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Ask your colleagues and students to define a
wave, and you may be surprised at the
answers you get. Even wave professionals are
prone to confusion and vagueness when
confronted with such an apparently simple
question. Students often begin circularly: “a
wave is a solution to the wave equation.” But
what is a wave equation? Professionals are
more likely to mutter something about 
propagation speed, as if smell and heat didn’t
propagate with some speed. Mathematicians
tend to give formal characterizations based
on the hyperbolicity of certain differential
equations.

Just as a definition of noise must be
grounded empirically, so to define a wave we
should look at what nature has to offer. A
preliminary answer might be: a wave is a
propagating imbalance. The imbalance con-
cept is also present in a simple oscillator
where kinetic energy and potential energy
are interchanged during the oscillation.
Hamilton’s principle (that the path taken by
a dynamical system is the one that minimizes
the time integral of the difference between
the kinetic and potential energies) is a for-
malization of this idea of interchange
between the two forms of energy. However,
what makes a wave different from a single
oscillator is that this imbalance propagates.
(Of course, two travelling waves can form a
standing wave, but let us ignore this compli-
cation for the moment.) 

Stable equilibria
At this simplest of levels, the ubiquity of
(classical) waves can be attributed to nature’s
love of stable equilibria. Whatever the forces
that connect bits of matter together (electro-
magnetic or gravitational, for instance), for
small perturbations about a stable equili-
brium point, the forces are approximately
linear; a linear restoring force implies 
harmonic oscillation; and coupled systems
of oscillators support both propagating and
standing disturbances. Linearity also im-
plies superposition, so we can carefully add 
periodic solutions together to get finite wave
‘packets’. So, for small perturbations about
an equilibrium state of coupled or extended
systems, waves are the natural consequence
of the stability of simple harmonic motion.

The miracle of the waves that we see is 
the organization they display, but there 
are examples where this organization is
destroyed. Strong scattering leads to diffusive

behaviour rather than wave propagation. The
scatterers destroy the level of organization in
the incident wave and ultimately lead to dif-
fusive (un-wave-like) behaviour. Similarly,
when a wave breaks on a beach, the advective
terms in the equation of motion couple all the
different length scales in the wave, and the
organization we see in the swell is destroyed.
Ultimately, the wave is dissipated as heat. In
view of these examples, where a wave ceases to
be a wave because of the destruction of its
degree of organization, we are led to modify
our definition of a wave to become: a wave is
an organized propagating imbalance.

Wave propagation is in many situations
described by a linear differential equation. In
reality, nonlinearity is important, and this
nonlinearity may destroy the waves. As an
example, consider the waves on the beach
again. Look far out at the ocean from any
beach, and you will see ripples on the surface

of the water with a period of 5–10 seconds. 
As these ripples approach the beach, their
heights increase until they can no longer
support their own weight and they break 
catastrophically. Mathematically, this is
caused by the nonlinear terms in the 
equation of motion becoming increasingly
important as the waves grow. When non-
linearity becomes important, organized wave
motion changes into turbulent motion. In
this process, it is impossible to state exactly at
which point the wave ceases to be a wave.

Nonlinearity is sometimes essential for
maintaining the organization of a wave. In
solitons, the wave spreading by dispersion is
exactly (and miraculously) offset by the non-
linear steepening of the wave, so that a soli-
tary wave maintains its identity. This means
that nonlinearity can lead to the creation of
organization as well as to its destruction.

The simplest soliton to produce is the
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Figure 1 The recorded wavefield that has propagated through a homogeneous silicon crystal at three
times after excitation at the other side of the crystal. Details of the experiment are given by Wolfe3. 
This example shows that wavefronts in a homogeneous medium can be square rather than round.
(Courtesy of J. P. Wolfe.) 
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cylindrical hydraulic jump. Go into the
kitchen and turn on the tap at the kitchen 
sink. As the water strikes the sink, its vertical
momentum is converted into horizontal
momentum. In most cases, when the water
first hits the surface, it is travelling faster than
the speed of surface-water waves, so distur-
bances cannot propagate as surface waves and
are swept downstream by the water. But the
water must slow down, and at some point it
slows to the speed of surface-water waves.
What happens then is truly remarkable. A
jump, or shock, develops — the thickness of
the water increases almost discontinuously.
Further downstream, the water’s surface is
awash with surface waves that are now free to
propagate. But the jump is stationary, so why
should we regard this as a wave-like phenom-
enon? Well, imagine you are in a boat being
swept downstream by the water. In your frame
of reference the hydraulic jump is a solitary
‘wave’ racing upstream, much like a tidal bore.

Diffusion
To return to the original question, many 
people may say something about wave-like
versus diffusive behaviour. In many physical
phenomena, there is no clear distinction
between these two extremes of behaviour.
For instance, take light propagating in a 
turbid medium such as milk. The turbidity is
the result of scattering. (The absorption
cross-section of the fat molecules in the milk
is much smaller than the scattering cross-
section — the opposite of ink, for instance.)
The equations governing the electric field are
still the same linear-wave equations that fol-
low from Maxwell’s equations. But what the
eye registers is not the electric field itself, but
rather the intensity of the field. Because the
field reaching the eye is the superposition of
the uncountably many scattered waves origi-
nating in the milk (the equations are linear),
the actual intensity is the intensity of this
superposition. It is easy to see that this total
intensity has both a coherent and an incoher-
ent term in the superposition.

If the different scattered waves do not
interfere constructively with one another,
then the total intensity is merely the sum of
the intensities of the individual waves. If these
individual, non-interfering scattering terms
are thought of as representing a vast number
of uncorrelated brownian paths through the
milk, it is no surprise that the no-interference
intensity satisfies a diffusion equation (which
is the equation of the probability distribution
for brownian motion). So the electric field
satisfies a wave equation, as Maxwell said it
must, but the quantity we measure (the
intensity) satisfies a diffusion equation.

Some phenomena are clearly diffusive,
with no wave-like implications — heat, for
instance. We all ‘know’ that heat conduction
is governed by the diffusion equation.
Maxwell actually had his doubts about this
(see ref. 1 for a fascinating account). The 

standard diffusion equation doesn’t take into
account any propagation speed, so it cannot
really be a fundamental description of the
transport of heat; according to this equation,
if you apply a heat source to one end of a rod,
the temperature at the other end begins to
change instantaneously! Maxwell, working
from kinetic theory, imported a ballistic term
into the equations of heat conduction. He
ended up with the telegraph equation (it has
first and second derivatives with respect to
time), with its trade-off between the diffusive
behaviour (which comes from the first time
derivative) and ballistic behaviour (coming
from the second time derivative). Maxwell
dropped this ballistic term after concluding2

that it “may be neglected, as the rate of con-
duction will rapidly establish itself”.

That was consistent with experiments 100
years ago, but not any longer. As far back as
the 1960s, ballistic heat pulses were observed
at low temperatures. The idea is that heat 
is just the manifestation of microscopic
motion. Computing the classical resonant
frequencies of atoms or molecules in a lattice
gives numbers of the order of 1013 Hz, that is,
in the infrared, so when molecules jiggle they
give off heat. These lattice vibrations are
called phonons. Phonons have both wave-
like and particle-like aspects. Lattice vibra-
tions are responsible for the transport of heat,
and we know that heat is a diffusive phenom-
enon. However, if the lattice is cooled to near
absolute zero, the mean-free scattering path
of the phonons becomes comparable to the
macroscopic size of the sample. When this
happens, lattice vibrations no longer behave
diffusively but are actually wave-like. By con-
trolling the temperature of a sample, one can
control the extent to which heat is ballistic
(wave-like) or diffusive. In essence, if a heat
pulse is launched into such a sample (by pass-
ing a current through a wire, for instance),
and if the phonons can get across the sample
without scattering, they will propagate like
waves. The more they scatter, the more diffu-
sively they behave. When it’s very cold, heat
waves propagate as waves. Figure 1 shows an
example; many more are found in ref. 3. 

Waves are not only elusive in their charac-
ter, their presence is ubiquitous in nature.
Our two main senses, vision and hearing, rely

on waves. We call these the ‘main’ senses
because they give us the most precise infor-
mation about the environment. It is typical
that there are common-language words for
the loss of eyesight or hearing, but not for the
loss of sense of smell, taste and warmth. Most
of what we know about the world around us
we learn through waves. In addition, neurons
work by the propagation of electric waves
through the axons. A prime example is 
the triggering of the heart by a propagating
electric pulse through the heart tissue.

Even the ripples of space–time are waves.
These are called gravitational waves and
propagate at the speed of light. The first
observatories with a real chance of detecting
gravitational waves are now coming online.
These instruments, enormously long inter-
ferometers, will be able to measure strains on
the order of 10–20 or smaller.

Quantum mechanics
Another field where waves have a central role
is quantum mechanics, from which we learn
that everything has a wave character. Einstein
used the relation E!hf (energy equals
Planck’s constant times frequency) to con-
nect the wave frequency of light with the
energy of light’s discrete quanta (photons).
De Broglie extended this to electrons and
other ponderable matter. For classical waves,
dissipation generally damps the wave
motion, and ultimately everything seems to
come to rest. Quantum mechanics shows that
matter waves do not suffer from dissipation.
Even the ground state of the harmonic oscil-
lator is in harmonic motion. Matter waves
never come to rest. Taking this last idea a step
further, one can conjecture that the ubiquity
of waves is crucial to our concept of time.
Change is the manifestation of time, and reg-
ular oscillations are a clear manifestation of
change. Appropriately, the waves that propa-
gate in quartz crystals are now the dominant
tool used to keep track of time.

It is clear that waves are ubiquitous in
nature and that they are central to the struc-
ture of matter and time as well as to many
physical, biological and chemical phenom-
ena. It is striking that the concept of waves is
so hard to define, and that the distinction
between wave-like and non-wave-like behav-
iour can be so fuzzy. Taking all these examples
into account, we stick with our definition of a
wave as an organized propagating imbalance;
just don’t ask us to define ‘organized’. ■
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