
Nios II Software Developer’s Handbook
January 2014

NII52015-13.1.0

© 2014 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

January 2014
NII52015-13.1.0
4. Nios II Software Build Tools
This chapter describes the Nios® II Software Build Tools (SBT), a set of utilities and
scripts that creates and builds embedded C/C++ application projects, user library
projects, and board support packages (BSPs). The Nios II SBT supports a repeatable,
scriptable, and archivable process for creating your software product.

You can invoke the Nios II SBT through either of the following user interfaces:

■ The Eclipse™ GUI

■ The Nios II Command Shell

The purpose of this chapter is to make you familiar with the internal functionality of
the Nios II SBT, independent of the user interface employed.

1 Before reading this chapter, consider getting an introduction to the Nios II SBT by first
reading one of the following chapters:

■ Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook

■ Getting Started from the Command Line chapter of the Nios II Software Developer’s
Handbook

This chapter contains the following sections:

■ “Road Map for the SBT”

■ “Makefiles” on page 4–3

■ “Nios II Embedded Software Projects” on page 4–5

■ “Common BSP Tasks” on page 4–8

■ “Details of BSP Creation” on page 4–20

■ “Tcl Scripts for BSP Settings” on page 4–27

■ “Revising Your BSP” on page 4–30

■ “Specifying BSP Defaults” on page 4–35

■ “Device Drivers and Software Packages” on page 4–39

■ “Boot Configurations for Altera Embedded Software” on page 4–40

■ “Altera-Provided Embedded Development Tools” on page 4–42

■ “Restrictions” on page 4–47
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=NII52015
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

4–2 Chapter 4: Nios II Software Build Tools
Road Map for the SBT
This chapter assumes you are familiar with the following topics:

■ The GNU make utility. Altera recommends you use version 3.80 or later. On the
Windows platform, GNU make version 3.80 is provided with the Nios II EDS.

f You can obtain general information about GNU make from the Free
Software Foundation, Inc. (www.gnu.org).

■ Board support packages.

Depending on how you use the tools, you might also need to be familiar with the
following topics:

■ Micrium MicroC/OS-II. For information, refer to MicroC/OS-II - The Real Time
Kernel by Jean J. Labrosse (CMP Books).

■ Tcl scripting language.

Road Map for the SBT
Before you start using the Nios II SBT, it is important to understand its scope. This
section helps you understand their purpose, what they include, and what each tool
does. Understanding these points helps you determine how each tool fits in with your
development process, what parts of the tools you need, and what features you can
disregard for now.

What the Build Tools Create
The purpose of the build tools is to create and build Nios II software projects. A
Nios II project is a makefile with associated source files.

The SBT creates the following types of projects:

■ Nios II application—A program implementing some desired functionality, such as
control or signal processing.

■ Nios II BSP—A library providing access to hardware in the Nios II system, such as
UARTs and other I/O devices. A BSP provides a software runtime environment
customized for one processor in a hardware system. A BSP optionally also
includes the operating system, and other basic system software packages such as
communications protocol stacks.

■ User library—A library implementing a collection of reusable functions, such as
graphics algorithms.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

www.gnu.org

Chapter 4: Nios II Software Build Tools 4–3
Makefiles
Comparing the Command Line with Eclipse
Aside from the Eclipse GUI, there are very few differences between the SBT command
line and the Nios II SBT for Eclipse. Table 4–1 lists the differences.

The Nios II SBT for Eclipse provides access to a large, useful subset of SBT
functionality. Any project you create in Eclipse can also be created using the SBT from
the command line or in a script. Create your software project using the interface that is
most convenient for you. Later, it is easy to perform additional project tasks in the
other interface if you find it advantageous to do so.

Makefiles
Makefiles are a key element of Nios II C/C++ projects. The Nios II SBT includes
powerful tools to create makefiles. An understanding of how these tools work can
help you make the most optimal use of them.

The Nios II SBT creates two kinds of makefiles:

■ Application or user library makefile—A simple makefile that builds the
application or user library with user-provided source files

■ BSP makefile—A more complex makefile, generated to conform to user-specified
settings and the requirements of the target hardware system

It is not necessary to use to the generated application and user library makefiles if you
prefer to write your own. However, Altera recommends that you use the SBT to
manage and modify BSP makefiles.

Generated makefiles are platform-independent, calling only utilities provided with
the Nios II EDS (such as nios2-elf-gcc).

The generated makefiles have a straightforward structure, and each makefile has
in-depth comments explaining how it works. Altera recommends that you study
these makefiles for further information about how they work. Generated BSP
makefiles consist of a single main file and a small number of makefile fragments, all of
which reside in the BSP directory. Each application and user library has one makefile,
located in the application or user library directory.

Modifying Makefiles
It is not necessary to edit makefiles by hand. The Nios II SBT for Eclipse offers GUI
tools for makefile management.

Table 4–1. Differences between Nios II SBT for Eclipse and the Command Line

Feature Eclipse Command Line

Project source file management
Specify sources automatically, e.g.

by dragging and dropping into
project

Specify sources manually using
command arguments

Debugging Yes Import project to Eclipse
environment

Integrates with custom shell scripts and tool
flows No Yes
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–4 Chapter 4: Nios II Software Build Tools
Makefiles
f For further information, refer to the Getting Started with the Graphical User Interface
chapter of the Nios II Software Developer’s Handbook.

On the command line, the project type determines the correct utility or utilities to
update your makefile, as shown in Table 4–2.

1 After making changes to a makefile, run make clean before rebuilding your project. If
you are using the Nios II SBT for Eclipse, this happens automatically.

Makefile Targets
Table 4–3 shows the application makefile targets. Altera recommends that you study
the generated makefiles for further details about these targets.

Table 4–2. Command-Line Utilities for Updating Makefiles

Project Type Utilities

Application nios2-app-update-makefile

Library nios2-lib-update-makefile

BSP (1)
nios2-bsp-update-settings

nios2-bsp-generate-files

Note to Table 4–2:

(1) For details about updating BSP makefiles, refer to “Updating Your BSP” on page 4–32.

Table 4–3. Application Makefile Targets

Target Operation

help Displays all available application makefile targets.

all (default) Builds the associated BSP and libraries, and then builds the application
executable file.

app Builds only the application executable file.

bsp Builds only the BSP.

libs Builds only the libraries and the BSP.

clean
Performs a clean build of the application. Deletes all application-related
generated files. Leaves associated BSP and libraries alone.

clean_all
Performs a clean build of the application, and associated BSP and libraries
(if any).

clean_bsp Performs a clean build of the BSP.

clean_libs Performs a clean build of the libraries and the BSP.

download-elf Builds the application executable file and then downloads and runs it.

program-flash Runs the Nios II flash programmer to program your flash memory.

Note to Table 4–3:

(1) You can use the download-elf makefile target if the host system is connected to a single USB-Blaster™ download
cable. If you have more than one download cable, you must download your executable with a separate command.
Set up a run configuration in the Nios II SBT for Eclipse, or use nios2-download, with the --cable option to
specify the download cable.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Chapter 4: Nios II Software Build Tools 4–5
Nios II Embedded Software Projects
Nios II Embedded Software Projects
The Nios II SBT supports the following kinds of software projects:

■ C/C++ application projects

■ C/C++ user library projects

■ BSP projects

This section discusses each type of project in detail.

Applications and Libraries
The Nios II SBT has nearly identical support for C/C++ applications and libraries.
The support for applications and libraries is very simple. For each case, the SBT
generates a private makefile (named Makefile). The private makefile is used to build
the application or user library.

The private makefile builds one of two types of files:

■ A .elf file—For an application

■ A library archive file (.a)—For a user library

For a user library, the SBT also generates a public makefile, called public.mk. The
public makefile is included in the private makefile for any application (or other user
library) that uses the user library.

When you create a makefile for an application or user library, you provide the SBT
with a list of source files and a reference to a BSP directory. The BSP directory is
mandatory for applications and optional for libraries.

The Nios II SBT examines the extension of each source file to determine the
programming language. Table 4–4 shows the supported programming languages
with the corresponding file extensions.

Board Support Packages
A Nios II BSP project is a specialized library containing system-specific support code.
A BSP provides a software runtime environment customized for one processor in a
hardware system. The BSP isolates your application from system-specific details such
as the memory map, available devices, and processor configuration.

Table 4–4. Supported Source File Types

Programming Language File
Extensions (1)

C .c

C++ .cpp, .cxx, .cc

Nios II assembly language; sources are built directly by the Nios II assembler
without preprocessing .s

Nios II assembly language; sources are preprocessed by the Nios II C
preprocessor, allowing you to include header files .S

Note to Table 4–4:

(1) All file extensions are case-sensitive.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–6 Chapter 4: Nios II Software Build Tools
Nios II Embedded Software Projects
A BSP includes a .a file, header files (for example, system.h), and a linker script
(linker.x). You use these BSP files when creating an application.

The Nios II SBT supports two types of BSPs: Altera® Hardware Abstraction Layer
(HAL) and Micrium MicroC/OS-II. MicroC/OS-II is a layer on top of the Altera HAL
and shares a common structure.

Overview of BSP Creation
The Nios II SBT creates your BSP for you. The tools provide a great deal of power and
flexibility, enabling you to control details of your BSP implementation while
maintaining compatibility with a hardware system that might change.

By default, the tools generate a basic BSP for a Nios II system. If you require more
detailed control over the characteristics of your BSP, the Nios II SBT provides that
control, as described in the remaining sections of this chapter.

Parts of a Nios II BSP

Hardware Abstraction Layer

The HAL provides a single-threaded UNIX-like C/C++ runtime environment. The
HAL provides generic I/O devices, allowing you to write programs that access
hardware using the newlib C standard library routines, such as printf(). The HAL
interfaces to HAL device drivers, which access peripheral registers directly,
abstracting hardware details from the software application. This abstraction
minimizes or eliminates the need to access hardware registers directly to connect to
and control peripherals.

f For complete details about the HAL, refer to the Hardware Abstraction Layer section
and the HAL API Reference chapter of the Nios II Software Developer’s Handbook.

newlib C Standard Library

newlib is an open source implementation of the C standard library intended for use
on embedded systems. It is a collection of common routines such as printf(),
malloc(), and open().

Device Drivers

Each device driver manages a hardware component. By default, the HAL instantiates
a device driver for each component in your hardware system that needs a device
driver. In the Nios II software development environment, a device driver has the
following properties:

■ A device driver is associated with a specific hardware component.

■ A device driver might have settings that impact its compilation. These settings
become part of the BSP settings.

Optional Software Packages

A software package is source code that you can optionally add to a BSP project to
provide additional functionality. The NicheStack® TCP/IP - Nios II Edition is an
example of a software package.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2_02.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf

Chapter 4: Nios II Software Build Tools 4–7
Nios II Embedded Software Projects
In the Nios II software development environment, a software package typically has
the following properties:

■ A software package is not associated with specific hardware.

■ A software package might have settings that impact its compilation. These settings
become part of the BSP settings.

1 In the Nios II software development environment, a software package is distinct from
a library project. A software package is part of the BSP project, not a separate library
project.

Optional Real-Time Operating System

The Nios II EDS includes an implementation of the third-party MicroC/OS-II RTOS
that you can optionally include in your BSP. MicroC/OS-II is built on the HAL, and
implements a simple, well-documented RTOS scheduler. You can modify settings that
become part of the BSP settings. Other operating systems are available from
third-party vendors.

The Micrium MicroC/OS-II is a multi-threaded run-time environment. It is built on
the Altera HAL.

The MicroC/OS-II directory structure is a superset of the HAL BSP directory
structure. All HAL BSP generated files also exist in the MicroC/OS-II BSP.

The MicroC/OS-II source code resides in the UCOSII directory. The UCOSII
directory is contained in the BSP directory, like the HAL directory, and has the same
structure (that is, src and inc directories). The UCOSII directory contains only copied
files.

The MicroC/OS-II BSP library archive is named libucosii_bsp.a. You use this file the
same way you use libhal_bsp.a in a HAL BSP.

Software Build Process
To create a software project with the Nios II SBT, you perform several high-level steps:

1. Obtain the hardware design on which the software is to run. When you are
learning about the build tools, this might be a Nios II design example. When you
are developing your own design, it is probably a design developed by someone in
your organization. Either way, you need to have the SOPC Information File
(.sopcinfo).

2. Decide what features the BSP requires. For example, does it need to support an
RTOS? Does it need other specialized software support, such as a TCP/IP stack?
Does it need to fit in a small memory footprint? The answers to these questions tell
you what BSP features and settings to use.

f For more information about available BSP settings, refer to the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4–8 Chapter 4: Nios II Software Build Tools
Common BSP Tasks
3. Define a BSP. Use the Nios II SBT to specify the components in the BSP, and the
values of any relevant settings. The result of this step is a BSP settings file, called
settings.bsp. For more information about creating BSPs, refer to “Board Support
Packages” on page 4–5.

4. Create a BSP makefile using the Nios II build tools.

5. Optionally create a user library. If you need to include a custom software user
library, you collect the user library source files in a single directory, and create a
user library makefile. The Nios II build tools can create a makefile for you. You can
also create a makefile by hand, or you can autogenerate a makefile and then
customize it by hand. For more information about creating user library projects,
refer to “Applications and Libraries” on page 4–5.

6. Collect your application source code. When you are learning, this might be a
Nios II software example. When you are developing a product, it is probably a
collection of C/C++ source files developed by someone in your organization. For
more information about creating application projects, refer to “Applications and
Libraries” on page 4–5.

7. Create an application makefile. The easiest approach is to let the Nios II build tools
create the makefile for you. You can also create a makefile by hand, or you can
autogenerate a makefile and then customize it by hand. For more information
about creating makefiles, refer to “Makefiles” on page 4–3.

Common BSP Tasks
The Nios II SBT creates a BSP for you with useful default settings. However, for many
tasks you must manipulate the BSP explicitly. This section describes the following
common BSP tasks, and how you carry them out.

■ “Using Version Control” on page 4–9

■ “Copying, Moving, or Renaming a BSP” on page 4–10

■ “Handing Off a BSP” on page 4–10

■ “Creating Memory Initialization Files” on page 4–11

■ “Modifying Linker Memory Regions” on page 4–11

■ “Creating a Custom Linker Section” on page 4–12

■ “Changing the Default Linker Memory Region” on page 4–16

■ “Changing a Linker Section Mapping” on page 4–16

■ “Creating a BSP for an Altera Development Board” on page 4–17

■ “Querying Settings” on page 4–18

■ “Managing Device Drivers” on page 4–18

■ “Creating a Custom Version of newlib” on page 4–18

■ “Controlling the stdio Device” on page 4–19

■ “Configuring Optimization and Debugger Options” on page 4–19
Nios II Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios II Software Build Tools 4–9
Common BSP Tasks
Although this section describes tasks in terms of the SBT command line flow, you can
also carry out most of these tasks with the Nios II SBT for Eclipse, described in the
Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook.

Adding the Nios II SBT to Your Tool Flow
A common reason for using the SBT is to enable you to integrate your software build
process with other tools that you use for system development, including non-Altera
tools. This section describes several scenarios in which you can incorporate the build
tools in an existing tool chain.

Using Version Control
One common tool flow requirement is version control. By placing an entire software
project, including both source and makefiles, under version control, you can ensure
reproducible results from software builds.

When you are using version control, it is important to know which files to add to your
version control database. With the Nios II SBT, the version control requirements
depend on what you are trying to do and how you create the BSP.

If you create a BSP by running your own script that calls nios2-bsp, you can put your
script under version control. If your script provides any Tcl scripts to nios2-bsp (using
the --script option), you must also put these Tcl scripts under version control. If you
install a new release of Nios II EDS and run your script to create a new BSP or to
update an existing BSP, the internal implementation of your BSP might change
slightly due to improvements in Nios II EDS.

f Refer to “Revising Your BSP” on page 4–30 for a discussion of BSP regeneration with
Nios II EDS updates.

If you create a BSP by running nios2-bsp manually on the command line or by
running your own script that calls nios2-bsp-generate-files, you can put your BSP
settings file (typically named settings.bsp) under version control. As in the scripted
nios2-bsp case, if you install a new release of Nios II EDS and recreate your BSP, the
internal implementation might change slightly.

If you want the exact same BSP after installing a new release of Nios II EDS, create
your BSP and then put the entire BSP directory under version control before running
make. If you have already run make, run make clean to remove all built files before
adding the directory contents to your version control database. The SBT places all the
files required to build a BSP in the BSP directory. If you install a new release of
Nios II EDS and run make on your BSP, the implementation is the same, but the binary
output might not be identical.

If you create a script that uses the command-line tools nios2-bsp-create-settings and
nios2-bsp-generate-files explicitly, or you use these tools directly on the command
line, it is possible to create the BSP settings file in a directory different from the
directory where the generated BSP files reside. However, in most cases, when you
want to store a BSP’s generated files directory under source control, you also want to
store the BSP settings file. Therefore, it is best to keep the settings file with the other
BSP files. You can rebuild the project without the BSP settings file, but the settings file
allows you to update and query the BSP.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

4–10 Chapter 4: Nios II Software Build Tools
Common BSP Tasks
1 Because the BSP depends on a .sopcinfo file, you must usually store the .sopcinfo file
in source control along with the BSP. The BSP settings file stores the .sopcinfo file path
as a relative or absolute path, according to the definition on the nios2-bsp or
nios2-bsp-create-settings command line. You must take the path into account when
retrieving the BSP and the .sopcinfo file from source control.

Copying, Moving, or Renaming a BSP
BSP makefiles have only relative path references to project source files. Therefore you
are free to copy, move, or rename the entire BSP. If you specify a relative path to the
SOPC system file when you create the BSP, you must ensure that the .sopcinfo file is
still accessible from the new location of the BSP. This .sopcinfo file path is stored in
the BSP settings file.

Run make clean when you copy, move, or rename a BSP. The make dependency files
(.d) have absolute path references. make clean removes the .d files, as well as linker
object files (.o) and .a files. You must rebuild the BSP before linking an application
with it. You can use the make clean_bsp command to combine these two operations.

f For information about .d files, refer to the GNU make documentation, available from
the Free Software Foundation, Inc. (www.gnu.org).

Another way to copy a BSP is to run the nios2-bsp-generate-files command to
populate a BSP directory and pass it the path to the BSP settings file of the BSP that
you wish to copy.

If you rename or move a BSP, you must manually revise any references to the BSP
name or location in application or user library makefiles.

Handing Off a BSP
In some engineering organizations, one group (such as systems engineering) creates a
BSP and hands it off to another group (such as applications software) to use while
developing an application. In this situation, Altera recommends that you as the BSP
developer generate the files for a BSP without building it (that is, do not run make) and
then bundle the entire BSP directory, including the settings file, with a utility such as
tar or zip. The software engineer who receives the BSP can simply run make to build
the BSP.

Linking and Locating
When autogenerating a HAL BSP, the SBT makes some reasonable assumptions about
how you want to use memory, as described in “Specifying the Default Memory Map”
on page 4–38. However, in some cases these assumptions might not work for you. For
example, you might implement a custom boot configuration that requires a
bootloader in a specific location; or you might want to specify which memory device
contains your interrupt service routines (ISRs).

This section describes several common scenarios in which the SBT allows you to
control details of memory usage.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

www.gnu.org

Chapter 4: Nios II Software Build Tools 4–11
Common BSP Tasks
Creating Memory Initialization Files
The mem_init.mk file includes targets designed to help you create memory
initialization files (.dat, .hex, .sym, and .flash). The mem_init.mk file is designed to
be included in your application makefile. Memory initialization files are used for
HDL simulation, for Quartus® II compilation of initializable FPGA on-chip memories,
and for flash programming. Initializable memories include M512 and M4K, but not
MRAM.

Table 4–5 shows the mem_init.mk targets. Although the application makefile
provides all these targets, it does not build any of them by default. The SBT creates the
memory initialization files in the application directory (under a directory named
mem_init). The SBT optionally copies them to your Quartus II project directory and
HDL simulation directory, as described in Table 4–5.

1 The Nios II SBT does not generate a definition of QUARTUS_PROJECT_DIR in your
application makefile. If you have an on-chip RAM, and require that a compiled
software image be inserted in your SRAM Object File (.sof) at Quartus II compilation,
you must manually specify the value of QUARTUS_PROJECT_DIR in your application
makefile. You must define QUARTUS_PROJECT_DIR before the mem_init.mk file is
included in the application makefile, as in the following example:

QUARTUS_PROJECT_DIR = ../my_hw_design
MEM_INIT_FILE := $(BSP_ROOT_DIR)/mem_init.mk
include $(MEM_INIT_FILE)

Modifying Linker Memory Regions
If the linker memory regions that are created by default do not meet your needs, BSP
Tcl commands let you modify the memory regions as desired.

Table 4–5. mem_init.mk Targets

Target Operation

mem_init_install

Generates memory initialization files in the application mem_init
directory. If the QUARTUS_PROJECT_DIR variable is defined,
mem_init.mk copies memory initialization files to your Quartus II
project directory named $(QUARTUS_PROJECT_DIR). If the
SOPC_NAME variable is defined, mem_init.mk copies memory
initialization files to your HDL simulation directory named
$(QUARTUS_PROJECT_DIR)/$(SOPC_NAME)_sim.

mem_init_generate

Generates all memory initialization files in the application mem_init
directory.

This target also generates a Quartus II IP File (.qip). The .qip file tells
the Quartus II software where to find the initialization files.

mem_init_clean
Removes the memory initialization files from the application
mem_init directory.

hex Generates all hex files.

dat Generates all dat files.

sym Generates all sym files.

flash Generates all flash files.

<memory name>
Generates all memory initialization files for <memory name>
component.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–12 Chapter 4: Nios II Software Build Tools
Common BSP Tasks
Suppose you have a memory region named onchip_ram. Example 4–1 shows a Tcl
script named reserve_1024_onchip_ram.tcl that separates the top 1024 bytes of
onchip_ram to create a new region named onchip_special.

f For an explanation of each Tcl command used in this example, refer to the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

If you pass this Tcl script to nios2-bsp, it runs after the default Tcl script runs and sets
up a linker region named onchip_ram0. You pass the Tcl script to nios2-bsp as follows:

nios2-bsp hal my_bsp --script reserve_1024_onchip_ram.tclr

1 Take care that one of the new memory regions has the same name as the original
memory region.

If you run nios2-bsp again to update your BSP without providing the --script
option, your BSP reverts to the default linker memory regions and your
onchip_special memory region disappears. To preserve it, you can either provide the
--script option to your Tcl script or pass the DONT_CHANGE keyword to the default Tcl
script as follows:

nios2-bsp hal my_bsp --default_memory_regions DONT_CHANGEr
Altera recommends that you use the --script approach when updating your BSP.
This approach allows the default Tcl script to update memory regions if memories are
added, removed, renamed, or resized. Using the DONT_CHANGE keyword approach does
not handle any of these cases because the default Tcl script does not update the
memory regions at all.

For details about using the --script argument, refer to “Calling a Custom BSP Tcl
Script” on page 4–27.

Creating a Custom Linker Section
The Nios II SBT provides a Tcl command, add_section_mapping, to create a linker
section.

Example 4–1. Reserved Memory Region

Get region information for onchip_ram memory region.
Returned as a list.
set region_info [get_memory_region onchip_ram]
Extract fields from region information list.
set region_name [lindex $region_info 0]
set slave_desc [lindex $region_info 1]
set offset [lindex $region_info 2]
set span [lindex $region_info 3]
Remove the existing memory region.
delete_memory_region $region_name
Compute memory ranges for replacement regions.
set split_span 1024
set new_span [expr $span-$split_span]
set split_offset [expr $offset+$new_span]
Create two memory regions out of the original region.
add_memory_region onchip_ram $slave_desc $offset $new_span
add_memory_region onchip_special $slave_desc $split_offset $split_span
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 4: Nios II Software Build Tools 4–13
Common BSP Tasks
Table 4–6 lists the default section names. The default Tcl script creates these default
sections for you using the add_section_mapping Tcl command.

Creating a Linker Section for an Existing Region

To create your own section named special_section that is mapped to the linker
region named onchip_special, use the following command to run nios2-bsp:

nios2-bsp hal my_bsp --cmd add_section_mapping special_section onchip_specialr
When the nios2-bsp-generate-files utility (called by nios2-bsp) generates the linker
script linker.x, the linker script has a new section mapping. The order of section
mappings in the linker script is determined by the order in which the
add_section_mapping command creates the sections. If you use nios2-bsp, the default
Tcl script runs before the --cmd option that creates the special_section section.

If you run nios2-bsp again to update your BSP, you do not need to provide the
add_section_mapping command again because the default Tcl script only modifies
section mappings for the default sections listed in Table 4–6.

Dividing a Linker Region to Create a New Region and Section

Example 4–2 creates a section named .isrs in the
tightly_coupled_instruction_memory on-chip memory. This example works with
any hardware design containing an on-chip memory named
tightly_coupled_instruction_memory connected to a Nios II instruction master.

Table 4–6. Nios II Default Section Names

.entry

.exceptions

.text

.rodata

.rwdata

.bss

.heap

.stack

Example 4–2. Tcl Script to Create New Region and Section

Get region information for tightly_coupled_instruction_memory memory region.
Returned as a list.
set region_info [get_memory_region tightly_coupled_instruction_memory]
Extract fields from region information list.
set region_name [lindex $region_info 0]
set slave [lindex $region_info 1]
set offset [lindex $region_info 2]
set span [lindex $region_info 3]
Remove the existing memory region.
delete_memory_region $region_name
Compute memory ranges for replacement regions.
set split_span 1024
set new_span [expr $span-$split_span]
set split_offset [expr $offset+$new_span]
Create two memory regions out of the original region.
add_memory_region tightly_coupled_instruction_memory $slave $offset $new_span
add_memory_region isrs_region $slave $split_offset $split_span
add_section_mapping .isrs isrs_region
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–14 Chapter 4: Nios II Software Build Tools
Common BSP Tasks
The Tcl script in Example 4–2 script splits off 1 KB of RAM from the region named
tightly_coupled_instruction_memory, gives it the name isrs_region, and then calls
add_section_mapping to add the .isrs section to isrs_region.

To use such a Tcl script, you would execute the following steps:

1. Create the Tcl script as shown in Example 4–2.

2. Edit your create-this-bsp script, and add the following argument to the nios2-bsp
command line:

--script <script name>.tcl

3. In the BSP project, edit timer_interrupt_latency.h. In the
timer_interrupt_latency_irq() function, change the .section directive
from .exceptions to .isrs.

4. Rebuild the application by running make.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios II Software Build Tools 4–15
Common BSP Tasks
After make completes successfully, you can examine the object dump file,
<project name>.objdump, illustrated in Example 4–3. The object dump file shows that
the new .isrs section is located in the tightly coupled instruction memory. This object
dump file excerpt shows a hardware design with an on-chip memory whose base
address is 0x04000000.

Example 4–3. Excerpts from Object Dump File

Sections:
Idx Name Size VMA LMA File off Algn

.

.

.

6 .isrs 000000c0 04000c00 04000c00 000000b4 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

.

.

.

9 .tightly_coupled_instruction_memory 00000000 04000000 04000000
00013778 2**0

CONTENTS
.
.
.

SYMBOL TABLE:
00000000 l d .entry 00000000
30000020 l d .exceptions 00000000
30000150 l d .text 00000000
30010e14 l d .rodata 00000000
30011788 l d .rwdata 00000000
30013624 l d .bss 00000000
04000c00 l d .isrs 00000000
00000020 l d .ext_flash 00000000
03200000 l d .epcs_controller 00000000
04000000 l d .tightly_coupled_instruction_memory 00000000
04004000 l d .tightly_coupled_data_memory 00000000

.

.

.

January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–16 Chapter 4: Nios II Software Build Tools
Common BSP Tasks
If you examine the linker script file, linker.x, illustrated in Example 4–4, you can see
that linker.x places the new region isrs_region in tightly-coupled instruction
memory, adjacent to the tightly_coupled_instruction_memory region.

Changing the Default Linker Memory Region
The default Tcl script chooses the largest memory region connected to your Nios II
processor as the default region. All default memory sections specified in Table 4–6 on
page 4–13 are mapped to this default region. You can pass in a command-line option
to the default Tcl script to override this default mapping. To map all default sections
to onchip_ram, type the following command:

nios2-bsp hal my_bsp --default_sections_mapping onchip_ramr
If you run nios2-bsp again to update your BSP, the default Tcl script overrides your
default sections mapping. To prevent your default sections mapping from being
changed, provide nios2-bsp with the original --default_sections_mapping
command-line option or pass it the DONT_CHANGE value for the memory name instead
of onchip_ram.

Changing a Linker Section Mapping
If some of the default section mappings created by the default Tcl script do not meet
your needs, you can use a Tcl command to override the section mappings selectively.
To map the .stack and .heap sections into a memory region named ram0, use the
following command:

nios2-bsp hal my_bsp --cmd add_section_mapping .stack ram0 \
--cmd add_section_mapping .heap ram0r

The other section mappings (for example, .text) are still mapped to the default linker
memory region.

If you run nios2-bsp again to update your BSP, the default Tcl script overrides your
section mappings for .stack and .heap because they are default sections. To prevent
your section mappings from being changed, provide nios2-bsp with the original
add_section_mapping command-line options or pass the
--default_sections_mapping DONT_CHANGE command line to nios2-bsp.

Altera recommends using the --cmd add_section_mapping approach when updating
your BSP because it allows the default Tcl script to update the default sections
mapping if memories are added, removed, renamed, or resized.

Example 4–4. Excerpt From linker.x

MEMORY
{
reset : ORIGIN = 0x0, LENGTH = 32
tightly_coupled_instruction_memory : ORIGIN = 0x4000000, LENGTH = 3072
isrs_region : ORIGIN = 0x4000c00, LENGTH = 1024

.

.

.

}

Nios II Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios II Software Build Tools 4–17
Common BSP Tasks
Other BSP Tasks
This section covers some other common situations in which the SBT is useful.

Creating a BSP for an Altera Development Board
In some situations, you need to create a BSP separate from any application. Creating a
BSP is similar to creating an application. To create a BSP, perform the following steps:

1. Start the Nios II Command Shell.

f For details about the Nios II Command Shell, refer to the Getting Started
from the Command Line chapter of the Nios II Software Developer’s Handbook.

2. Create a working directory for your hardware and software projects. The
following steps refer to this directory as <projects>.

3. Make <projects> the current working directory.

4. Find a Nios II hardware example corresponding to your Altera development
board. For example, if you have a Stratix® IV development board, you might select
<Nios II EDS install path>/examples/verilog/niosII_stratixIV_4sgx230/
triple_speed_ethernet_design.

5. Copy the hardware example to your working directory, using a command such as
the following:

cp -R /altera/100/nios2eds/examples/verilog\
/niosII_stratixIV_4sgx230/triple_speed_ethernet_design .r

6. Ensure that the working directory and all subdirectories are writable by typing the
following command:

chmod -R +w .r
The <projects> directory contains a subdirectory named software_examples/bsp.
The bsp directory contains several BSP example directories, such as hal_default.
Select the directory containing an appropriate BSP, and make it the current
working directory.

f For a description of the example BSPs, refer to “Nios II Design Example
Scripts” in the Nios II Software Build Tools Reference chapter of the Nios II
Software Developer’s Handbook.

7. Create and build the BSP with the create-this-bsp script by typing the following
command:

./create-this-bspr
Now you have a BSP, with which you can create and build an application.

1 Altera recommends that you examine the contents of the create-this-bsp script. It is a
helpful example if you are creating your own script to build a BSP. create-this-bsp
calls nios2-bsp with a few command-line options to create a customized BSP, and
then calls make to build the BSP.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4–18 Chapter 4: Nios II Software Build Tools
Common BSP Tasks
Querying Settings
If you need to write a script that gets some information from the BSP settings file, use
the nios2-bsp-query-settings utility. To maintain compatibility with future releases of
the Nios II EDS, avoid developing your own code to parse the BSP settings file.

If you want to know the value of one or more settings, run nios2-bsp-query-settings
with the appropriate command-line options. This command sends the values of the
settings you requested to stdout. Just capture the output of stdout in some variable in
your script when you call nios2-bsp-query-settings. By default, the output of
nios2-bsp-query-settings is an ordered list of all option values. Use the -show-names
option to display the name of the setting with its value.

f For details about the nios2-bsp-query-settings command-line options, refer to the
Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook.

Managing Device Drivers
The Nios II SBT creates an alt_sys_init.c file. By default, the SBT assumes that if a
device is connected to the Nios II processor, and a driver is available, the BSP must
include the most recent version of the driver. However, you might want to use a
different version of the driver, or you might not want a driver at all (for example, if
your application accesses the device directly).

The SBT includes BSP Tcl commands to manage device drivers. With these commands
you can control which driver is used for each device. When the alt_sys_init.c file is
generated, it is set up to initialize drivers as you have requested.

If you are using nios2-bsp, you disable the driver for the uart0 device as follows:

nios2-bsp hal my_bsp --cmd set_driver none uart0r
Use the --cmd option to call a Tcl command on the command line. The
nios2-bsp-create-settings command also supports the --cmd option. Alternatively,
you can put the set_driver command in a Tcl script and pass the script to nios2-bsp
or nios2-bsp-create-settings with the --script option.

You replace the default driver for uart0 with a specific version of a driver as follows:

nios2-bsp hal my_bsp --cmd set_driver altera_avalon_uart:6.1 uart0r

Creating a Custom Version of newlib
The Nios II EDS comes with a number of precompiled libraries. These libraries
include the newlib libraries (libc.a and libm.a). The Nios II SBT allows you to create
your own custom compiled version of the newlib libraries.

To create a custom compiled version of newlib, set a BSP setting to the desired
compiler flags. If you are using nios2-bsp, type the following command:

nios2-bsp hal my_bsp --set hal.custom_newlib_flags "-O0 -pg"r
Because newlib uses the open source configure utility, its build flow differs from other
files in the BSP. When Makefile builds the BSP, it runs the configure utility. The
configure utility creates a makefile in the build directory, which compiles the newlib
source. The newlib library files are copied to the BSP directory named newlib. The
newlib source files are not copied to the BSP.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 4: Nios II Software Build Tools 4–19
Common BSP Tasks
1 The Nios II SBT recompiles newlib whenever you introduce new compiler flags. For
example, if you use compiler flags to add floating point math hardware support,
newlib is recompiled to use the hardware. Recompiling newlib might take several
minutes.

Controlling the stdio Device
The build tools offer several ways to control the details of your stdio device
configuration, such as the following:

■ To prevent a default stdio device from being chosen, use the following command:

nios2-bsp hal my_bsp --default_stdio noner
■ To override the default stdio device and replace it with uart1, use the following

command:

nios2-bsp hal my_bsp --default_stdio uart1r
■ To override the stderr device and replace it with uart2, while allowing the default

Tcl script to choose the default stdout and stdin devices, use the following
command:

nios2-bsp hal my_bsp --set hal.stderr uart2r
In all these cases, if you run nios2-bsp again to update your BSP, you must provide
the original command-line options again to prevent the default Tcl script from
choosing its own default stdio devices. Alternatively, you can call --default_stdio
with the DONT_CHANGE keyword to prevent the default Tcl script from changing the
stdio device settings.

Configuring Optimization and Debugger Options
By default, the Nios II SBT creates your project with the correct compiler options for
debugging environments. These compiler options turn off code optimization, and
generate a symbol table for the debugger.

You can control the optimization and debug level through the project makefile, which
determines the compiler options. Example 4–5 illustrates how a typical application
makefile specifies the compiler options.

When your project is fully debugged and ready for release, you might want to enable
optimization and omit the symbol table, to achieve faster, smaller executable code. To
enable optimization and turn off the symbol table, edit the application makefile to
contain the symbol definitions shown in Example 4–6. The absence of a value on the
right hand side of the APP_CFLAGS_DEBUG_LEVEL definition causes the compiler to omit
generating a symbol table.

Example 4–5. Default Application Makefile Settings

APP_CFLAGS_OPTIMIZATION := -O0
APP_CFLAGS_DEBUG_LEVEL := -g

Example 4–6. Application Makefile Settings with Optimization

APP_CFLAGS_OPTIMIZATION := -O3
APP_CFLAGS_DEBUG_LEVEL :=
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–20 Chapter 4: Nios II Software Build Tools
Details of BSP Creation
1 When you change compiler options in a makefile, before building the project, run
make clean to ensure that all sources are recompiled with the correct flags. For further
information about makefile editing and make clean, refer to “Applications and
Libraries” on page 4–5.

You individually specify the optimization and debug level for the application and BSP
projects, and any user library projects you might be using. You use the BSP settings
hal.make.bsp_cflags_debug and hal.make.bsp_cflags_optimization to specify the
optimization and debug level in a BSP, as shown in Example 4–7.

Alternatively, you can manipulate the BSP settings with a Tcl script.

You can easily copy an existing BSP and modify it to create a different build
configuration. For details, refer to “Copying, Moving, or Renaming a BSP” on
page 4–10.

To change the optimization and debug level for a user library, use the same procedure
as for an application.

1 Normally you must set the optimization and debug levels the same for the
application, the BSP, and all user libraries in a software project. If you mix settings,
you cannot debug those components which do not have debug settings. For example,
if you compile your BSP with the -O0 flag and without the -g flag, you cannot step
into the newlib printf() function.

Details of BSP Creation
BSP creation is the same in the Nios II SBT for Eclipse as at the command line.
Figure 4–1 shows how the SBT creates a BSP. The nios2-bsp-create-settings utility
creates a new BSP settings file. For detailed information about BSP settings files, refer
to “BSP Settings File Creation” on page 4–22.

nios2-bsp-generate-files creates the BSP files. The nios2-bsp-generate-files utility
places all source files in your BSP directory. It copies some files from the Nios II EDS
installation directory. Others, such as system.h and Makefile, it generates
dynamically.

The SBT manages copied files slightly differently from generated files. If a copied file
(such as a HAL source file) already exists, the tools check the file timestamp against
the timestamp of the file in the Nios II EDS installation. The tools do not replace the
BSP file unless it differs from the distribution file. The tools normally overwrite
generated files, such as the BSP Makefile, system.h, and linker.x, unless you have
disabled generation of the individual file with the set_ignore_file Tcl command or
the Enable File Generation tab in the BSP Editor. A comment at the top of each
generated file warns you not to edit it.

Example 4–7. Configuring a BSP for Debugging

nios2-bsp hal my_bsp --set hal.make.bsp_cflags_debug -g \
--set hal.make.bsp_cflags_optimization -O0r
Nios II Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios II Software Build Tools 4–21
Details of BSP Creation
f For information about set_ignore_file and other SBT Tcl commands, refer to
“Software Build Tools Tcl Commands” in the Nios II Software Build Tools Reference
chapter of the Nios II Software Developer’s Handbook.

1 Avoid modifying BSP files. Use BSP settings, or custom device drivers or software
packages, to customize your BSP.

c Nothing prevents you from modifying a BSP generated file. However, after you do so,
it becomes difficult to update your BSP to match changes in your hardware system. If
you regenerate your BSP, your previous changes to the generated file are destroyed.

f For information about regenerating your BSP, refer to “Revising Your BSP” on
page 4–30.

Figure 4–1. Nios II SBT BSP Creation

nios2-bsp-generate-files

BSP files

make

BSP library file
(.a)

Hardware
system file
(.sopcinfo)

Tcl
scripts

Command
line arguments

Default Tcl script
(bsp-set-defaults.tcl) nios2-bsp-create-settings

BSP settings file
(.bsp)
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4–22 Chapter 4: Nios II Software Build Tools
Details of BSP Creation
BSP Settings File Creation
Each BSP has an associated settings file that saves the values of all BSP settings. The
BSP settings file is in extensible markup language (XML) format and has a .bsp
extension by convention. When you create or update your BSP, the Nios II SBT writes
the value of all settings to the settings file.

Figure 4–1 on page 4–21 shows that the default Tcl script and
nios2-bsp-generate-files both use the .sopcinfo file. The BSP settings file does not
need to duplicate system information (such as base addresses of devices), because the
nios2-bsp-generate-files utility has access to the .sopcinfo file.

Figure 4–2 shows how the Nios II SBT interacts with the BSP settings file. The
nios2-bsp-create-settings utility creates a new BSP settings file. The
nios2-bsp-update-settings utility updates an existing BSP settings file. The
nios2-bsp-query-settings utility reports the setting values in an existing BSP settings
file. The nios2-bsp-generate-files utility generates a BSP from the BSP settings file.

Generated and Copied Files
To understand how to build and modify Nios II C/C++ projects, it is important to
understand the difference between copied and generated files.

A copied file is installed with the Nios II EDS, and copied to your BSP directory when
you create your BSP. It does not replace the BSP file unless it differs from the
distribution file.

A generated file is dynamically created by the nios2-bsp-generate-files utility.
Generated files reside in the top-level BSP directory. BSP files are normally written
every time nios2-bsp-generate-files runs.

You can disable generation of any BSP file in the BSP Editor, or on the command line
with the set_ignore_file Tcl command. Otherwise, if you modify a BSP file, it is
destroyed when you regenerate the BSP.

Figure 4–2. BSP Settings File and BSP Utilities

BSP settings file
(.bsp)

nios2-bsp-update-settings

nios2-bsp-create-settings

nios2-bsp-query-settings nios2-bsp-generate-files
Nios II Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios II Software Build Tools 4–23
Details of BSP Creation
HAL BSP Files and Folders
The Nios II SBT creates the HAL BSP directory in the location you specify. Figure 4–3
shows a BSP directory after the SBT creates a BSP and generates BSP files. The SBT
places generated files in the top-level BSP directory, and copied files in the HAL and
drivers directories.

Figure 4–3. HAL BSP After Generating Files

my_hal_bsp

settings.bsp

public.mk

linker.x

memory.gdb

mem.init.mk

system.h

alt_sys_init.c

linker.h

Makefile

HAL

src (*.c, *.S files)

inc (*.h files)

drivers

src (*.c, *.S files)

inc (*.h files)

summary.html
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–24 Chapter 4: Nios II Software Build Tools
Details of BSP Creation
Table 4–7 details all the generated BSP files shown in Figure 4–3.

Table 4–7. Generated BSP Files

File Name Function

settings.bsp

Contains all BSP settings. This file is coded in XML.

On the command line, settings.bsp is created by the nios2-bsp-create-settings command, and
optionally updated by the nios2-bsp-update-settings command. The nios2-bsp-query-settings
command is available to parse information from the settings file for your scripts. The
settings.bsp file is an input to nios2-bsp-generate-files.

The Nios II SBT for Eclipse provides equivalent functionality.

summary.html
Provides summary documentation of the BSP. You can view summary.html with a hypertext
viewer or browser, such as Internet Explorer or Firefox. If you change the settings.bsp file, the
SBT updates the summary.html file the next time you regenerate the BSP.

Makefile
Used to build the BSP. The targets you use most often are all and clean. The all target (the
default) builds the libhal_bsp.a library file. The clean target removes all files created by a
make of the all target.

public.mk
A makefile fragment that provides public information about the BSP. The file is designed to be
included in other makefiles that use the BSP, such as application makefiles. The BSP Makefile
also includes public.mk.

mem_init.mk

A makefile fragment that defines targets and rules to convert an application executable file to
memory initialization files (.dat, .hex, and .flash) for HDL simulation, flash programming, and
initializable FPGA memories. The mem_init.mk file is designed to be included by an application
makefile. For usage, refer to any application makefile generated when you run the SBT.

For more information, refer to “Creating Memory Initialization Files” on page 4–11.

alt_sys_init.c Used to initialize device driver instances and software packages. (1)

system.h Contains the C declarations describing the BSP memory map and other system information
needed by software applications. (1)

linker.h Contains information about the linker memory layout. system.h includes the linker.h file.

linker.x Contains a linker script for the GNU linker.

memory.gdb Contains memory region declarations for the GNU debugger.

obj Directory Contains the object code files for all source files in the BSP. The hierarchy of the BSP source
files is preserved in the obj directory.

libhal_bsp.a Library
Contains the HAL BSP library. All object files are combined in the library file.

The HAL BSP library file is always named libhal_bsp.a.

Note to Table 4–7:

(1) For further details about this file, refer to the Developing Programs Using the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 4: Nios II Software Build Tools 4–25
Details of BSP Creation
Table 4–8 details all the copied BSP files shown in Figure 4–3.

Table 4–8. Copied BSP Files

File Name Function

HAL Directory

Contains HAL source code files. These are all copied files. The src directory contains the
C-language and assembly-language source files. The inc directory contains the header files.

The crt0.S source file, containing HAL C run-time startup code, resides in the HAL/src
directory.

drivers Directory Contains all driver source code. The files in this directory are all copied files. The drivers
directory has src and inc subdirectories like the HAL directory.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–26 Chapter 4: Nios II Software Build Tools
Details of BSP Creation
Figure 4–4 shows a BSP directory after executing make.

Figure 4–4. HAL BSP After Build

my_hal_bsp

settings.bsp

public.mk

linker.x

memory.gdb

mem.init.mk

system.h

alt_sys_init.c

linker.h

Makefile

HAL

src (*.c,*.S files)

inc (*.h files)

drivers

src (*.c,*.S files)

inc (*.h files)

summary.html

libhal_bsp.a

obj

HAL

drivers

src (.o files)

src (.o files)
Nios II Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios II Software Build Tools 4–27
Tcl Scripts for BSP Settings
Linker Map Validation
When a BSP is generated, the SBT validates the linker region and section mappings, to
ensure that they are valid for a HAL project. The tools display an error in each of the
following cases:

■ The .entry section maps to a nonexistent region.

■ The .entry section maps to a memory region that is less than 32 bytes in length.

■ The .entry section maps to a memory region that does not start on the reset vector
base address.

■ The .exceptions section maps to a nonexistent region.

■ The .exceptions section maps to a memory region that does not start on the
exception vector base address.

■ The .entry section and .exceptions section map to the same device, and the
memory region associated with the .exceptions section precedes the memory
region associated with the .entry section.

■ The .entry section and .exceptions section map to the same device, and the base
address of the memory region associated with the .exceptions section is less than
32 bytes above the base address of the memory region associated with the .entry
section.

Tcl Scripts for BSP Settings
In many cases, you can fully specify your Nios II BSP with the Nios II SBT settings
and defaults. However, in some cases you might need to create some simple Tcl
scripts to customize your BSP.

You control the characteristics of your BSP by manipulating BSP settings, using Tcl
commands. The most powerful way of using Tcl commands is by combining them in
Tcl scripts.

Tcl scripting gives you maximum control over the contents of your BSP. One
advantage of Tcl scripts over command-line arguments is that a Tcl script can obtain
information from the hardware system or pre-existing BSP settings, and then use it
later in script execution.

f For descriptions of the Tcl commands used to manipulate BSPs, refer to “Software
Build Tools Tcl Commands” in the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Calling a Custom BSP Tcl Script
From the Nios II Command Shell, you can call a custom BSP Tcl script with any of the
following commands:

nios2-bsp --script custom_bsp.tcl

nios2-bsp-create-settings --script custom_bsp.tcl

nios2-bsp-query-settings --script custom_bsp.tcl

nios2-bsp-update-settings --script custom_bsp.tcl
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4–28 Chapter 4: Nios II Software Build Tools
Tcl Scripts for BSP Settings
In the Nios II BSP editor, you can execute a Tcl script when generating a BSP, through
the New BSP Settings File dialog box.

f For information about using Tcl scripts in the SBT for Eclipse, refer to “Using the BSP
Editor” in the Getting Started with the Graphical User Interface chapter of the Nios II
Software Developer’s Handbook.

For an example of custom Tcl script usage, refer to “Creating Memory Initialization
Files” on page 4–11.

Any settings you specify in your script override the BSP default values. For further
information about BSP defaults, refer to “Specifying BSP Defaults” on page 4–35.

1 When you update an existing BSP, you must include any scripts originally used to
create it. Otherwise, your project’s settings revert to the defaults.

1 When you use a custom Tcl script to create your BSP, you must include the script in
the set of files archived in your version control system. For further information, refer
to “Using Version Control” on page 4–9.

The Tcl script in Example 4–8 is a very simple example that sets stdio to a device with
the name my_uart.

Example 4–9 illustrates how you might use more powerful scripting capabilities to
customize a BSP based on the contents of the hardware system.

1 The Nios II SBT uses slave descriptors to refer to components connected to the Nios II
processor. A slave descriptor is the unique name of a hardware component’s slave
port.

If a component has only one slave port connected to the Nios II processor, the slave
descriptor is the same as the name of the component (for example, onchip_mem_0). If a
component has multiple slave ports connecting the Nios II to multiple resources in the
component, the slave descriptor is the name of the component followed by an
underscore and the slave port name (for example, onchip_mem_0_s1).

f For further information about slave descriptors, refer to the Developing Device Drivers
for the Hardware Abstraction Layer chapter of the Nios II Software Developer’s Handbook.

The script shown in Example 4–9 is similar to bsp-stdio-utils.tcl, which examines the
hardware system and determines what device to use for stdio. For details, refer to
“Specifying BSP Defaults” on page 4–35.

Example 4–8. Simple Tcl script

set default_stdio my_uart
set_setting hal.stdin $default_stdio
set_setting hal.stdout $default_stdio
set_setting hal.stderr $default_stdio
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Chapter 4: Nios II Software Build Tools 4–29
Tcl Scripts for BSP Settings
Example 4–9. Tcl Script to Examine Hardware and Choose Settings

Select a device connected to the processor as the default STDIO devi
ce.

It returns the slave descriptor of the selected device.
It gives first preference to devices with stdio in the name.
It gives second preference to JTAG UARTs.
If no JTAG UARTs are found, it uses the last character device.
If no character devices are found, it returns "none".

Procedure that does all the work of determining the stdio device
proc choose_default_stdio {} {

set last_stdio "none"
set first_jtag_uart "none"

Get all slaves attached to the processor.
set slave_descs [get_slave_descs]

foreach slave_desc $slave_descs {
Lookup module class name for slave descriptor.
set module_name [get_module_name $slave_desc]
set module_class_name [get_module_class_name $module_name]

If the module_name contains "stdio", we choose it
and return immediately.
if { [regexp .*stdio.* $module_name] } {

return $slave_desc
}

Assume it is a JTAG UART if the module class name contains
the string "jtag_uart". In that case, return the first one
found.
if { [regexp .*jtag_uart.* $module_class_name] } {

if {$first_jtag_uart == "none"} {
set first_jtag_uart $slave_desc

}
}

Track last character device in case no JTAG UARTs found.
if { [is_char_device $slave_desc] } {

set last_stdio $slave_desc
}

}

if {$first_jtag_uart != "none"} {
return $first_jtag_uart

}

return $last_stdio
}

Call routine to determine stdio
set default_stdio [choose_default_stdio]

Set stdio settings to use results of above call.
set_setting hal.stdin $default_stdio
set_setting hal.stdout $default_stdio
set_setting hal.stderr $default_stdio
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–30 Chapter 4: Nios II Software Build Tools
Revising Your BSP
Revising Your BSP
Your BSP is customized to your hardware design and your software requirements. If
your hardware design or software requirements change, you usually need to revise
your BSP.

Every BSP is based on a Nios II processor in a hardware system. The BSP settings file
does not duplicate information available in the .sopcinfo file, but it does contain
system-dependent settings that reference system information. Because of these
system-dependent settings, a BSP settings file can become inconsistent with its system
if the system changes.

You can revise a BSP at several levels. This section describes each level, and provides
guidance about when to use it.

Rebuilding Your BSP
Rebuilding a BSP is the most superficial way to revise a BSP.

What Happens
Rebuilding the BSP simply recreates all BSP object files and the .a library file. BSP
settings, source files, and compiler options are unchanged.

How to Rebuild Your BSP
In the Nios II SBT for Eclipse, right-click the BSP project and click Build.

On the command line, change to the BSP directory and type make.

Regenerating Your BSP
Regenerating the BSP refreshes the BSP source files without updating the BSP
settings.

What Happens
Regenerating a BSP has the following effects:

■ Reads the .sopcinfo file for basic system parameters such as module base
addresses and clock frequencies.

■ Retrieves the current system identification (ID) from the .sopcinfo file. Ensures
that the correct system ID is inserted in the .elf file the next time the BSP is built.

■ Adjusts the default memory map to correspond to changes in memory sizes. If you
are using a custom memory map, it is untouched.

■ Retains all other existing settings in the BSP settings file.

1 Except for adjusting the default memory map, the SBT does not ensure that
the settings are consistent with the hardware design in the .sopcinfo file.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios II Software Build Tools 4–31
Revising Your BSP
■ Ensures that the correct set of BSP files is present, as follows:

■ Copies all required source files to the BSP directory tree. Copied BSP files are
listed in Table 4–8 on page 4–25.

If a copied file (such as a HAL source file) already exists, the SBT checks the file
timestamp against the timestamp of the file in the Nios II EDS installation. The
tools do not replace the BSP file unless it differs from the distribution file.

■ Recreates all generated files. Generated BSP files are listed in Table 4–7 on
page 4–24.

1 You can disable generation of any BSP file in the BSP Editor, or on the
command line with the set_ignore_file Tcl command. Otherwise, changes
you make to a BSP file are lost when you regenerate the BSP. Whenever
possible, use BSP settings, or custom device drivers or software packages,
to customize your BSP.

■ Removes any files that are not required, for example, source files for drivers
that are no longer in use.

When to Regenerate Your BSP
Regenerating your BSP is required (and sufficient) in the following circumstances:

■ You change your hardware design, but all BSP system-dependent settings remain
consistent with the new .sopcinfo file. The following are examples of system
changes that do not affect BSP system-dependent settings:

■ Changing a component’s base address

■ With the internal interrupt controller (IIC), adding or removing hardware
interrupts

■ With the IIC, changing a hardware interrupt number

■ Changing a clock frequency

■ Changing a simple processor option, such as cache size or core type

■ Changing a simple component option, other than memory size.

■ Adding a bridge

■ Adding a new component

■ Removing or renaming a component, other than a memory component, the
stdio device, or the system timer device

■ Changing the size of a memory component when you are using the default
memory map

1 Unless you are sure that your modified hardware design remains consistent
with your BSP settings, update your BSP as described in “Updating Your
BSP” on page 4–32.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–32 Chapter 4: Nios II Software Build Tools
Revising Your BSP
■ You want to eliminate any customized source files and revert to the distributed
BSP code.

1 To revert to the distributed BSP code, you must ensure that you have not
disabled generation on any BSP files.

■ You have installed a new version of the Nios II EDS, and you want the updated
BSP software implementations.

■ When you attempt to rebuild your project, an error message indicates that the BSP
must be updated.

■ You have updated or recreated the BSP settings file.

How to Regenerate Your BSP
You can regenerate your BSP in the Nios II SBT for Eclipse, or with SBT commands at
the command line.

Regenerating Your BSP in Eclipse

In the Nios II SBT for Eclipse, right-click the BSP project, point to Nios II, and click
Generate BSP.

1 For information about generating a BSP with the SBT for Eclipse, refer to the Getting
Started with the Graphical User Interface chapter of the Nios II Software Developer’s
Handbook.

Regenerating Your BSP from the Command Line

From the command line, use the nios2-bsp-generate-files command.

1 For information about the nios2-bsp-generate-files command, refer to the Nios II
Software Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

Updating Your BSP
When you update a BSP, you recreate the BSP settings file based on the current
hardware definition and previous BSP settings.

1 You must always regenerate your BSP after updating the BSP settings file.

What Happens
Updating a BSP has the following effects:

■ System-dependent settings are derived from the original BSP settings file, but
adjusted to correspond with any changes in the hardware system.

■ Non-system-dependent BSP settings persist from the original BSP settings file.

f Also refer to “Regenerating Your BSP” on page 4–30 for actions taken when you
regenerate the BSP after updating it.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 4: Nios II Software Build Tools 4–33
Revising Your BSP
When to Update Your BSP
Updating your BSP is necessary in the following circumstances:

■ A change to your BSP settings is required.

■ Changes to your .sopcinfo file make it inconsistent with your BSP. The following
are examples of system changes that affect BSP system-dependent settings:

■ Renaming the processor

■ Renaming or removing a memory, the stdio device, or the system timer device

■ Changing the size of a memory component when using a custom memory map

■ Changing the processor reset or exception slave port or offset

■ Adding or removing an external interrupt controller (EIC)

■ Changing the parameters of an EIC

■ When you attempt to rebuild your project, an error message indicates that you
must update the BSP.

How to Update Your BSP
You can update your BSP at the command line. You have the option to use a Tcl script
to control your BSP settings.

From the command line, use the nios2-bsp-update-settings command. You can use
the --script option to define the BSP with a Tcl script.

f For details about the nios2-bsp-update-settings command, refer to the Nios II Software
Build Tools Reference chapter of the Nios II Software Developer’s Handbook.

nios2-bsp-update-settings does not reapply default settings unless you explicitly call
the top-level default Tcl script with the --script option.

f For information about using the default Tcl script, refer to “Specifying BSP Defaults”
on page 4–35.

Alternatively, you can update your BSP with the nios2-bsp script. nios2-bsp
determines that your BSP already exists, and uses the nios2-bsp-update-settings
command to update the BSP settings file.

The nios2-bsp script executes the default Tcl script every time it runs, overwriting
previous default settings. If you want to preserve all settings, including the default
settings, use the DONT_CHANGE keyword, described in “Top Level Tcl Script for BSP
Defaults” on page 4–36. Alternatively, you can provide nios2-bsp with command-line
options or Tcl scripts to override the default settings.

f For information about using the nios2-bsp script, refer to the Nios II Software Build
Tools Reference chapter of the Nios II Software Developer’s Handbook.

Recreating Your BSP
When you recreate your BSP, you start over as if you were creating a new BSP.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4–34 Chapter 4: Nios II Software Build Tools
Revising Your BSP
1 After you recreate your BSP, you must always regenerate it.

What Happens
Recreating a BSP has the following effects:

■ System-dependent settings are created based on the current hardware system.

■ Non-system-dependent settings can be selected by the default Tcl script, by values
you specify, or both.

Also refer to “Regenerating Your BSP” on page 4–30 for actions taken when you
generate the BSP after recreating it.

When to Recreate Your BSP
If you are working exclusively in the Nios II SBT for Eclipse, and you modify the
underlying hardware design, the best practice is to create a new BSP. Creating a BSP is
very easy with the SBT for Eclipse. Manually correcting a large number of interrelated
settings, on the other hand, can be difficult.

How to Recreate Your BSP
You can recreate your BSP in the Nios II SBT for Eclipse, or using the SBT at the
command line. Regardless which method you choose, you can use Tcl scripts to
control and reproduce your BSP settings. This section describes the options for
recreating BSPs.

Using Tcl Scripts When Recreating Your BSP

A Tcl script automates selection of BSP settings. This automation ensures that you can
reliably update or recreate your BSP with its original settings. Except when creating
very simple BSPs, Altera recommends specifying all BSP settings with a Tcl script.

To use Tcl scripts most effectively, it is best to create a Tcl script at the time you initially
create the BSP. However, the BSP Editor enables you to export a Tcl script from an
existing BSP.

f For details about exporting Tcl scripts, refer to “Using the BSP Editor” in the Getting
Started with the Graphical User Interface chapter of the Nios II Software Developer’s
Handbook.

By recreating the BSP settings file with a Tcl script that specifies all BSP settings, you
can reproduce the original BSP while ensuring that system-dependent settings are
adjusted correctly based on any changes in the hardware system.

f For information about Tcl scripting with the SBT, refer to “Tcl Scripts for BSP Settings”
on page 4–27.

Recreating Your BSP in Eclipse

The process for recreating a BSP is the same as the process for creating a new BSP. The
Nios II SBT for Eclipse provides an option to import a Tcl script when creating a BSP.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

Chapter 4: Nios II Software Build Tools 4–35
Specifying BSP Defaults
f For details, refer to “Getting Started with Eclipse” and “Using the BSP Editor” in the
Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook.

Recreating Your BSP at the Command Line

Recreate your BSP using the nios2-bsp-create-settings command. You can use the
--script option to define the BSP with a Tcl script.

The nios2-bsp-create-settings command does not apply default settings to your BSP.
However, you can use the --script command-line option to run the default Tcl script.
For information about the default Tcl script, refer to “Specifying BSP Defaults”.

f For information about using the nios2-bsp-create-settings command, refer to the
Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook.

Specifying BSP Defaults
The Nios II SBT sets BSP defaults using a set of Tcl scripts. Table 4–9 lists the
components of the BSP default Tcl scripts included in the Nios II SBT. These scripts
specify default BSP settings. The scripts are located in the following directory:

<Nios II EDS install path>/sdk2/bin

f For more information about Tcl scripting with the SBT, refer to “Tcl Scripts for BSP
Settings” on page 4–27.

The Nios II SBT uses the default Tcl scripts to specify default values for
system-dependent settings. System-dependent settings are BSP settings that reference
system information in the .sopcinfo file.

The SBT executes the default Tcl script before any user-specified Tcl scripts. As a
result, user input overrides settings made by the default Tcl script.

You can pass command-line options to the default Tcl script to override the choices it
makes or to prevent it from making changes to settings. For details, refer to “Top
Level Tcl Script for BSP Defaults”.

Table 4–9. Default Tcl Script Components

Script Level Summary

bsp-set-defaults.tcl Top-level Sets system-dependent settings to default values.

bsp-call-proc.tcl Top-level Calls a specified procedure in one of the helper scripts.

bsp-stdio-utils.tcl Helper Specifies stdio device settings.

bsp-timer-utils.tcl Helper Specifies system timer device setting.

bsp-linker-utils.tcl Helper Specifies memory regions and section mappings for
linker script.

bsp-bootloader-utils.tcl Helper Specifies boot loader-related settings.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4–36 Chapter 4: Nios II Software Build Tools
Specifying BSP Defaults
The default Tcl script makes the following choices for you based on your hardware
system:

■ stdio character device

■ System timer device

■ Default linker memory regions

■ Default linker sections mapping

■ Default boot loader settings

The default Tcl scripts use slave descriptors to assign devices.

Top Level Tcl Script for BSP Defaults
The top level Tcl script for setting BSP defaults is bsp-set-defaults.tcl. This script
specifies BSP system-dependent settings, which depend on the hardware system. The
nios2-bsp-create-settings and nios2-bsp-update-settings utilities do not call the
default Tcl script when creating or updating a BSP settings file. The --script option
must be used to specify bsp-set-defaults.tcl explicitly. Both the Nios II SBT for Eclipse
and the nios2-bsp script call the default Tcl script by invoking either
nios2-bsp-create-settings or nios2-bsp-update-settings with the --script
bsp-set-defaults.tcl option.

The default Tcl script consists of a top-level Tcl script named bsp-set-defaults.tcl plus
the helper Tcl scripts listed in Table 4–9. The helper Tcl scripts do the real work of
examining the .sopcinfo file and choosing appropriate defaults.

The bsp-set-defaults.tcl script sets the following defaults:

■ stdio character device (bsp-stdio-utils.tcl)

■ System timer device (bsp-timer-utils.tcl)

■ Default linker memory regions (bsp-linker-utils.tcl)

■ Default linker sections mapping (bsp-linker-utils.tcl)

■ Default boot loader settings (bsp-bootloader-utils.tcl)

You run the default Tcl script on the nios2-bsp-create-settings,
nios2-bsp-query-settings, or nios2-bsp-update-settings command line, by using the
--script argument. It has the following usage:

bsp-set-defaults.tcl [<argument name> <argument value>]*
Nios II Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios II Software Build Tools 4–37
Specifying BSP Defaults
Table 4–10 lists default Tcl script arguments in detail. All arguments are optional. If
present, each argument must be in the form of a name and argument value, separated
by white space. All argument values are strings. For any argument not specified, the
corresponding helper script chooses a suitable default value. In every case, if the
argument value is DONT_CHANGE, the default Tcl scripts leave the setting unchanged.
The DONT_CHANGE value allows fine-grained control of what settings the default Tcl
script changes and is useful when updating an existing BSP.

Specifying the Default stdio Device
The bsp-stdio-utils.tcl script provides procedures to choose a default stdio slave
descriptor and to set the hal.stdin, hal.stdout, and hal.stderr BSP settings to that
value.

f For more information about these settings, refer to the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

The script searches the .sopcinfo file for a slave descriptor with the string stdio in its
name. If bsp-stdio-utils.tcl finds any such slave descriptors, it chooses the first as the
default stdio device. If the script finds no such slave descriptor, it looks for a slave
descriptor with the string jtag_uart in its component class name. If it finds any such
slave descriptors, it chooses the first as the default stdio device. If the script finds no
slave descriptors fitting either description, it chooses the last character device slave
descriptor connected to the Nios II processor. If bsp-stdio-utils.tcl does not find any
character devices, there is no stdio device.

Specifying the Default System Timer
The bsp-timer-utils.tcl script provides procedures to choose a default system timer
slave descriptor and to set the hal.sys_clk_timer BSP setting to that value.

f For more information about this setting, refer to the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

Table 4–10. Default Tcl Script Command-Line Options

Argument Name Argument Value

default_stdio
Slave descriptor of default stdio device (stdin,
stdout, stderr). Set to none if no stdio device
desired.

default_sys_timer Slave descriptor of default system timer device. Set to
none if no system timer device desired.

default_memory_regions

Controls generation of memory regions By default,
bsp-linker-utils.tcl removes and regenerates all current
memory regions. Use the DONT_CHANGE keyword to
suppress this behavior.

default_sections_mapping

Slave descriptor of the memory device to which the
default sections are mapped. This argument has no
effect if default_memory_regions ==
DONT_CHANGE.

enable_bootloader Boolean: 1 if a boot loader is present; 0 otherwise.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

4–38 Chapter 4: Nios II Software Build Tools
Specifying BSP Defaults
The script searches the .sopcinfo file for a timer component to use as the default
system timer. To be an appropriate system timer, the component must have the
following characteristics:

■ It must be a timer, that is, is_timer_device must return true.

■ It must have a slave port connected to the Nios II processor.

When the script finds an appropriate system timer component, it sets
hal.sys_clk_timer to the timer slave port descriptor. The script prefers a slave port
whose descriptor contains the string sys_clk, if one exists. If no appropriate system
timer component is found, the script sets hal.sys_clk_timer to none.

Specifying the Default Memory Map
The bsp-linker-utils.tcl script provides procedures to add the default linker script
memory regions and map the default linker script sections to a default region. The
bsp-linker-utils.tcl script uses the add_memory_region and add_section_mapping BSP
Tcl commands.

f For more information about these commands, refer to the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

The script chooses the largest volatile memory region as the default memory region. If
there is no volatile memory region, bsp-linker-utils.tcl chooses the largest
non-volatile memory region. The script assigns the .text, .rodata, .rwdata, .bss,
.heap, and .stack section mappings to this default memory region. The script also sets
the hal.linker.exception_stack_memory_region BSP setting to the default memory
region. The setting is available in case the separate exception stack option is enabled
(this setting is disabled by default).

f For more information about this setting, refer to the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

Specifying Default Bootloader Parameters
The bsp-bootloader-utils.tcl script provides procedures to specify the following BSP
boolean settings:

■ hal.linker.allow_code_at_reset

■ hal.linker.enable_alt_load_copy_rodata

■ hal.linker.enable_alt_load_copy_rwdata

■ hal.linker.enable_alt_load_copy_exceptions

f For more information about these settings, refer to the Nios II Software Build Tools
Reference chapter of the Nios II Software Developer’s Handbook.

The script examines the .text section mapping and the Nios II reset slave port. If
the .text section is mapped to the same memory as the Nios II reset slave port and the
reset slave port is a flash memory device, the script assumes that a boot loader is
being used. You can override this behavior by passing the enable_bootloader option
to the default Tcl script.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

Chapter 4: Nios II Software Build Tools 4–39
Device Drivers and Software Packages
Table 4–11 shows how the bsp-bootloader-utils.tcl script specifies the value of boot
loader-dependent settings. If a boot loader is enabled, the assumption is that the boot
loader is located at the reset address and handles the copying of sections on reset. If
there is no boot loader, the BSP might need to provide code to handle these functions.
You can use the alt_load() function to implement a boot loader.

Using Individual Default Tcl Procedures
The default Tcl script consists of the top-level bsp-call-proc.tcl script plus the helper
scripts listed in Table 4–9 on page 4–35. The procedure call Tcl script allows you to call
a specific procedure in the helper scripts, if you want to invoke some of the default Tcl
functionality without running the entire default Tcl script.

The procedure call Tcl script has the following usage:

bsp-call-proc.tcl <proc-name> [<args>]*

bsp-call-proc.tcl calls the specified procedure with the specified (optional)
arguments. Refer to the default Tcl scripts to view the available functions and their
arguments. The bsp-call-proc.tcl script includes the same files as the
bsp-set-defaults.tcl script, so any function in those included files is available.

Device Drivers and Software Packages
The Nios II SBT can incorporate device drivers and software packages supplied by
Altera, supplied by other third-party developers, or created by you.

f For details about integrating device drivers and software packages with the
Nios II SBT, refer to the Developing Device Drivers for the Hardware Abstraction Layer
chapter of the Nios II Software Developer’s Handbook.

Table 4–11. Boot Loader-Dependent Settings

Setting name (1)
Value When
Boot Loader

Enabled
Value When Boot Loader Disabled

hal.linker.allow_code_at_reset 0 1

hal.linker.enable_alt_load_copy_rodata 0
1 if .rodata memory different
than .text memory and .rodata
memory is volatile; 0 otherwise

hal.linker.enable_alt_load_copy_rwdata 0 1 if .rwdata memory different
than .text memory; 0 otherwise

hal.linker.enable_alt_load_copy_exceptions 0
1 if .exceptions memory different
than .text memory and .exceptions
memory is volatile; 0 otherwise

Notes to Table 4–11:

(1) For further information about these settings, refer to the Nios II Software Build Tools Reference chapter of the Nios II Software Developer’s
Handbook.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

4–40 Chapter 4: Nios II Software Build Tools
Boot Configurations for Altera Embedded Software
Boot Configurations for Altera Embedded Software
The HAL and MicroC/OS-II BSPs support several boot configurations. The default Tcl
script configures an appropriate boot configuration based on your hardware system
and other settings.

f For detailed information about the HAL boot loader process, refer to the Developing
Programs Using the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook.

Table 4–12 shows the memory types that the default Tcl script recognizes when
making decisions about your boot configuration. The default Tcl script uses the
IsFlash and IsNonVolatileStorage properties to determine what kind of memory is
in the system.

The IsFlash property of the memory module (defined in the .sopcinfo file) indicates
whether the .sopcinfo file identifies the memory as a flash memory device. The
IsNonVolatileStorage property indicates whether the .sopcinfo file identifies the
memory as a non-volatile storage device. The contents of a non-volatile memory
device are fixed and always present.

1 Some FPGA memories can be initialized when the FPGA is configured. They are not
considered non-volatile because the default Tcl script has no way to determine
whether they are actually initialized in a particular system.

The following sections describe each supported build configuration in detail. The
alt_load() facility is HAL code that optionally copies sections from the boot memory
to RAM. You can set an option to enable the boot copy. This option only adds the code
to your BSP if it needs to copy boot segments. The hal.enable_alt_load setting
enables alt_load() and there are settings for each of the three sections it can copy
(such as hal.enable_alt_load_copy_rodata). Enabling alt_load() also modifies the
memory layout specified in your linker script.

Boot from Flash Configuration
The reset address points to a boot loader in a flash memory. The boot loader initializes
the instruction cache, copies each memory section to its virtual memory address
(VMA), and then jumps to start.

Table 4–12. Memory Types

Memory Type Examples IsFlash IsNonVolatileStorage

Flash
Common flash interface (CFI), erasable
programmable configurable serial
(EPCS) device

true true

ROM On-chip memory configured as ROM,
HardCopy ROM false true

RAM
On-chip memory configured as RAM,
HardCopy RAM, SDRAM, synchronous
static RAM (SSRAM)

false false
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 4: Nios II Software Build Tools 4–41
Boot Configurations for Altera Embedded Software
This boot configuration has the following characteristics:

■ alt_load() not called

■ No code at reset in executable file

The default Tcl script chooses this configuration when the memory associated with
the processor reset address is a flash memory and the .text section is mapped to a
different memory (for example, SDRAM).

Altera provides example boot loaders for CFI and EPCS memory in the Nios II EDS,
precompiled to Motorola S-record Files (.srec). You can use one of these example boot
loaders, or provide your own.

Boot from Monitor Configuration
The reset address points to a monitor in a nonvolatile ROM or initialized RAM. The
monitor initializes the instruction cache, downloads the application memory image
(for example, using a UART or Ethernet connection), and then jumps to the entry
point provided in the memory image.

This boot configuration has the following characteristics:

■ alt_load() not called

■ No code at reset in executable file

The default Tcl script assumes no boot loader is in use, so it chooses this configuration
only if you enable it. To enable this configuration, pass the following argument to the
default Tcl script:

enable_bootloader 1

If you are using the nios2-bsp script, call it as follows:

nios2-bsp hal my_bsp --use_bootloader 1r

Run from Initialized Memory Configuration
The reset address points to the beginning of the application in memory (no boot
loader). The reset memory must have its contents initialized before the processor
comes out of reset. The initialization might be implemented by using a non-volatile
reset memory (for example, flash, ROM, initialized FPGA RAM) or by an external
master (for example, another processor) that writes the reset memory. The HAL C
run-time startup code (crt0) initializes the instruction cache, uses alt_load() to copy
select sections to their VMAs, and then jumps to _start. For each associated section
(.rwdata, .rodata, .exceptions), boolean settings control this behavior. The default Tcl
scripts set these to default values as described in Table 4–11 on page 4–39.

alt_load() must copy the .rwdata section (either to another RAM or to a reserved
area in the same RAM as the .text RAM) if .rwdata needs to be correct after multiple
resets.

This boot configuration has the following characteristics:

■ alt_load() called

■ Code at reset in executable file
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–42 Chapter 4: Nios II Software Build Tools
Altera-Provided Embedded Development Tools
The default Tcl script chooses this configuration when the reset and .text memory are
the same.

In this boot configuration, when the processor core resets, by default the .rwdata
section is not reinitialized. Reinitialization would normally be done by a boot loader.
However, this configuration has no boot loader, because the software is running out of
memory that is assumed to be preinitialized before startup.

If your software has a .rwdata section that must be reinitialized at processor reset,
turn on the hal.linker.enable_alt_load_copy_rwdata setting in the BSP.

Run-time Configurable Reset Configuration
The reset address points to a memory that contains code that executes before the
normal reset code. When the processor comes out of reset, it executes code in the reset
memory that computes the desired reset address and then jumps to it. This boot
configuration allows a processor with a hard-wired reset address to appear to reset to
a programmable address.

This boot configuration has the following characteristics:

■ alt_load() might be called (depends on boot configuration)

■ No code at reset in executable file

Because the processor reset address points to an additional memory, the algorithms
used by the default Tcl script to select the appropriate boot configuration might make
the wrong choice. The individual BSP settings specified by the default Tcl script need
to be explicitly controlled.

Altera-Provided Embedded Development Tools
This section lists the components of the Nios II SBT, and other development tools that
Altera provides for use with the SBT. This section does not describe detailed usage of
the tools, but refers you to the most appropriate documentation.

Nios II Software Build Tool GUIs
The Nios II EDS provides the following SBT GUIs for software development:

■ The Nios II SBT for Eclipse

■ The Nios II BSP Editor

■ The Nios II Flash Programmer

Each GUI is primarily a thin layer providing graphical control of the command-line
tools described in “The Nios II Command-Line Commands” on page 4–44.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

Chapter 4: Nios II Software Build Tools 4–43
Altera-Provided Embedded Development Tools
Table 4–13 outlines the correlation between GUI features and the SBT command line.

The Nios II SBT for Eclipse
The Nios II SBT for Eclipse is a configuration of the popular Eclipse development
environment, specially adapted to the Nios II family of embedded processors. The
Nios II SBT for Eclipse includes Nios II plugins for access to the Nios II SBT, enabling
you to create applications based on the Altera HAL, and debug them using the JTAG
debugger.

You can launch the Nios II SBT for Eclipse either of the following ways:

■ In the Windows operating system, on the Start menu, point to Programs > Altera >
Nios II EDS <version>, and click Nios II <version> Software Build Tools for
Eclipse.

■ From the Nios II Command Shell, by typing eclipse-nios2.

f For more information about the Nios II SBT for Eclipse, refer to the Getting Started with
the Graphical User Interface chapter of the Nios II Software Developer’s Handbook.

Table 4–13. Summary of Nios II GUI Tasks

Task Tool Feature Nios II SBT Command Line

Creating an
example Nios II
program

Nios II SBT for Eclipse
Nios II Application and
BSP from Template
wizard

create-this-app script

Creating an
application Nios II SBT for Eclipse Nios II Application

wizard nios2-app-generate-makefile utility

Creating a user
library Nios II SBT for Eclipse Nios II Library wizard nios2-lib-generate-makefile utility

Creating a BSP

Nios II SBT for Eclipse Nios II Board Support
Package wizard

■ Simple:

■ nios2-bsp script

■ Detailed:

■ nios2-bsp-create-settings utility

■ nios2-bsp-generate-files utility

BSP Editor New BSP Setting File
dialog box

Modifying an
application Nios II SBT for Eclipse Nios II Application

Properties page nios2-app-update-makefile utility

Modifying a user
library Nios II SBT for Eclipse Nios II Library

Properties page nios2-lib-update-makefile utility

Updating a BSP
Nios II SBT for Eclipse Nios II BSP Properties

page nios2-bsp-update-settings utility

nios2-bsp-generate-files utilityBSP Editor —

Examining
properties of a BSP

Nios II SBT for Eclipse Nios II BSP Properties
page nios2-bsp-query-settings utility

BSP Editor —

Programming flash
memory

Nios II Flash
Programmer — nios2-flash-programmer

Importing a
command-line
project

Nios II SBT for Eclipse Import dialog box —
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf

4–44 Chapter 4: Nios II Software Build Tools
Altera-Provided Embedded Development Tools
The Nios II BSP Editor
You can create or modify a Nios II BSP project with the Nios II BSP Editor, a
standalone GUI that also works with the Nios II SBT for Eclipse. You can launch the
BSP Editor either of the following ways:

■ From the Nios II menu in the Nios II SBT for Eclipse

■ From the Nios II Command Shell, by typing nios2-bsp-editor.

The Nios II BSP Editor enables you to edit settings, linker regions, and section
mappings, and to select software packages and device drivers.

The capabilities of the Nios II BSP Editor constitute a large subset of the capabilities of
the nios2-bsp-create-settings, nios2-bsp-update-settings, and
nios2-bsp-generate-files utilities. Any project created in the BSP Editor can also be
created using the command-line utilities.

f For more information about the BSP Editor, refer to “Using the BSP Editor” in the
Getting Started with the Graphical User Interface chapter of the Nios II Software
Developer’s Handbook.

The Nios II Flash Programmer
The Nios II flash programmer allows you to program flash memory devices on a
target board. The flash programmer supports programming flash on any board,
including Altera development boards and your own custom boards. The flash
programmer facilitates programming flash for the following purposes:

■ Executable code and data

■ Bootstrap code to copy code from flash to RAM, and then run from RAM

■ HAL file subsystems

■ FPGA hardware configuration data

You can launch the flash programmer either of the following ways:

■ From the Nios II menu in the Nios II SBT for Eclipse

■ From the Nios II Command Shell, by typing:

nios2-flash-programmer-generater

The Nios II Command Shell
The Nios II Command Shell is a bash command-line environment initialized with the
correct settings to run Nios II command-line tools. The Nios II EDS includes two
versions of the Nios II Command Shell, for the two supported GCC toolchain
versions, described in “GNU Compiler Tool Chain”.

f For information about launching the Nios II Command Shell, refer to the Getting
Started from the Command Line chapter of the Nios II Software Developer’s Handbook.

The Nios II Command-Line Commands
This section describes the Altera Nios II command-line tools. You can run these tools
from the Nios II Command Shell.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 4: Nios II Software Build Tools 4–45
Altera-Provided Embedded Development Tools
Each tool provides its own documentation in the form of help accessible from the
command line. To view the help, open the Nios II Command Shell, and type the
following command:

<name of tool> --helpr

GNU Compiler Tool Chain
The Nios II compiler tool chain is based on the standard GNU GCC compiler,
assembler, linker, and make facilities. Altera provides and supports the standard
GNU compiler tool chain for the Nios II processor.

The Nios II EDS includes version GCC 4.7.3 of the GCC toolchain.

f For detailed information about installing the Altera Complete Design Suite, refer to
the Altera Software Installation and Licensing Manual.

GNU tools for the Nios II processor are generally named nios2-elf-<tool name>. The
following list shows some examples:

■ nios2-elf-gcc

■ nios2-elf-as

■ nios2-elf-ld

■ nios2-elf-objdump

■ nios2-elf-size

The exception is the make utility, which is simply named make.

The Nios II GNU tools reside in the following location:

■ <Nios II EDS install path>/bin/gnu directory

f Refer to the following additional sources of information:

■ For information about managing GCC toolchains in the SBT for Eclipse—
“Managing Toolchains in Eclipse” in the Getting Started with the Graphical User
Interface chapter of the Nios II Software Developer’s Handbook

■ For information about selecting the toolchain on the command line—the
Getting Started from the Command Line chapter of the Nios II Software Developer’s
Handbook

■ For a comprehensive list of Nios II GNU tools—the GNU HTML
documentation, available at the Nios II Embedded Design Suite Support page
of the Altera website

■ For further information about GNU from the Free Software Foundation
website (www.gnu.org).

Nios II Software Build Tools
The Nios II SBT utilities and scripts provide the functionality underlying the
Nios II SBT for Eclipse. You can create, modify, and build Nios II programs with
commands typed at a command line or embedded in a script.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/support/ip/processors/nios2/ips-nios2_support.html
www.gnu.org

4–46 Chapter 4: Nios II Software Build Tools
Altera-Provided Embedded Development Tools
Table 4–14 summarizes the command-line utilities and scripts included in the
Nios II SBT. You can call these utilities and scripts on the command line or from the
scripting language of your choice (such as perl or bash).

The Nios II SBT utilities reside in the <Nios II EDS install path>/sdk2/bin directory.

f For further information about the Nios II SBT, refer to the Getting Started from the
Command Line chapter of the Nios II Software Developer’s Handbook.

File Format Conversion Tools
File format conversion is sometimes necessary when passing data from one utility to
another. Table 4–15 shows the Altera-provided utilities for converting file formats.

The file format conversion tools are in the <Nios II EDS install path>/bin/ directory.

Table 4–14. Nios II SBT Utilities and Scripts

Command Summary Utility Script

nios2-app-generate-makefile Creates an application makefile v
nios2-lib-generate-makefile Creates a user library makefile v
nios2-app-update-makefile Modifies an existing application makefile v
nios2-lib-update-makefile Modifies an existing user library makefile v
nios2-bsp-create-settings Creates a BSP settings file v
nios2-bsp-update-settings Updates the contents of a BSP settings file v
nios2-bsp-query-settings Queries the contents of a BSP settings file v
nios2-bsp-generate-files Generates all files for a given BSP settings file v
nios2-bsp Creates or updates a BSP v
create-this-app Creates an example application project v
create-this-bsp Creates an example BSP project v

Table 4–15. File Conversion Utilities

Utility Description

bin2flash Converts binary files to a Nios II Flash Programmer File (.flash) for
programming to flash memory.

elf2dat Converts a .elf file to a .dat file format appropriate for Verilog HDL hardware
simulators.

elf2flash Converts a .elf file to a .flash file for programming to flash memory.

elf2hex Converts a .elf file to a Hexadecimal (Intel-format) File (.hex).

elf2mem Generates the memory contents for the memory devices in a specific Nios II
system.

elf2mif Converts a .elf file to a Quartus® II Memory Initialization File (.mif).

flash2dat Converts a .flash file to the .dat file format appropriate for Verilog HDL
hardware simulators.

sof2flash Converts an SRAM Object File (.sof) to a .flash file.
Nios II Software Developer’s Handbook January 2014 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Chapter 4: Nios II Software Build Tools 4–47
Restrictions
Other Command-Line Tools
Table 4–16 shows other Altera-provided command-line tools for developing Nios II
programs.

The command-line tools described in this section are in the <Nios II EDS install path>/
bin/ directory.

Restrictions
The Nios II SBT supports BSPs incorporating the Altera HAL and Micrium
MicroC/OS-II only.

Document Revision History
Table 4–17 shows the revision history for this document.

.

Table 4–16. Altera Command-Line Tools

Tool Description

nios2-download Downloads code to a target processor for debugging or running.

nios2-flash-programmer-generate Allows multiple files to be converted to .flash files, and optionally
programs each file to the specified location on a flash device.

nios2-flash-programmer Programs data to flash memory on the target board.

nios2-gdb-server
Translates GNU debugger (GDB) remote serial protocol packets over
Transmission Control Protocol (TCP) to JTAG transactions with a
target Nios II processor.

nios2-terminal Performs terminal I/O with a JTAG UART in a Nios II system

validate_zip Verifies if a specified zip file is compatible with Altera’s read-only zip
file system.

nios2-debug Downloads a program to a Nios II processor and launches the Insight
debugger.

nios2-configure-sof Configures an Altera configurable part. If no explicit .sof file is
specified, it tries to determine the correct file to use.

jtagconfig Allows you configure the JTAG server on the host machine. It can also
detect a JTAG chain and set up the download hardware configuration.

Table 4–17. Document Revision History (Part 1 of 2)

Date Version Changes

January 2014 13.1.0

■ Updated GCC4 toolchain from 4.1.2 to GCC 4.7.3.

■ Removed references to Nios II IDE.

■ Removed references to Nios II GCC3.

May 2011 11.0.0
■ Introduction of Qsys system integration tool

■ The GCC 3 toolchain is an optional feature

February 2011 10.1.0 Removed “Referenced Documents” section.
January 2014 Altera Corporation Nios II Software Developer’s Handbook

4–48 Chapter 4: Nios II Software Build Tools
Document Revision History
July 2010 10.0.0

■ Added explanation of the effects of disabled BSP file generation.

■ Described regeneration of BSP with changed memory sizes.

■ Described GCC 4.

■ Described GCC 3 and GCC 4 command shells

November 2009 9.1.0
■ Chapter repurposed and retitled to cover Nios II Software Build Tools functionality

applicable to both command line and Eclipse.

■ Describe the Nios II Flash Programmer

March 2009 9.0.0

■ Moved information about Tcl-based device drivers and software packages, formerly in
this chapter, to Developing device Drivers for the Hardware Abstraction Layer.

■ Described how to work with compiler optimization and debugger settings.

■ Described newlib recompilation.

■ Corrected minor typographical errors.

May 2008 8.0.0

■ Advanced exceptions added to Nios II core.

■ Added instructions for writing instruction-related exception handler.

■ Design examples removed from list.

October 2007 7.2.0 Initial release. Material moved here from former Nios II Software Build Tools chapter.

Table 4–17. Document Revision History (Part 2 of 2)

Date Version Changes
Nios II Software Developer’s Handbook January 2014 Altera Corporation

	4. Nios II Software Build Tools
	Road Map for the SBT
	What the Build Tools Create
	Comparing the Command Line with Eclipse

	Makefiles
	Modifying Makefiles
	Makefile Targets

	Nios II Embedded Software Projects
	Applications and Libraries
	Board Support Packages
	Overview of BSP Creation
	Parts of a Nios II BSP
	Hardware Abstraction Layer
	newlib C Standard Library
	Device Drivers
	Optional Software Packages
	Optional Real-Time Operating System

	Software Build Process

	Common BSP Tasks
	Adding the Nios II SBT to Your Tool Flow
	Using Version Control
	Copying, Moving, or Renaming a BSP
	Handing Off a BSP

	Linking and Locating
	Creating Memory Initialization Files
	Modifying Linker Memory Regions
	Creating a Custom Linker Section
	Creating a Linker Section for an Existing Region
	Dividing a Linker Region to Create a New Region and Section

	Changing the Default Linker Memory Region
	Changing a Linker Section Mapping

	Other BSP Tasks
	Creating a BSP for an Altera Development Board
	Querying Settings
	Managing Device Drivers
	Creating a Custom Version of newlib
	Controlling the stdio Device
	Configuring Optimization and Debugger Options

	Details of BSP Creation
	BSP Settings File Creation
	Generated and Copied Files
	HAL BSP Files and Folders
	Linker Map Validation

	Tcl Scripts for BSP Settings
	Calling a Custom BSP Tcl Script

	Revising Your BSP
	Rebuilding Your BSP
	What Happens
	How to Rebuild Your BSP

	Regenerating Your BSP
	What Happens
	When to Regenerate Your BSP
	How to Regenerate Your BSP
	Regenerating Your BSP in Eclipse
	Regenerating Your BSP from the Command Line

	Updating Your BSP
	What Happens
	When to Update Your BSP
	How to Update Your BSP

	Recreating Your BSP
	What Happens
	When to Recreate Your BSP
	How to Recreate Your BSP
	Using Tcl Scripts When Recreating Your BSP
	Recreating Your BSP in Eclipse
	Recreating Your BSP at the Command Line

	Specifying BSP Defaults
	Top Level Tcl Script for BSP Defaults
	Specifying the Default stdio Device
	Specifying the Default System Timer
	Specifying the Default Memory Map
	Specifying Default Bootloader Parameters
	Using Individual Default Tcl Procedures

	Device Drivers and Software Packages
	Boot Configurations for Altera Embedded Software
	Boot from Flash Configuration
	Boot from Monitor Configuration
	Run from Initialized Memory Configuration
	Run-time Configurable Reset Configuration

	Altera-Provided Embedded Development Tools
	Nios II Software Build Tool GUIs
	The Nios II SBT for Eclipse
	The Nios II BSP Editor
	The Nios II Flash Programmer

	The Nios II Command Shell
	The Nios II Command-Line Commands
	GNU Compiler Tool Chain
	Nios II Software Build Tools
	File Format Conversion Tools
	Other Command-Line Tools

	Restrictions
	Document Revision History

