])   // shortest-path cost in TS 

        //   from source v0 to ucurr 
11.     G’ = ADD(G’, PATH(TS,v0,ucurr))  // add shortest-path edges to G’ 
12.     sum = 0      //   and reset sum 
13. TBRBC = SHORTEST_PATHS_TREE(G’) 

 

To execute the BRBC algorithm, compute a shortest-paths tree TS of G, and a 
minimum spanning tree TM of G (lines 1-2). Initialize the graph G’ to TM (line 3). Let 
U be the sequence of edges corresponding to any depth-first tour of TM (line 4). This 
tour traverses each edge of TM exactly twice (Fig. 8.10), so cost(U) = 2 · cost(TM). 
Traverse U while keeping a running total sum of traversed edge costs (lines 6-9). As 
the traversal visits each node ucurr, check whether sum is strictly greater than the cost 
(distance) between v0 and ucurr in TS. If so, merge the edges of the s0 ~ ucurr path with 
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G’ and reset sum to 0 (lines 11-12). Continue traversing U while repeating this 
process (lines 6-12). Return TBRBC, a shortest-paths tree over G’ (line 13). 
 

s0

s2

s1

s3

s4

 

Fig. 8.10 Depth-first tour of the minimum 
spanning tree in Fig. 8.9 with traversal sequence: 
s0  s1  s2  s3  s4  s3  s2  s1  s0. 

 8.4.2 Prim-Dijkstra Tradeoff 

Another method to generate a routing tree trades off radius and cost by using an 
explicit, quantitative metric. Typically, the minimum cost and minimum radius 
objectives are optimized by Prim’s minimum spanning tree algorithm (Sec. 5.6.1) 
and Dijkstra’s shortest paths tree algorithm (Sec. 5.6.3), respectively. Although 
these two algorithms target two different objectives, they construct spanning trees 
over the set of terminals in very similar ways. From the set of sinks S, each 
algorithm begins with tree T consisting only of s0, and iteratively adds a sink sj and 
the edge connecting a sink si in T to sj. The algorithms differ only in the cost 
function by which the next sink and edge are chosen.  

In Prim’s algorithm, sink sj and edge e(si,sj) are selected to minimize the edge cost 
between sinks si and sj

cost(si,sj) 

where si  T and sj  S – T. In Dijkstra’s algorithm, sink sj and edge e(si,sj) are 
selected to minimize the path cost between source s0 and sink sj

cost(si) + cost(si,sj) 

where si  T, sj  S – T, and cost(si) is the total cost of the shortest path from s0 to si. 

To combine the two objectives, the authors of [8.1] proposed the PD tradeoff, an 
explicit compromise between Prim’s and Dijkstra’s algorithms. This algorithm 
iteratively adds the sink sj and the edge e(si,sj) to T such that 

  cost(si) + cost(si,sj) 

is minimum over all si  T and sj  S – T for a prescribed constant 0    1. 
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When  = 0, the PD tradeoff is identical to Prim’s algorithm, and T is a minimum 
spanning tree TM. As  increases, the PD tradeoff constructs spanning trees with 
progressively higher cost but lower radius. When  = 1, the PD tradeoff is identical 
to Dijkstra’s algorithm, and T is a shortest-paths tree TS. 

Fig. 8.11 shows the behavior of the PD tradeoff with different values of . The tree 
in Fig. 8.11(a) is the result of a smaller value of , and has smaller cost but larger 
radius than the tree in Fig. 8.11(b). 
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cost(T) = 39(a) (b)

 
Fig. 8.11 Result of the Prim-Dijkstra (PD) tradeoff. Let the cost between any two terminals be their 
Manhattan distance. (a) A tree with  = 1/4. (b) A tree with  = 3/4, which has higher cost but 
smaller radius. 

8.4.3 Minimization of Source-to-Sink Delay  

The previous subsections described algorithms that seek radius-cost tradeoffs. Since 
the spanning tree radius reflects actual wire delay, these algorithms indirectly 
minimize sink delays. However, the wirelength-delay abstraction, as well as the 
parameters  in BRBC and  in the PD tradeoff, prevent direct control of delay. 
Instead, given a set of sinks S, the Elmore routing tree (ERT) algorithm [8.6] 
iteratively adds sink sj and edge e(si,sj) to the growing tree T such that the Elmore 
delay from the source s0 to the sink sj, where si  T and sj  S – T, is minimized. 

Since the ERT algorithm does not treat any particular sink differently from the 
others, it is classified as a net-dependent approach. However, during the actual 
design and timing optimization, different timing constraints and slacks are imposed 
for each sink of a multi-pin net. 

The sink with the least timing slack is the critical sink of the net. A routing tree 
construction that is oblivious to critical-sink information may create avoidable 
negative slack, and degrade the overall timing performance of the design. Thus, 
several routing tree constructions, i.e., path-dependent approaches, have been 
developed that address the critical-sink routing problem. 
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Critical-sink routing tree (CSRT) problem. Given a signal net net with source s0, 
sinks S = {s1, … ,sn}, and sink criticalities (i)  0 for each si  S, construct a 
routing tree T such that 

n

i
issti

1
0 ),()(  

is minimized, where t(s0,si) is the signal delay from source s0 to sink si. The sink 
criticality (i) reflects the timing criticality of the corresponding sink si. If a sink is 
on a critical path, then its timing criticality will be greater than that of other sinks. 

A critical-sink Steiner tree heuristic [8.18] for the CSRT problem [8.6] first 
constructs a heuristic minimum-cost Steiner tree T0 over all terminals of S except the 
critical sink sc, the sink with the highest criticality. Then, to reduce t(s0,sc), the 
heuristic adds sc into T0 by heuristic variants, e.g., such as the following approaches. 
 
– H0: introduce a single wire from s  to s . c 0

– H1: introduce the shortest possible wire that can join sc to T0, so long as the path 
from s  to s  is monotone, i.e., of shortest possible total length. 0 c

– HBest: try all shortest connections from sc to edges in T0, as well as from sc to s0. 
Perform timing analysis on each of these trees and return the one with the 
lowest delay at sc. 

The time complexity of the critical-sink Steiner heuristic is dominated by the 
construction of T0, or by the timing analysis in the HBest variant. Though HBest 
achieves the best routing solution in terms of timing slack, the other two variants 
may also provide acceptable combinations of runtime efficiency and solution quality. 
For high-performance designs, even more comprehensively timing-driven routing 
tree constructions are needed. Available slack along each source-sink timing arc is 
best reflected by the required arrival time (RAT) at each sink. In the following RAT 
tree problem formulation, each sink of the signal net has a required arrival time 
which should not be exceeded by the source-sink delay in the routing tree. 

RAT tree problem. For a signal net with source s0 and sink set S, find a 
minimum-cost routing tree T such that 

 
0),()(min 0 sstsRAT

Ss
 

Here, RAT(s) is the required arrival time for sink s, and t(s0,s) is the signal delay in T 
from source s0 to sink s. Effective algorithms to solve the RAT tree problem can be 
found in [8.19]. More information on timing-driven routing can be found in [8.3]. 
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8.5 Physical Synthesis 8.5 

Recall from Sec. 8.2 that the correct operation of a chip with respect to setup 
constraints requires that AAT  RAT at all nodes. If any nodes violate this condition, 
i.e., exhibit negative slack, then physical synthesis, a collection of timing 
optimizations, is applied until all slacks are non-negative. There are two aspects to 
the optimization – timing budgeting and timing correction. During timing budgeting, 
target delays are allocated to arcs along timing paths to promote timing closure 
during the placement and routing stages (Secs. 8.2.2 and 8.3.1), as well as during 
timing correction (Secs. 8.5.1-8.5.3). During timing correction, the netlist is 
modified to meet timing constraints using such operations as changing the size of 
gates, inserting buffers, and netlist restructuring. In practice, a critical path of 
minimum-slack nodes between two sequential elements is identified, and timing 
optimizations are applied to improve slack without changing the logical function. 

 8.5.1 Gate Sizing 

In the standard-cell methodology, each logic gate, e.g., NAND or NOR, is typically 
available in multiple sizes that correspond to different drive strengths. The drive 
strength is the amount of current that the gate can provide during switching. 
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Fig. 8.12 Gate delay vs. load capacitance for three gate sizes A, B, and C, in increasing order. 

Fig. 8.12 graphs load capacitance versus delay for versions A, B and C of a gate v, 
with different sizes (drive strengths), where 

size(vA) < size(vB) < size(vC) 
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A gate with larger size has lower output resistance and can drive a larger load 
capacitance with smaller load-dependent delay. However, a gate with larger size 
also has a larger intrinsic delay due to the parasitic output capacitance of the gate 
itself. Thus, when the load capacitance is large, 

t(vC) < t(vB) < t(vA) 

because the load-dependent delay dominates. When the load capacitance is small, 

t(vA) < t(vB) < t(vC) 

because the intrinsic delay dominates. Increasing size(v) also increases the gate 
capacitance of v, which, in turn, increases the load capacitance seen by fanin drivers. 
Although this relationship is not shown, the effects of gate capacitance on the delays 
of fanin gates will be considered below. 

Resizing transformations adjust the size of v to achieve a lower delay (Fig. 8.13). Let 
C(p) denote the load capacitance of pin p. In Fig. 8.13 (top), the total load 
capacitance drive by gate v is C(d) + C(e) + C(f ) = 3 fF. Using gate size A (Fig. 
8.13, lower left), the gate delay will be t(vA) = 40 ps, assuming the load-delay 
relations in Fig. 8.12. However, using gate size C (Fig. 8.13, lower right), the gate 
delay is t(vC) = 28 ps. Thus, for a load capacitance value of 3 fF, gate delay is 
improved by 12 ps if vC is used instead of vA. Recall that vC has larger input 
capacitance at pins a and b, which increases delays of fanin gates. Details of resizing 
strategies can be found in [8.34]. More information on gate sizing can be found in 
[8.33]. 
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Fig. 8.13 Resizing gate v from gate size A to size C (Fig. 8.12) can achieve a lower gate delay. 

 8.5.2 Buffering 

A buffer is a gate, typically two serially-connected inverters, that regenerates a 
signal without changing functionality. Buffers can (1) improve timing delays 
either by speeding up the circuit or by serving as delay elements, and (2) modify 
transition times to improve signal integrity and coupling-induced delay variation. 
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In Fig. 8.14 (left), the (actual) arrival time at fanout pins d-h for gate vB is t(vB) = 
45 ps. Let pins d and e be on the critical path with required arrival times below 35 
ps, and let the input pin capacitance of buffer y be 1 fF. Then, adding y reduces the 
load capacitance of vB from 5 to 3, and reduces the arrival times at d and e to t(vB) 
= 33 ps. That is, the delay of gate vB is improved by using y to shield vB from 
some portion of its initial load capacitance. In Fig. 8.14 (right), after y is inserted, 
the arrival time at pins f, g and h becomes t(vB) + t(y) = 33 + 33 = 66 ps. 
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Fig. 8.14 Improving t(vB) by inserting buffer y to partially shield vB’s load capacitance. 

A major drawback of buffering techniques is that they consume the available area 
and increase power consumption. Despite the judicious use of buffering by 
modern tools, the number of buffers has been steadily increasing in large designs 
due to technology scaling trends, where interconnect is becoming relatively slower 
compared to gates. In modern high-performance designs, buffers can comprise 
10-20% of all standard cell instances, and up to 44% in some designs [8.31]. 

8.5.3 Netlist Restructuring  

Often, the netlist itself can be modified to improve timing. Such changes should 
not alter the functionality of the circuit, but can use additional gates or modify 
(rewire) the connections between existing gates to improve driving strength and 
signal integrity. This section discusses common netlist modifications. More 
advanced methods for restructuring can be found in [8.25]. 

Cloning (Replication). Duplicating gates can reduce delay in two situations – (1) 
when a gate with significant fanout may be slow due to its fanout capacitance, and 
(2) when a gate’s output fans out in two different directions, making it impossible 
to find a good placement for this gate. The effect on cloning (replication) is to split 
the driven capacitance between two equivalent gates, at the cost of increasing the 
fanout of upstream gates. 

In Fig. 8.15 (left), using the same load-delay relations of Fig. 8.12, the gate delay 
t(vB) of gate vB is 45 ps. However, In Fig. 8.15 (right), after cloning, t(vA) = 30 ps 
and t(vB) = 33 ps. Cloning also increases the input pin capacitance seen by the 
fanin gates that generate signals a and b. In general, cloning allows more freedom 
for local placement, e.g., the instance vA can be placed close to sinks d and e, 
while the instance vB can be placed close to sinks f, g and h, with the tradeoff of 
increased congestion and routing cost. 



  8.5 Physical Synthesis          247 

d
e
f
g
h

C(e) = 1
C(d) = 1

C(f) = 1

C(g) = 1
C(h) = 1

b
a b

a d
e

f
g
h

vB

vA

vB

C(e) = 1
C(d) = 1

C(f) = 1

C(g) = 1
C(h) = 1  

Fig. 8.15 Cloning or duplicating gates to reduce maximum local fanout. 

When the downstream capacitance is large, buffering may be a better alternative 
than cloning because buffers do not increase the fanout capacitance of upstream 
gates. However, buffering cannot replace placement-driven cloning. An exercise 
at the end of this chapter expands further upon this concept. 

The second application of cloning allows the designers to replicate gates and place 
each clone closer to its downstream logic. In Fig. 8.16, v drives five signals d-h, 
where signals d, e and f are close, and g and h are located much farther away. To 
mitigate the large fanout of v and the large interconnect delay caused by remote 
signals, gate v is cloned. The original gate v remains with only signals d, e, and f, 
and a new copy of v (v’) is placed closer to g and h. 
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Fig. 8.16 Cloning transformation: a driving gate is duplicated to reduce remoteness of its fanouts. 

Redesign of fanin tree. The logic design phase often provides a circuit with the 
minimum number of logic levels. Minimizing the maximum number of gates on a 
path between sequential elements tends to produce a balanced circuit with similar 
path delays from inputs to outputs. However, input signals may arrive at varied 
times, so the minimum-level circuit may not be timing-optimal. In Fig. 8.17, the 
arrival time AAT(f ) of pin f is 6 no matter how the input signals are mapped to 
gate input pins. However, the unbalanced network has a shorter input-output path 
which can be used by a later-arriving signal, where AAT(f ) = 5. 
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f <5>

 
Fig. 8.17 Redesigning a fanin tree to have smaller input-to-output delay. The arrival times are 
denoted in angular brackets, and the delay are denoted in parentheses. 
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Redesign of fanout tree. In the same spirit as Fig. 8.17, it is possible to improve 
timing by rebalancing the output load capacitance in a fanout tree so as to reduce 
the delay of the longest path. In Fig. 8.18, buffer y1 is needed because the load 
capacitance of critical path path1 is large. However, by redesigning the fanout tree 
to reduce the load capacitance of path1, use of the buffer y1 can be avoided. 
Increased delay on path2 may be acceptable if that path is not critical even after 
the load capacitance of buffer y2 is increased. 
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Fig. 8.18 Redesign of a fanout tree to reduce the load capacitance of path1. 

Swapping commutative pins. Although the input pins of, e.g., a two-input 
NAND gate are logically equivalent, in the actual transistor network they will 
have different delays to the output pin. When the pin node convention is used for 
STA (Sec. 8.2.1), the internal input-output arcs will have different delays. Hence, 
path delays can change when the input pin assignment is changed. The rule of 
thumb for pin assignment is to assign a later- (sooner-) arriving signal to an 
equivalent input pin with shorter (longer) input-output delay.  

In Fig. 8.19, the internal timing arcs are labeled with corresponding delays in 
parentheses, and pins a, b, c and f are labeled with corresponding arrival times in 
angular brackets. In the circuit on the left, the arrival time at f can be improved 
from 5 to 3 by swapping pins a and c. 
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a <0>

b <1>
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Fig. 8.19 Swapping commutative pins to reduce the arrival time at f. 

More advanced techniques for pin assignment and swapping of commutative pins 
can be found in [8.9]. 
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Gate decomposition. In CMOS designs, a gate with multiple inputs usually has 
larger size and capacitance, as well as a more complex transistor-level network 
topology that is less efficient with respect to speed metrics such as logical effort 
[8.32]. Decomposition of multiple-input gates into smaller, more efficient gates 
can decrease delay and capacitance while retaining the same Boolean 
functionality. Fig. 8.20 illustrates the decomposition of a multiple-input gate into 
equivalent networks of two- and three-input gates. 

 
Fig. 8.20 Gate decomposition of a complex network into alternative networks. 

Boolean restructuring. In digital circuits, Boolean logic can be implemented in 
multiple ways. In the example of Fig. 8.21, f(a,b,c) = (a + b)(a + c)  a + bc 
(distributive law) can be exploited to improve timing when two functions have 
overlapping logic or share logic nodes. The figure shows two functions x = a + bc 
and y = ab + c with arrival times AAT(a) = 4, AAT(b) = 1, and AAT(c) = 2. When 
implemented using a common node a + c, the arrival times of x and y are AAT(x) = 
AAT(y) = 6. However, implementing x and y separately achieves AAT(x) = 5 and 
AAT(y) = 6. 
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Fig. 8.21 Restructuring using logic properties, e.g., the distributive law, to improve timing. 

Reverse transformations. Timing optimizations such as buffering, sizing, and 
cloning increase the original area of the design. This change can cause the design to 
be illegal, as some new cells can now overlap with others. To maintain legality, 
either (1) perform the respective reverse operations unbuffering, downsizing, and 
merging, or (2) perform placement legalization after all timing corrections. 
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8.6 8.6 Performance-Driven Design Flow 

The previous sections have presented several algorithms and techniques to improve 
timing of digital circuit designs. This section combines all these optimizations in a 
consistent performance-driven physical design flow, which seeks to satisfy timing 
constraints, i.e., “close on timing”. Due to the nature of performance optimizations, 
their ordering is important, and their interactions with conventional layout 
techniques are subject to a number of subtle limitations. Evaluation steps, 
particularly STA, must be invoked several times, and some optimizations, such as 
buffering, must be redone multiple times to facilitate a more accurate evaluation. 

Baseline physical design flow. Recall that a typical design flow starts with chip 
planning (Chap. 3), which includes I/O placement, floorplanning (Fig. 8.22), and 
power planning. Trial synthesis provides the floorplanner with an estimate of the 
total area needed by modules. Besides logic area, additional whitespace must be 
allocated to account for buffers, routability, and gate sizing. 
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Fig. 8.22 A floorplan of a system-on-chip (SoC) design. Each major component is given 
dimensions based on area estimates. The audio and video components are adjacent to each other, 
given that their connections to other blocks and their performance constraints are similar. 

Then, logic synthesis and technology mapping produce a gate- (cell)-level netlist 
from a high-level specification, which is tailored to a specific technology library. 
Next, global placement assigns locations to each movable object (Chap. 4). As 
illustrated in Fig. 8.23, most of the cells are clustered in highly concentrated regions 
(colored black). As the iterations progress, the cells are gradually spread across the 
chip, such that they no longer overlap (colored light gray).  
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Fig. 8.23 The progression of cell spreading during global placement in a large, flat 
(non-floorplanned) ASIC design with fixed macro blocks. Darker shades indicate greater cell 
overlap while lighter shades indicate smaller cell overlap. 

These locations, however, do not have to be aligned with cell rows or sites, and can 
allow slight cell overlap. To ensure that the overlap is small, it is common to (1) 
establish a uniform grid, (2) compute the total area of objects in each grid square, 
and (3) limit this total by the area available in the square. 

 
Fig. 8.24 Buffered clock tree in a small CPU design. The clock source is in the lower left corner. 
Crosses (×) indicate sinks, and boxes ( ) indicate buffers. Each diagonal segment represents a 
horizontal plus a vertical wire (L-shape), the choice of which can be based on routing congestion. 
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After global placement, the sequential elements are legalized. Once the locations of 
sequential elements are known, a clock network (Chap. 7) is generated. ASICs, SoCs 
and low-power (mobile) CPUs commonly use clock trees (Fig. 8.24), while 
high-performance microprocessors incorporate structured and hand-optimized clock 
distribution networks that may combine trees and meshes [8.30][8.31]. 

The locations of globally placed cells are first temporarily rounded to a uniform grid, 
and then these rounded locations are connected during global routing (Chap. 5) and 
layer assignment, where each route is assigned to a specific metal layer. The routes 
indicate areas of wiring congestion (Fig. 8.25). This information is used to guide 
congestion-driven detailed placement and legalization of combinational elements 
(Chap. 4). 

 
Fig. 8.25 Progression of congestion maps through iterations of global routing. The light-colored 
areas are those that do not have congestion; dark-colored peaks indicate congested regions. Initially, 
several dense clusters of wires create edges that are far over capacity. After iterations of rip-up and 
reroute, the route topologies are changed, alleviating the most congested areas. Though more 
regions can become congested, the maximum congestion is reduced. 

While detailed placement conventionally comes before global routing, the reverse 
order can reduce overall congestion and wirelength [8.28]. Note that EDA flows 
require a legal placement before global routing. In this case, legalization will be 
performed after global placement. The global routes of signal nets are then assigned 
to physical routing tracks during detailed routing (Chap. 6). 

The layout generated during the place-and-route stage is subjected to reliability, 
manufacturability and electrical verification. During mask generation, each standard 
cell and each route are represented by collections of rectangles in a format suitable 
for generating optical lithography masks for chip fabrication. 

This baseline PD flow is illustrated in Fig. 8.26 with white boxes. 
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Fig. 8.26 Integrating optimizations covered in Chaps. 3-8 into a performance-driven design flow. 
Some tools bundle several optimization steps, which changes the appearance of the flow to users 
and often alters the user interface. Alternatives to this flow are discussed in this section. 
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Performance-driven physical design flow. Extending the baseline design flow, 
contemporary industrial flows are typically built around static timing analysis and 
seek to minimize the amount of change required to close on timing. Some flows start 
timing-driven optimizations as early as the chip planning stage, while others do not 
account for timing until detailed placement to ensure accuracy of timing results. This 
section discusses the timing-driven flow illustrated in Fig. 8.26 with gray boxes. 
Advanced methods for physical synthesis are found in [8.4]. 

Chip planning and logic design. Starting with a high-level design, performance-  
driven chip planning generates the I/O placement of the pins and rectangular blocks 
for each circuit module while accounting for block-level timing, and the power 
supply network. Then, logic synthesis and technology mapping produces a netlist 
based on delay budgets. 

Performance-driven chip planning. Once the locations and shapes of the blocks are 
determined, global routes are generated for each top-level net, and buffers are 
inserted to better estimate timing [8.2]. Since chip planning occurs before global 
placement or global routing, there is no detailed knowledge of where the logic cells 
will be placed within each block or how they will be connected. Therefore, buffer 
insertion makes optimistic assumptions. 

After buffering, STA checks the design for timing errors. If there are a sufficient 
number of violations, then the logic blocks must be re-floorplanned. In practice, 
modifications to existing floorplans to meet timing are performed by experienced 
designers with little to no automation. Once the design has satisfied or mostly met 
timing constraints, the I/O pins can be placed, and power (VDD) and ground (GND) 
supply rails can be routed around floorplan blocks. 

Timing budgeting. After performance-driven floorplanning, delay budgeting sets 
upper bounds on setup (long path) timing for each block. These constraints guide 
logic synthesis and technology mapping to produce a performance-optimized 
gate-level netlist, using standard cells from a given library. 

Block-level or top-level global placement. Starting at global placement, timing-
driven optimizations can be performed at the block level, where each individual 
block is optimized, or top level, where transformations are global, i.e., cross block 
boundaries, and all movable objects are optimized.4 Block-level approaches are 
useful for designs that have many macro blocks or intellectual properties (IPs) that 
have already been optimized and have specific shapes and sizes. Top-level 
approaches are useful for designs that have more freedom or do not reuse 
previously-designed logic; a hierarchical methodology offers more parallelism and 
is more common for large design teams. 

                                                           
4 In hierarchical design flows, different designers concurrently perform top-level placement and 

block-level placement. 
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Buffer insertion. To better estimate and improve timing, buffers are inserted to break 
any extremely long or high fanout nets (Sec. 8.5.2). This can be done either 
physically, where buffers are directly added to the placement, or virtually, where the 
impact of buffering is included in delay models, but the netlist is not modified. 

Physical buffering. Physical buffering [8.1] performs the full process of buffer 
insertion by (1) generating obstacle-avoiding global net topologies for each net, (2) 
estimating which metal layers the route uses, and (3) actually inserting buffers (Fig. 
8.27). 

(a) (b) (c)  
Fig. 8.27 Physical buffering for timing estimation. (a) A five-pin net is routed with a minimum 
Steiner tree topology that does not avoid a routing obstacle (shown in gray). (b) The net routed with 
an obstacle-avoiding Steiner tree topology. (c) The buffered topology offers a relatively accurate 
delay estimation. 

Virtual buffering [8.24], on the other hand, estimates the delay by modeling every 
pin-to-pin connection as an optimally buffered line with linear delay [8.23] as 

)()()()(2)()()()()()( wCwRBCBRBCwRwCBRnetLnettLD  

where net is the net, L(net) is the total length of net, R(B) and C(B) are the respective 
intrinsic resistance and capacitance of the buffer, and R(w) and C(w) are the 
respective unit wire resistance and capacitance. Though no buffers are added to the 
netlist, they are assumed for timing purposes. When timing information becomes 
more accurate, subsequent re-buffering steps often remove any existing buffers and 
re-insert them from scratch. In this context, virtual buffering saves effort, while 
preserving the accuracy of timing analysis. Physical buffering can avoid 
unnecessary upsizing of drivers and is more accurate than virtual buffering, but also 
more time-consuming. 

Once buffering is complete, the design is checked for timing violations using static 
timing analysis (Sec. 8.2.1). Unless timing is met, the design returns to buffering, 
global placement, or, in some cases, to logic synthesis. When timing constraints are 
mostly met, the design moves on to timing correction, which includes gate sizing 
(Sec. 8.5.1) and timing-driven netlist restructuring (Sec. 8.5.3). Subsequently, 
another timing check is performed using STA. 
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Physical synthesis. After buffer insertion, physical synthesis applies several timing 
correction techniques (Sec. 8.5) such as operations that modify the pin ordering or 
the netlist at the gate level, to improve delay on critical paths. 

Timing correction. Methods such as gate sizing increase (decrease) the size of a 
physical gate to speed up (slow down) the circuit. Other techniques such as redesign 
of fanin and fanout trees, cloning, and pin swapping reduce timing by rebalancing 
existing logic to reduce load capacitance for timing-critical nets. Transformations 
such as gate decomposition and Boolean restructuring modify logic locally to 
improve timing by merging or splitting logic nodes from different signals. After 
physical synthesis, another timing check is performed. If it fails, another pass of 
timing correction attempts to fix timing violations. 

Routing. After physical synthesis, all combinational and sequential elements in the 
design are connected during global and clock routing, respectively. First, the 
sequential elements of the design, e.g., flip-flop and latches, are legalized (Sec. 4.4). 
Then, clock network synthesis generates the clock tree or mesh to connect all 
sequential elements to the clock source. Modern clock networks require a number of 
large clock buffers;5 performing clock-network design before detailed placement 
allows these buffers to be placed appropriately. Given the clock network, the design 
can be checked for hold-time (short path) constraints, since the clock skews are now 
known, whereas only setup (long path) constraints could be checked before. 

Layer assignment. After clock-network synthesis, global routing assigns global route 
topologies to connect the combinational elements. Then, layer assignment matches 
each global route to a specific metal layer. This step improves the accuracy of delay 
estimation because it allows the use of appropriate resistance-capacitance (RC) 
parasitics for each net. Note that clock routing is performed before signal-net routing 
when the two share the same metal layers – clock routes take precedence and should 
not detour around signal nets. 

Timing-driven detailed placement. The results of global routing and layer 
assignment provide accurate estimates of wire congestion, which is then used by a 
congestion-driven detailed placer [8.10][8.35]. The cells are (1) spread to remove 
overlap among objects and decrease routing congestion, (2) snapped to standard-cell 
rows and legal cell sites, and then (3) optimized by swaps, shifts and other local 
changes. To incorporate timing optimizations, either perform (1) non-timing-driven 
legalization followed by timing-driven detailed placement, or (2) perform 
timing-driven legalization followed by non-timing-driven detailed placement. After 
detailed placement, another timing check is performed. If timing fails, the design 
could be globally re-routed or, in severe cases, globally re-placed. 

To give higher priority to the clock network, the sequential elements can be 
legalized first, and then followed by global and detailed routing. With this approach, 

                                                           
5 These buffers are legalized immediately when added to the clock network. 
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signal nets must route around the clock network. This is advantageous for 
large-scale designs, as clock trees are increasingly becoming a performance 
bottleneck. A variant flow, such as the industrial flow described in [8.28], first fully 
legalizes the locations of all cells, and then performs detailed placement to recover 
wirelength. 

Another variant performs detailed placement before clock network synthesis, and 
then is followed by legalization and several optimization steps.6 After the clock 
network has been synthesized, another pass of setup optimization is performed. Hold 
violations may be addressed at this time or, optionally, after routing and initial STA. 

Timing-driven routing. After detailed placement, clock network synthesis and 
post-clock network optimization, the timing-driven routing phase aims to fix the 
remaining timing violations. Algorithms discussed in Sec. 8.4 include generating 
minimum-cost, minimum-radius trees for critical nets (Secs. 8.4.1-8.4.2), and 
minimizing the source-to-sink delay of critical sinks (Sec. 8.4.3).  

If there are still outstanding timing violations, further optimizations such as 
re-buffering and late timing corrections are applied. An alternative is to have 
designers manually tune or fix the design by relaxing some design constraints, using 
additional logic libraries, or exploiting design structure neglected by automated tools. 
After this time-consuming process, another timing check is performed. If timing is 
met, then the design is sent to detailed routing, where each signal net is assigned to 
specific routing tracks. Typically, incremental STA-driven Engineering Change 
Orders (ECOs) are applied to fix timing violations after detailed placement; this is 
followed by ECO placement and routing. Then, 2.5D or 3D parasitic extraction 
determines the electromagnetic impact on timing based on the routes’ shapes and 
lengths, and other technology-dependent parameters. 

Signoff. The last few steps of the design flow validate the layout and timing, as well 
as fix any outstanding errors. If a timing check fails, ECO minimally modifies the 
placement and routing such that the violation is fixed and no new errors are 
introduced. Since the changes made are very local, the algorithms for ECO 
placement and ECO routing differ from the traditional place and route techniques 
discussed in Chaps. 4-7. 

After completing timing closure, manufacturability, reliability and electrical 
verification ensure that the design can be successfully fabricated and will function 
correctly under various environmental conditions. The four main components are 
equally important and can be performed in parallel to improve runtime. 

– Design Rule Checking (DRC) ensures that the placed-and-routed layout meets 
all technology-specified design rules e.g., minimum wire spacing and width. 

                                                           
6 These include post-clock-network-synthesis optimizations, post-global-routing optimizations, and 

post-detailed-routing optimizations. 
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– Layout vs. Schematic (LVS) checking ensures the placed-and-routed layout 
matches the original netlist. 

– Antenna Checks seek to detect undesirable antenna effects, which may damage 
a transistor during plasma-etching steps of manufacturing by collecting excess 
charge on metal wires that are connected to PN-junction nodes. This can occur 
when a route consists of multiple metal layers and a charge is induced on a 
metal layer during fabrication. 

– Electric Rule Checking (ERC) finds all potentially dangerous electric 
connections, such as floating inputs and shorted outputs. 

Once the design has been physically verified, optical-lithography masks are 
generated for manufacturing. 

8.7 8.7 Conclusions 

This chapter explained how to combine timing optimizations into a comprehensive 
physical design flow. In practice, the flow described in Sec. 8.6 (Fig. 8.26) can be 

odified based on several factors, including m
 
– Design type. 

– ASIC, microprocessor, IP, analog, mixed-mode. 
Datapath-heavy specifications may require specialized tools for structured 
placement or manual placement. Datapaths typically h

– 
ave shorter wires 

er buffers for high-performance layout. 
– 

te 

– d

ome 
er at others, to adjust timing. 

– Add
dustrial ASICs 

er different 

– 
– 

lumped-capacitance models are inadequate for performance estimation. 

and require few
Design objectives. 
– High-performance, low-power or low-cost. 

ance optimizations, such as buffering and ga– Some high-perform
sizing, increase circuit area, thus increasing circuit power and chip cost. 

Ad itional optimizations. 
– Retiming shifts locations of registers among combinational gates to better 

balance delay. 
– Useful skew scheduling, where the clock signal arrives earlier at s

flip-flops and lat
– Adaptive body-biasing can improve the leakage current of transistors. 

itional analyses. 
– Multi-corner and multi-mode static timing analysis, as in

and microprocessors are often optimized to operate und
temperatures and supply voltages. 

– Thermal analysis is required for high-performance CPUs. 
Technology node, typically specified by the minimum feature size. 

Nodes < 180 nm require timing-driven placement and routing flows, as 
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– 
delay increase 

 in the opposite (same) direction. 

detailed routing, known 
sure manufacturability. 

– 
– 

–

– D si es. 
– To shorten time-to-market, one can leverage a large design team by 

cessary for 
FPGAs, but technology mapping is more challenging, as it affects the area and 

in device 
parameters [8.22]. Further increase in transistor counts may require integrating 
multiple chips into three-dimensional integrated circuits, thus changing the geometry 
of fundamental physical design optimizations [8.36]. Nevertheless, the core 
optimizations described in this chapter will remain vital in chip design. 

Nodes < 130 nm require timing analysis with signal integrity, i.e., 
interconnect coupling capacitances and the resulting 
(decrease) of a given victim net when a neighboring aggressor net 
switches simultaneously

– Nodes < 90 nm require additional resolution enhancement techniques 
(RET) for lithography. 

– Nodes < 65 nm require power-integrity (e.g., IR drop-aware timing, 
electromigration reliability) analysis flows. 

– Nodes < 45 nm require additional statistical power-performance tradeoffs 
tor level. at the transis

– Nodes < 32 nm impose significant limitations on 
as restricted design rules (RDRs), to en

Available tools. 
In-house software, commercial EDA tools [8.34]. 

 Design size and the extent of design reuse. 
– Larger designs often include more global interconnect, which may 

become a performance bottleneck and typically requires buffering. 
– IP blocks are typically represented by hard blocks during floorplanning. 

e gn team size, required time-to-market, available computing resourc

partitioning the design into blocks and assigning blocks to teams. 
– After floorplanning, each block can be laid out in parallel; however, flat 

optimization (no partitioning) sometimes produces better results. 
 
Reconfigurable fabrics such as FPGAs require less attention to buffering, due to 
already-buffered programmable interconnect. Wire congestion is often negligible for 
FPGAs because interconnect resources are overprovisioned. However, FPGA 
detailed placement must satisfy a greater number of constraints than placement for 
other circuit types, and global routing must select from a greater variety of 
interconnect types. Electrical and manufacturability checks are unne

timing to a greater extent, and can benefit more from the use of physical information. 
Therefore, modern physical-synthesis flows for FPGAs perform global placement, 
often in a trial mode, between logic synthesis and technology mapping. 

Physical design flows will require additional sophistication to support increasing 
transistor densities in semiconductor chips. The advent of future technology nodes – 
28 nm, 22 nm and 16 nm – will bring into consideration new electrical and 
manufacturing-related phenomena, while increasing uncertainty 
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 Chapter 8 Exercises 

Exercise 1: Static Timing Analysis 
Given the logic circuit below, draw the timing graph (a), and determine the (b) AAT, 
(c) RAT, and (d) slack of each node. The AATs of the inputs are in angular brackets, 
the delays are in parentheses, and the RAT of the output is in square brackets. 
 

(0.1)

b <0.15>

a <0>

c <0.3>

f [5]
y (2)

z (2)

w (2)

x (1)

(0.75)
(0.25)

(0.4)
(0.15)

(0.3)

(0.1)

(0.2)

 
 
Exercise 2: Timing-Driven Routing 
Given the terminal locations of a signal net, assume that all distances are Manhattan, 
and that no Steiner point is used when routing. Construct the spanning tree T, and 
calculate radius(T) and cost(T), for each of the following. 
(a) Prim-Dijkstra tradeoff with  = 0 (Prim’s MST algorithm). 
(b) Prim-Dijkstra tradeoff with  = 1 (Dijkstra’s algorithm). 
(c) Prim-Dijkstra tradeoff with  = 0.5. 
 

s0

 
 
Exercise 3: Buffer Insertion for Timing Improvement 
For the logic circuit and load capacitances on the following page, assume that 
available gate sizes and timing performances are similar to those in Fig. 8.12. 
Assume that gate delay always increases linearly with load capacitance. Let the 
input capacitance of buffer y be 0.5 fF, 1 fF, and 2 fF with sizes A, B and C, 
respectively. Determine the size for buffer y that minimizes the AAT of sink c. 
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b

a
c

d
e

C(c) = 2.5

C(d) = 1.5
C(e) = 0.5

vB

y

 
 
Exercise 4: Timing Optimization 
List at least two timing optimizations covered only in this chapter (not mentioned 
beforehand). Describe these optimizations in your own words and discuss scenarios 
in which (1) they can be useful and (2) they can be harmful. 
 
Exercise 5: Cloning vs. Buffering 
List and explain scenarios where cloning results in better timing improvements than 
buffering, and vice-versa. Explain why both methods are necessary for 
timing-driven physical synthesis. 
 
Exercise 6: Physical Synthesis 
In terms of timing corrections such as buffering, gate sizing, and cloning, when are 
their reverse transformations useful? In what situations will a given timing 
correction cause the design to be illegal? Explain for each timing correction. 
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