
Audio Core for
Altera DE-Series Boards

For Quartus II 13.0

1 Core Overview

The Audio Core interacts with the Audio CODEC (enCOder/DECoder) on the Altera DE2/DE1 Boards and provides
an interface for audio input and output.

2 Functional Description

The Audio Core supports both, audio input and audio output simultaneously. Figure 1 shows a block diagram of
the Audio Core. To guarantee that the left and right audio output channels are synchronized, data will not play until
both channels are received. If only one channel is to be played, the other channel must have zeros written to it. The
Audio Core contains four FIFOs for the In and Out audio data, both having the right and left audio channels. Each
FIFO can store up to 128 32-bit words.

The Audio Core requires certain clock frequencies based on the sample rate of the audio. It also requires that the
audio chip be initialized with some default values. These requirements are met by using some other University
Program IP cores, which are described below.

Some other University Program IP Cores provides these functionalities and user should refer to Section 3 for details.

Altera Corporation - University Program
May 2013

1

http://www.altera.com/education/univ/

AUDIO CORE FOR ALTERA DE-SERIES BOARDS For Quartus II 13.0

Input

Clock Reset

OutputLeft FIFO

Right FIFO
Serializer

Deserializer
Left FIFO

Right FIFOControl
FIFO Space

Left Data
Right Data

Avalon
Switch

Avalon
Slave
Port

Audio Registers

Fabric

to DAC

from ADC

Figure 1. Block diagram for Audio Core

3 Instantiating the Core in Qsys or Megawizard

Designers use the Audio Core’s Configuration wizard in Qsys or Megawizard to specify the desired features. In
the configuration wizard, the user can choose the mode of the Audio Core by selecting Audio Out and/or Audio
In. In addition, the Data Width per Channel can be specified. Data widths of 16, 20, 24, and 32 bits are sup-
ported. Remember to export the external_interface connection to connect the core with the DAC and the ADC. It is
recommended to set the Avalon Type to Memory Mapped in Qsys and to Streaming when using the Megawizard.

R Altera recommends also instantiating the Audio and Video Config core. This core automatically configures
some required settings of the audio CODEC chip on the DE2/DE1 boards. Refer to the Audio and Video Config
documentation for more information on properly intializing the audio codec.

R The user must also instantiate the External Clocks for DE Board Peripherals core and choose the proper audio
clock setting for the Audio Core. See Wolfson WM8731 audio CODEC Datasheet in the "Audio Data Sampling
Rates" section on page 37 for details on the relationship between sampling rate and clock frequency. Note that the
Audio and Video Config core provides settings for these values.

RWhen using the Memory Mapped Avalon Type in Qsys, Altera recommends that the Audio Core be used with
the standard or fast versions of the Altera Nios® II processor, so that a program running on the processor can keep
up with the generation of audio data. If the economic version of the processor is used, then the program may run too
slowly, and the audio may not be clear. In such, cases, it may be possible to improve the audio clarity by selecting a
lower sampling rate in the audio chip.

2 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

AUDIO CORE FOR ALTERA DE-SERIES BOARDS For Quartus II 13.0

4 Software Programming Model

4.1 Register Map

Device drivers control and communicate with the Audio Core through four 32-bit registers when using the Memory
Mapped Avalon Type. By writing or reading these registers, data can be fetched from the CODEC’s Analog-Digital
Converter (ADC) or sent to the Digital-Analog Converter (DAC). Table 1 shows the format of the registers.

Table 1. Audio Core register map
Offset Register R/W Bit Description

in bytes Name 31. . . 24 23. . . 16 15. . . 10 9 8 7. . . 4 3 2 1 0
0 control RW (1) WI RI (1) CW CR WE RE
4 fifospace R WS LC WS RC RA LC RA RC
8 leftdata RW (2) Left Data
12 rightdata RW (2) Right Data

Notes on Table 1:

(1) Reserved. Read values are undefined. Write zero.

(2) Only reads incoming audio data and writes outgoing audio data.

Altera Corporation - University Program
May 2013

3

http://www.altera.com/education/univ/

AUDIO CORE FOR ALTERA DE-SERIES BOARDS For Quartus II 13.0

4.1.1 Control Register

Table 2. Control register bits
Bit number Bit name Read/Write Description

0 RE R/W Interrupt-enable bit for read interrupts. If the RE bit
is set to 1 and both the left and right channel read
FIFOs contain data, the Audio Core generates an in-
terrupt request (IRQ).

1 WE R/W Interrupt-enable bit for write interrupts. If the WE
bit is set to 1 and both the left and right channel write
FIFOs have space available for more data, the Audio
Core generates an interrupt request (IRQ).

2 CR R/W Clears the Audio Core’s Input FIFOs, when the bit is
1. Clear remains active until specifically set to zero.

3 CW R/W Clears the Audio Core’s Output FIFOs, when the bit
is 1. Clear remains active until specifically set to
zero.

8 RI R Indicates that a read interrupt is pending.
9 WI R Indicates that a write interrupt is pending.

4.1.2 Fifospace Register

The fifospace register fields WSLC (b31−24) and WSRC (b23−16) indicate the number of words available (i.e., the
amount of empty space) for outgoing data in the left and right channel FIFOs, respectively, while RALC (b15−8) and
RARC (b7−0) indicate the number of words of incoming audio data in the left and right channel FIFOs, respectively.
When all of the outgoing and incoming FIFOs are empty, the fifospace register will hold WSLC = WSRC = 128,
and RALC = RARC = 0.

4.1.3 Leftdata Register

The leftdata register is readable only for Audio In and writable only for Audio Out. It stores the data coming
from or going to the left channel. The data is always flush right, i.e., the LSB is b0 of the leftdata register.

4.1.4 Rightdata Register

The rightdata register is readable only for Audio In and writable only for Audio Out. It stores the data coming
from or going to the right channel. The data is always flush right, i.e., the LSB is b0 of the rightdata register.

4.2 Interrupt Behavior

The Audio Core produces a read interrupt when either of the read FIFOs are filled to 75% or more. The interrupt
is cleared when the FIFO becomes less than 75% full. Also, it produces a write interrupt when either of the write
FIFOs have available space of 75% or more. The interrupt is cleared when the FIFO becomes less than 75% empty.
The Audio Core generates an interrupt when either of these individual interrupt conditions are pending and enabled.

4 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

AUDIO CORE FOR ALTERA DE-SERIES BOARDS For Quartus II 13.0

4.3 Programming with the Audio Core

The Audio Core is packaged with C-language device drivers accessible through the hardware abstraction layer
(HAL). These functions implement basic operations for the Audio Core.

To use the functions, the C code must include the statement:

#include "altera_up_avalon_audio.h"

An example of C code that uses the Audio Core is given at the end of this section.

4.3.1 alt up audio open dev

Prototype: alt_up_audio_dev* alt_up_audio_open_dev(const
char *name)

Include: <altera_up_avalon_audio.h>
Parameters: name – the audio component name in Qsys.
Returns: The corresponding device structure, or NULL if the device is not found
Description: Opens the audio device specified by name (default "/dev/audio/").

4.3.2 alt up audio enable read interrupt

Prototype: void alt_up_audio_enable_read_interrupt(alt_up_audio_dev

*audio)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure
Returns: nothing
Description: Enable read interrupts for the Audio Core.

4.3.3 alt up audio disable read interrupt

Prototype: void alt_up_audio_disable_read_interrupt(alt_up_audio_dev

*audio)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure
Returns: nothing
Description: Disable read interrupts for the Audio Core.

Altera Corporation - University Program
May 2013

5

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/education/univ/

AUDIO CORE FOR ALTERA DE-SERIES BOARDS For Quartus II 13.0

4.3.4 alt up audio enable write interrupt

Prototype: void alt_up_audio_enable_write_interrupt(alt_up_audio_dev

*audio)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure
Returns: nothing
Description: Enable write interrupts for the Audio Core.

4.3.5 alt up audio disable write interrupt

Prototype: void alt_up_audio_disable_write_interrupt(alt_up_audio_dev

*audio)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure
Returns: nothing
Description: Disable the read interrupts for the Audio Core.

4.3.6 alt up audio read interrupt pending

Prototype: int alt_up_audio_read_interrupt_pending(alt_up_audio_dev

*audio)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure
Returns: 1 if read interrupt is pending, else 0
Description: Check if read interrupt pending for the Audio Core.

4.3.7 alt up audio write interrupt pending

Prototype: int alt_up_audio_write_interrupt_pending(alt_up_audio_dev

*audio)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure
Returns: 1 if write interrupt is pending, else 0
Description: Check if write interrupt pending for the Audio Core.

4.3.8 alt up audio reset audio core

Prototype: void alt_up_audio_reset_audio_core(alt_up_audio_dev

*audio)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure
Returns: nothing
Description: Reset the Audio Core by clearing read and write FIFOs for left and right

channels.

6 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

AUDIO CORE FOR ALTERA DE-SERIES BOARDS For Quartus II 13.0

4.3.9 alt up audio read fifo avail

Prototype: unsigned int alt_up_audio_read_fifo_avail(alt_up_audio_dev

*audio, int channel)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure

channel – left or right channel selection
Returns: number of words available
Description: provides number of words of data available in the incoming FIFO for

channel

4.3.10 alt up audio record r

Prototype: unsigned int alt_up_audio_record_r(alt_up_audio_dev

*audio, unsigned int *buf, int len)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure

buf – the pointer to the allocated memory for storing audio data. Size
of buf should be no smaller than len words.
len – the number of data in words to read from the input FIFO

Returns: The total number of words read.
Description: Read len words of data from right input FIFO, if the FIFO is above a

threshold, and store data to where buf points.

4.3.11 alt up audio record l

Prototype: unsigned int alt_up_audio_record_l(alt_up_audio_dev

*audio, unsigned int *buf, int len)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure

buf – the pointer to the allocated memory for storing audio data. Size
of buf should be no smaller than len words.
len – the number of data in words to read from the input FIFO

Returns: The total number of words read.
Description: Read len words of data from left input FIFO, if the FIFO is above a

threshold, and store data to where buf points.

Altera Corporation - University Program
May 2013

7

http://www.altera.com/education/univ/

AUDIO CORE FOR ALTERA DE-SERIES BOARDS For Quartus II 13.0

4.3.12 alt up audio write fifo space

Prototype: unsigned int alt_up_audio_write_fifo_space(alt_up_audio_dev

*audio, int channel)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure

channel – left or right channel enum
Returns: number of words available
Description: provides the amount of empty space in the outgoing FIFO for channel

4.3.13 alt up audio play r

Prototype: unsigned int alt_up_audio_play_r(alt_up_audio_dev

*audio, unsigned int *buf, int len)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure

buf – the pointer to the data to be written. Size of buf should be no
smaller than len words.
len – the number of data in words to be written into the output FIFO

Returns: The total number of data written.
Description: Write len words of data into right output FIFO, if space available in

FIFO is above a threshold.

4.3.14 alt up audio play l

Prototype: unsigned int alt_up_audio_play_l(alt_up_audio_dev

*audio, unsigned int *buf, int len)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure

buf – the pointer to the data to be written. Size of buf should be no
smaller than len words.
len – the number of data in words to be written into the output FIFO

Returns: The total number of data written.
Description: Write len words of data into left output FIFO, if space available in FIFO

is above a threshold.

8 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

AUDIO CORE FOR ALTERA DE-SERIES BOARDS For Quartus II 13.0

4.3.15 alt up audio read fifo

Prototype: int alt_up_audio_read_fifo(alt_up_audio_dev

*audio, unsigned int *buf, int len, int
channel)

Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure

buf – the pointer to the allocated memory for storing audio data. Size
of buf should be no smaller than len words.
len – the number of data in words to read from each input FIFO
channel – left or right channel selection

Returns: The total number of words read.
Description: Read len words of data from left input FIFO or right input FIFO, and

store data to where buf points.

4.3.16 alt up audio write fifo

Prototype: int alt_up_audio_write_fifo(alt_up_audio_dev

*audio, unsigned int *buf, int len, int
channel)

Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure

buf – the pointer to the data to be written. Size of buf should be no
smaller than len words.
len – the number of data in words to be written into each output FIFO
channel – left or right channel selector

Returns: The total number of data written.
Description: Write len words of data from buf to the left or right output FIFOs.

4.3.17 alt up audio read fifo head

Prototype: unsigned int alt_up_audio_read_fifo_head(alt_up_audio_dev

*audio, int channel)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure

channel – left or right channel selection
Returns: the word read
Description: Read one data word from left input FIFO or right input FIFO.

Altera Corporation - University Program
May 2013

9

http://www.altera.com/education/univ/

AUDIO CORE FOR ALTERA DE-SERIES BOARDS For Quartus II 13.0

4.3.18 alt up audio write fifo head

Prototype: void alt_up_audio_write_fifo_head(alt_up_audio_dev

*audio, unsigned int data, int channel)
Include: <altera_up_avalon_audio.h>
Parameters: audio – the audio device structure

data – the data word to be written
channel – left or right channel selector

Returns: nothing
Description: Write one data word to the left or right output FIFOs.

10 Altera Corporation - University Program
May 2013

http://www.altera.com/education/univ/

AUDIO CORE FOR ALTERA DE-SERIES BOARDS For Quartus II 13.0

4.3.19 Audio Core C Example using Device Drivers

#include "altera_up_avalon_audio.h"

int main(void)
{

alt_up_audio_dev * audio_dev;

/* used for audio record/playback */
unsigned int l_buf;
unsigned int r_buf;

// open the Audio port
audio_dev = alt_up_audio_open_dev ("/dev/Audio");
if (audio_dev == NULL)

alt_printf ("Error: could not open audio device \n");
else

alt_printf ("Opened audio device \n");

/* read and echo audio data */
while(1)
{

int fifospace = alt_up_audio_read_fifo_avail (audio_dev, ALT_UP_AUDIO_RIGHT);
if (fifospace > 0) // check if data is available
{

// read audio buffer
alt_up_audio_read_fifo (audio_dev, &(r_buf), 1, ALT_UP_AUDIO_RIGHT);
alt_up_audio_read_fifo (audio_dev, &(l_buf), 1, ALT_UP_AUDIO_LEFT);

// write audio buffer
alt_up_audio_write_fifo (audio_dev, &(r_buf), 1, ALT_UP_AUDIO_RIGHT);
alt_up_audio_write_fifo (audio_dev, &(l_buf), 1, ALT_UP_AUDIO_LEFT);

}
}

}

Figure 2. An example of C with Device Driver Support code that uses Audio Core.

Altera Corporation - University Program
May 2013

11

http://www.altera.com/education/univ/

	1 Core Overview
	2 Functional Description
	3 Instantiating the Core in Qsys or Megawizard
	4 Software Programming Model
	4.1 Register Map
	4.1.1 Control Register
	4.1.2 Fifospace Register
	4.1.3 Leftdata Register
	4.1.4 Rightdata Register

	4.2 Interrupt Behavior
	4.3 Programming with the Audio Core
	4.3.1 alt_up_audio_open_dev
	4.3.2 alt_up_audio_enable_read_interrupt
	4.3.3 alt_up_audio_disable_read_interrupt
	4.3.4 alt_up_audio_enable_write_interrupt
	4.3.5 alt_up_audio_disable_write_interrupt
	4.3.6 alt_up_audio_read_interrupt_pending
	4.3.7 alt_up_audio_write_interrupt_pending
	4.3.8 alt_up_audio_reset_audio_core
	4.3.9 alt_up_audio_read_fifo_avail
	4.3.10 alt_up_audio_record_r
	4.3.11 alt_up_audio_record_l
	4.3.12 alt_up_audio_write_fifo_space
	4.3.13 alt_up_audio_play_r
	4.3.14 alt_up_audio_play_l
	4.3.15 alt_up_audio_read_fifo
	4.3.16 alt_up_audio_write_fifo
	4.3.17 alt_up_audio_read_fifo_head
	4.3.18 alt_up_audio_write_fifo_head
	4.3.19 Audio Core C Example using Device Drivers

