

COMPUTER ENGINEERING

Diversity - Multiplexing

- Consider the transmission from a cellular base station to a mobile device, and consider antenna diversity.
- It may be difficult to have a multiple antenna system at the mobile device. It is worth considering whether diversity benefits can be achieved by using a multiple antenna system at the transmitter.
- The simplest scheme was developed by Alamouti, and uses $N_T=2$ antennas at the transmitter and $N_R=1$ antennas at the receiver.

S. Alamouti, "A simple transmit diversity technique for wireless communications", IEEE-JSAC, Vol. 16, N.8, 1998, pp. 1451-1458.

Transmission scheme

- Assume that the fading remains constant at least for the time needed to transmit two symbols, *x*[*k*], *x*[*k*+1].
- Transmission scheme (Space Time Coding). The two transmitting antennas according to the following scheme:

Reception scheme

Received signals

$$\begin{bmatrix} r_1 \\ r_2^* \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} x[k] \\ x[k+1] \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2^* \end{bmatrix}$$

R H X N

Combiner $\mathbf{H}^{H}\mathbf{R} = \begin{bmatrix} |h_{1}|^{2} + |h_{2}|^{2} & 0 \\ 0 & |h_{1}|^{2} + |h_{2}|^{2} \end{bmatrix} \mathbf{X} + \mathbf{H}^{H}\mathbf{N}$ $s_{1} = (|h_{1}|^{2} + |h_{2}|^{2})x[k] + h_{1}^{*}n_{1} + h_{2}n_{2}^{*}$ $s_{2} = (|h_{1}|^{2} + |h_{2}|^{2})x[k+1] + h_{2}^{*}n_{1} + h_{1}n_{2}^{*}$

• The Alamouti scheme achieves the same diversity gain (asymptotic slope of the curve expressing the error rate as a function of the signal/noise ratio) γ), $\zeta=2$ of the classic scheme with $N_{\rm T}=1$ antenna at the transmitter and $N_{\rm R}=2$ antennas at the receiver.

 $\varsigma_{L} = -\lim_{\gamma \to \infty} \frac{\log(P_{e}(E[\gamma]))}{\log(E[\gamma])}$

- To obtain the same performance as the classic scheme $(N_T=1, N_R=2)$ it is necessary to use double transmission power.
- In general, if you have $N_{\rm T}$ antennas at the transmitter and $N_{\rm R}$ antennas at the receiver (Multiple Input Multiple Output MIMO general scheme) the achievable diversity gain is equal to $N_{\rm T} N_{\rm R}$.
- More in general, we may transmit $M \le \min(N_T, N_R)$ distinct flows. The residual degree of diversity is equal to $\zeta = (Nt-M+1)(Nr-M+1)$.

 M_T

MIMO Example: Spatial multiplexing

• Multi-antenna system that uses channels (in the spatial domain) due to the multipath phenomenon.

 M_R

• Low spatial correlation environments between replicas.

- Sending multiple data streams to multiple antennas.
- Low probability that all paths experience deep fade at the same time.

- MIMO multiplexing scheme, with interference cancellation.
- It uses $N_{\rm T} > 1$ antennas at the transmitter and $N_{\rm R} \ge N_{\rm T}$ antennas at the receiver.
- It is capable of multiplexing $N_{\rm T}$ distinct flows.
- There is a trade-off between diversity and multiplexing, as a scheme with these characteristics has a maximum diversity gain equal to $N_T N_R$.
- If $M \le N_T$ is the number of distinct flows transmitted, the residual diversity degree is equal to $\zeta = (N_T M + 1) (N_R M + 1)$.

- **a**: transmitted symbols vector $N_{\rm T} \ge 1$
- **H**: channel response matrix $N_{\rm R} \ge N_{\rm T}$.
- r=Ha+v: received symbols vector (v being the noise vector)
- Let \mathbf{H}^+ ($N_t \ge N_{r^*}$) be the pseudo-inverse of Moore-Penrose.

 $HH^{+}H = H$ $H^{+}HH^{+} = H^{+}$ $(HH^{+})^{*} = HH^{+}$ $(H^{+}H)^{*} = H^{+}H$

Initialization •

		$\mathbf{G}_{i} = \mathbf{H}_{i}^{+}$
	i = 1	$k = \arg \min \left[\left(\frac{1}{2} \right)^{2} \right]$
	$\mathbf{r}_1 = \mathbf{r}$	$\kappa_i - \arg \min_j \ $
	$\mathbf{H}_1 = \mathbf{H}$	$\mathbf{w}_{k_i} = \left(\mathbf{G}_i\right)_{k_i}$
	r : vector $N_T \ge 1$	$y_{k_i} = \mathbf{w}_{k_i} \mathbf{r}_i$
	\mathbf{H}_i : matrix $N_R \ge N_T$	$\hat{a}_{k} = Q(y_{k})$
	\mathbf{G}_i : matrix $N_T \ge N_R$	$\mathbf{r}_{i,1} = \mathbf{r}_i - \hat{a}_i$
	$(\mathbf{G}_i)_j$ the <i>j</i> -th row di \mathbf{G}_i	$i+1$ i k_i
	\hat{a}_{k_i} decided value	$\mathbf{H}_{i+1} = \left(\mathbf{H}_i\right)_{k}^{-1}$
	$(\mathbf{H}_i)_{k_i}$ the k_i -th column of \mathbf{H}_i	
$(\mathbf{H}_i)_{k_i}^{-}$ matrix \mathbf{H}_i with the column k_i set to zero (interference)		(interference
	cancellation)	

 $\min_{j} \left\| \left(\mathbf{G}_{i} \right)_{j} \right\|^{2} \\
\mathbf{G}_{i} \right\|_{k_{i}}$ r_i y_{k_i} $-\hat{a}_{k_i} \left(\mathbf{H}_i\right)_{k_i}$ $\left(\mathbf{H}_i\right)_{k_i}^{-}$

Recursion

Wireless Networks

V-BLAST: performance (Rice fading)

Wireless Networks