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Differential Analysis of Fluid Flow Problems

Now that we have a set of governing partial 
differential equations, there are 2 problems we 
can solve:

Calculate pressure (P) for a known velocity field  

Calculate velocity (U, V, W) and pressure (P) for known 
geometry, boundary conditions (BC), and initial 
conditions (IC)
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Consider the steady, two-dimensional, incompressible velocity 
field, namely,                                                    . Calculate the 
pressure as a function of x and y.

Solution: Check continuity equation,

Consider the y-component of the Navier–Stokes equation:

Calculating the Pressure Field in Cart. coord. 
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The y-momentum equation reduces to

In similar fashion, the x-momentum equation reduces to

Pressure field from y-momentum:

⇒

Calculating the Pressure Field in Cart. coord. 
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Then we can get

Such that 

Will the C1 in the equation affect the velocity field? No. The 
velocity field in an incompressible flow is not affected by the 
absolute magnitude of pressure, but only by pressure 
differences.

Calculating the Pressure Field in Cart. coord. 
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From the Navier-Stokes equation (NSE), we know the velocity 
field is affected by pressure gradient.
In order to determine that constant (C1 in Example), we must 
measure (or otherwise obtain) P somewhere in the flow field. 
In other words, we require a pressure boundary condition. 
Please see the CFD results on the next page.

Calculating the Pressure Field in Cart. coord. 
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Filled pressure contour plot, velocity vector plot, and streamlines for downward 
flow of air through a channel with blockage: (a) case 1; (b) case 2—identical to 
case 1, except P is everywhere increased by 500 Pa. On the gray-scale contour 
plots, dark is low pressure and light is high pressure. 

Calculating the Pressure Field in Cart. coord. 
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Exact Solutions of the NSE

Solutions can also be 
classified by type or 
geometry

Couette shear flows

Steady duct/pipe flows

Unsteady duct/pipe flows

Flows with moving boundaries

Similarity solutions

Asymptotic suction flows

Wind-driven Ekman flows

There are about 80 known 

exact solutions to the NSE

The can be classified as:

Linear solutions where the 

convective term is zero

Nonlinear solutions where 

convective term is not zero
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Exact Solutions of the NSE

1.Set up the problem and geometry, identifying all 
relevant dimensions and parameters

2.List all appropriate assumptions, approximations, 
simplifications, and boundary conditions

3.Simplify the differential equations as much as 
possible

4. Integrate the equations
5.Apply BC to solve for constants of integration
6.Verify results

Procedure for solving continuity and NSE
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Boundary conditions

Boundary conditions are critical to exact, approximate, 
and computational solutions.

BC’s used in analytical solutions are discussed here:
No-slip boundary condition
Interface boundary condition

These are used in CFD as well, plus there are some BC’s 
which arise due to specific issues in CFD modeling: 

Inflow and outflow boundary conditions
Symmetry and periodic boundary conditions
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Kinematic (no-slip) boundary condition

For a fluid in contact with 
a solid wall, the velocity of 
the fluid must equal that 
of the wall
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Interface boundary condition

When two fluids meet at an 
interface, the velocity and 
shear stress must be the 
same on both sides

If surface tension effects are 
negligible and the surface is 
nearly flat
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Interface boundary condition

Degenerate case of the interface BC occurs at the free surface 
of a liquid.
Same conditions hold

Since μair << μwater, 

As with general 
interfaces, if surface 
tension effects are 
negligible and the 
surface is nearly flat  
Pwater = Pair
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Fully Developed Couette Flow

For the given geometry and BC’s, calculate the velocity and 
pressure fields, and estimate the shear force per unit area 
acting on the bottom plate

Step 1:  Geometry, dimensions, and properties
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Step 2:  Assumptions and BC’s
Assumptions
1. Plates are infinite in x and z
2. Flow is steady, ∂/∂t = 0
3. Parallel flow, V=0
4. Incompressible, Newtonian, laminar, constant properties
5. No pressure gradient
6. 2D, W=0, ∂/∂z = 0
7. Gravity acts in the -z direction, 

Boundary conditions
Bottom plate (y=0) : u=0, v=0, w=0
Top plate (y=h) : u=V, v=0, w=0

Fully Developed Couette Flow
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Step 3:  Simplify

3 6

Note:  these 
numbers refer  
to the assumptions 
on the  
previous slide

This means the flow is “fully developed” 
or not changing in the direction of flow

Continuity

X-momentum

2 Cont. 3 6 5 7 Cont. 6

Fully Developed Couette Flow
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Step 3:  Simplify, cont.

Y-momentum

2,3 3 3 3,6 7 3 33

Z-momentum

2,6 6 6 6 6 66

Fully Developed Couette Flow
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Step 4:  Integrate

Z-momentum

X-momentum

integrate integrate

integrate

Fully Developed Couette Flow
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Step 5: Apply BC’s
y=0, u=0=C1(0) + C2  ⇒  C2 = 0

y=h, u=V=C1h  ⇒  C1 = V/h

This gives

For pressure, no explicit BC, therefore C3 can remain an 
arbitrary constant (recall only ∇P appears in NSE).

Let p = p0 at z = 0 (C3 renamed p0)

1. Hydrostatic pressure
2. Pressure acts independently of flow

Fully Developed Couette Flow
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Step 6:  Verify solution by back-substituting into 
differential equations

Given the solution (u,v,w)=(Vy/h, 0, 0)

Continuity is satisfied
0 + 0 + 0 = 0

X-momentum is satisfied

Fully Developed Couette Flow
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Finally, calculate shear force on bottom plate

Shear force per unit area acting on the wall 

Note that τw is equal and opposite to the 
shear stress acting on the fluid τyx  
(Newton’s third law). 

Fully Developed Couette Flow
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Oil Film Flowing Down a Vertical Wall

Consider steady, incompressible, 
parallel, laminar flow of a film of oil 
falling slowly down an infinite vertical 
wall. The oil film thickness is h, and 
gravity acts in the negative z-direction. 
There is no applied (forced) pressure 
driving the flow—the oil falls by 
gravity alone. Calculate the velocity 
and pressure fields in the oil film and 
sketch the normalized velocity profile. 
You may neglect changes in the 
hydrostatic pressure of the 
surrounding air.
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Solution:
Assumptions
1. Plates are infinite in y and z
2. Flow is steady, ∂/∂t = 0
3. Parallel flow, u=0
4. Incompressible, Newtonian, laminar, constant properties
5. P=Patm = constant at free surface and no pressure gradient

6. 2D, v=0, ∂/∂y = 0
7. Gravity acts in the -z direction

Boundary conditions
No slip at wall (x=0) : u=0, v=0, w=0
At the free surface (x = h), there is negligible shear,                            
means ∂w/∂x = 0 at x = h

Oil Film Flowing Down a Vertical Wall
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Step 3: Write out and simplify the differential equations.

Therefore,

Since u = v = 0 everywhere, and gravity does not act in 
the x- or y-directions, the x- and y-momentum equations 
are satisfied exactly (in fact all terms are zero in both 
equations). The z-momentum equation reduces to

Oil Film Flowing Down a Vertical Wall
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Step 4: Solve the differential equations. (Integrating 
twice)

Oil Film Flowing Down a Vertical Wall
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Step 5: Apply boundary conditions.

Velocity field:

Since x < h in the film, w is negative everywhere, as 
expected (flow is downward). The pressure field is 
trivial; namely, P = Patm everywhere.

Oil Film Flowing Down a Vertical Wall
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Step 6: Verify the results.

Oil Film Flowing Down a Vertical Wall
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Fully Developed Flow - Poiseuille Flow

Consider steady, incompressible, laminar flow of a Newtonian 
fluid in an infinitely long round pipe of radius R = D/2. We 
ignore the effects of gravity.  A constant pressure gradient   
∂P/∂x is applied in the x-direction,

where x1 and x2 are two 
arbitrary locations along 
the x-axis, and P1 and P2 
are the pressures at those 
two locations.
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Derive an expression for the velocity field inside the pipe and 
estimate the viscous shear force per unit surface area acting on 
the pipe wall.

Solution: 
Assumptions

1. The pipe is infinitely long in the x-direction.
2. Flow is steady, ∂/∂t = 0
3. Parallel flow, ur = zero.
4. Incompressible, Newtonian, laminar, constant properties
5. A constant-pressure gradient is applied in the x-direction
6. The velocity field is axisymmetric with no swirl, implying that uθ = 0 
and all partial derivatives with respect to θ are zero.
7. Ignore the effects of gravity.

Fully Developed Flow - Poiseuille Flow
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Solution: 

Step 2: List boundary conditions.

(1) at r = R, 

(2) at r = 0, du/dr = 0.

Step 3: Write out and simplify the differential equations.

Fully Developed Flow - Poiseuille Flow
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Solution: 

We now simplify the axial momentum equation

Or

Fully Developed Flow - Poiseuille Flow
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Solution: 

In similar fashion, every term in the r-momentum equation

Finally, all terms of the θ-component of the Navier–Stokes 

equation go to zero.

Step 4: Solve the differential equations.

After multiplying both sides of equation  by r, we integrate once 

to obtain

Fully Developed Flow - Poiseuille Flow
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Solution: 
Dividing both sides by r, we integrate again to get

Step 5: Apply boundary conditions

Fully Developed Flow - Poiseuille Flow
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Solution: 
Finally, the result becomes

Step 6: Verify the results 
You can verify that all the differential equations and 
boundary conditions are satisfied.

Fully Developed Flow - Poiseuille Flow


