

COMPUTER ENGINEERING

Diversity - Multiplexing

- Consider the transmission from a cellular base station to a mobile device, and consider antenna diversity.
- It may be difficult to have a multiple antenna system at the mobile device. It is worth considering whether diversity benefits can be achieved by using a multiple antenna system at the transmitter.
- The simplest scheme was developed by Alamouti, and uses $N_T=2$ antennas at the transmitter and $N_R = 1$ antennas at the receiver.

S. Alamouti, " A simple transmit diversity technique for wireless communications", IEEE-JSAC, Vol. 16, N.8, 1998, pp. 1451-1458.

Transmission scheme

- Assume that the fading remains constant at least for the time needed to transmit two symbols, $x[k], x[k+1]$.
- Transmission scheme (Space Time Coding). The two transmitting antennas according to the following scheme:

Reception scheme

Received signals

$$
\begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \underbrace{\begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix}}_{\mathbf{H}} \underbrace{\begin{bmatrix} x[k] \\ x[k+1] \end{bmatrix}}_{\mathbf{X}} + \begin{bmatrix} n_1 \\ n_2^* \end{bmatrix}
$$

2 $1 \frac{2}{\sqrt{2}} \frac{1}{\sqrt{11}}$ $s_1 = (|h_1|^2 + |h_2|^2) x[k] + h_1 n_1 + h_2 n_2$ 2 $1 \frac{2}{\sqrt{2}}$ $1 \frac{1}{2}$ $1 \frac{1}{2}$ $1 \frac{1}{2}$ $1 \frac{1}{2}$ $s_2 = (|h_1|^2 + |h_2|^2) x[k+1] + h_2 n_1 + h_1 n_2$ Combiner $2^{2}+|h|^{2}$ $|l_1|^2 + |h_2|$ $\frac{0}{(2 + |h|^2)}$ $|h_1|^2 + |h_2|$ 0 0 ombiner
 $H_{\mathbf{R}} = \begin{bmatrix} |h_1|^2 + |h_2|^2 & 0 \end{bmatrix} \mathbf{X} + \mathbf{H}^H$ 0
 $h_1|^2 + |h|$ ner
 $\left[|h_1|^2 + |h_2|^2 \right]$ 0 $\left[|h_1|^2 + |h_2|^2 \right]$ $=\left[\left|h_{1}\right|^{2}+\left|h_{2}\right|^{2}\right]^{2}$ 0
 $\left|\mathbf{X}+\mathbf{H}^{H}\mathbf{N}\right|^{2}$ $\begin{bmatrix} |h_1|^2 + |h_2|^2 & 0 \\ 0 & |h_1|^2 + |h_2|^2 \end{bmatrix}$ **X** + **H** $\mathbf{H}^{H} \mathbf{R} = \begin{bmatrix} |h_1|^2 + |h_2|^2 & 0 \\ 0 & |I_1|^2 + |I_2|^2 \end{bmatrix} \mathbf{X} + \mathbf{H}^{H} \mathbf{N}$

• The Alamouti scheme achieves the same diversity gain (asymptotic slope of the curve expressing the error rate as a function of the signal/noise ratio) γ , ζ =2 of the classic scheme with *N*_T=1 antenna at the transmitter and *N*_R =2 antennas at the receiver.

> $(P_e(E[\gamma]))$ $(E[\gamma])$ $\boldsymbol{\mathcal{Y}}$ $\zeta_E = -\lim_{\gamma \to \infty} \frac{\zeta_E}{\log(E)}$ $P_e(E)$ $L^{\text{}}$ $\frac{1}{\gamma \rightarrow \infty}$ $\frac{1}{\log \frac{1}{\gamma}}$ $\lim \frac{\log n}{n}$ $\rightarrow \infty$ = −

- To obtain the same performance as the classic scheme $(N_T = 1, N_R = 2)$ it is necessary to use double transmission power.
- In general, if you have N_T antennas at the transmitter and N_R antennas at the receiver (Multiple Input Multiple Output - MIMO - general scheme) the achievable diversity gain is equal to N_T N_R .
- More in general, we may transmit $M \le \min(N_T, N_R)$ distinct flows. The residual degree of diversity is equal to $\zeta=(Nt-M+1)$ (Nr–M+1).

MIMO Example: Spatial multiplexing

- Multi-antenna system that uses channels (in the spatial domain) due to the multipath phenomenon.
- Low spatial correlation environments between replicas.

- Sending multiple data streams to multiple antennas.
- Low probability that all paths experience deep fade at the same time.

- MIMO multiplexing scheme, with interference cancellation.
- It uses $N_T > 1$ antennas at the transmitter and $N_R \ge N_T$ antennas at the receiver.
- It is capable of multiplexing N_T distinct flows.
- There is a trade-off between diversity and multiplexing, as a scheme with these characteristics has a maximum diversity gain equal to $N_\text{T} N_\text{R}$.
- If $M \le N_T$ is the number of distinct flows transmitted, the residual diversity degree is equal to $\zeta = (N_T - M + 1) (N_R - M + 1)$.

- **a**: transmitted symbols vector N_T x 1
- **H**: channel response matrix N_R x N_T .
- **r**=**Ha**+v : received symbols vector (v being the noise vector)
- Let \mathbf{H}^+ (N_t x N_r .) be the pseudo-inverse of Moore-Penrose.

 $\left(\mathbf{H}\mathbf{H}^{\mathrm{+}}\right)^{*}=\mathbf{H}\mathbf{H}^{\mathrm{+}}$ $\left(\mathbf{H}^{+}\mathbf{H}\right)^{*}=\mathbf{H}^{+}\mathbf{H}$ $\mathbf{H}^+ \mathbf{H} \mathbf{H}^+ = \mathbf{H}^+$ $\mathbf{H}\mathbf{H}^+ \mathbf{H} = \mathbf{H}$ * *

 $({\bf G\,}_i)$

2

• Initialization **Recursion**

Wireless Networks **F. Babich**

V-BLAST: performance (Rice fading)

Wireless Networks **F. Babich**