
G(x,s)

Green's function is a basic solution to a linear differential 
equation, a building block that can be used to construct 
many useful solutions.


If one considers a linear differential equation written as:


L(x)u(x)=f(x)


where L(x) is a linear, self-adjoint differential operator, 
u(x) is the unknown function, and f(x) is a known non-
homogeneous term, the GF is a solution of:


L(x)u(x,s)=δ(x-s)

Green’s function



Why GF is important?

If such a function G can be found for the operator L, then if we multiply the 
second equation for the Green's function by f(s), and then perform an 
integration in the s variable, we obtain:

Thus, we can obtain the function u(x) through the knowledge of the 
Green's function and the source term. This process has resulted from the 
linearity of the operator L. See Linear System Theory (i.e. impulse response)

L∫ (x)G(x, s)f(s)ds = δ∫ (x − s)f(s)ds = f(x) = Lu(x)
L G∫ (x, s)f(s)ds = Lu(x)

u(x) = G∫ (x, s)f(s)ds



Linear Systems

Since any input x(t) can be written as:

x(t) = x(τ)δ(t − τ) dτ∫ x(τ)h(t − τ) dτ∫ = x ∗ h

(remember GF definition)

Impulse Response

Linear

System

ax1(t)

bx2(t)

ay1(t)

by2(t)}= ay1(t) + by2(t)

Linear

Systemẟ(t) h(t)

X(ω) = x(t)eiωt dt∫ X(ω) ⋅ H(ω)

Transfer FunctionLinear

Systemei⍵t H(⍵)ei⍵t

eiωτh(t − τ) dτ =∫ eiω (t−τ)h(τ) dτ =∫ eiωt e−iωτh(τ) dτ∫



Convolution

Definition:

f(t) ∗ h(t) = f(τ)h(t − τ) dτ
−∞

∞

∫



Convolution

Pictorially

f(t)

h(t)

Definition: f(t) ∗ h(t) = f(τ)h(t − τ) dτ
−∞

∞

∫



Convolution

τ

h(t−τ) f(t)



Convolution

Consider the boxcar function (box filter):
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Convolution

This function windows our function f(t)
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Convolution

This particular convolution smooths out some of the 
high frequencies in f(t).

f(t)∗g(t)

f(t)



Sampling Function

A Sampling Function or Impulse Train is defined by:


where Δt is the sample spacing.

Δt

ST(t) = δ(t − kΔt)
k=−∞

∞

∑



Sampling Function

The Fourier Transform of the Sampling Function is 
itself a sampling function.

The sample spacing is the inverse.

S
Δt (t) ⇔ S 1

Δt
(ω)



Convolution Theorem

The convolution theorem states that convolution in 
the temporal domain is equivalent to multiplication in 
the frequency domain, and viceversa.

f(t) ∗ g(t) ⇔ F(ω) ⋅ G(ω)

f(t) ⋅ g(t) ⇔ F(ω) ∗ G(ω)



Convolution Theorem

This powerful theorem can illustrate the problems 
with our point sampling and provide guidance on 
avoiding aliasing.


Consider: f(t)⋅SΔt(t)

f(t)

Δt



Convolution Theorem

What does this look like in the Fourier domain?

F(ω)S(ω)

1/(Δt)



Convolution Theorem

In Fourier domain we would convolve

F(ω)

1/(Δt)

S(ω)

S(ω)*F(ω)



Aliasing

What this says, is that any frequencies greater 
than a certain amount will appear intermixed with 
other frequencies.

In particular, the higher frequencies for the copy at 
1/Δt intermix with the low frequencies centered at 
the origin.



Aliasing and Sampling

Note, that the sampling process introduces 
frequencies out to infinity.

We have also lost the function f(t), and now have 
only the discrete samples.

This brings us to our next powerful theory.



Sampling Theorem

The Shannon Sampling Theorem:

A band-limited signal f(t), with a cutoff frequency 
of λ, that is sampled with a sampling spacing of Δt 
may be perfectly reconstructed from the discrete 
values f[nΔt] by convolution with the sinc(t) 
function, provided the Nyquist limit: λ<1/(2Δt)

Why is this?

The Nyquist limit will ensure that the copies of F(ω) 
do not overlap in the frequency domain.

We can completely reconstruct or determine f(t) 
from F(ω) using the Inverse Fourier Transform.



Sampling Theory

In order to do this, we need to remove all of the 
shifted copies of F(ω) first.

This is done by simply multiplying F(ω) by a box 
function of width 2λ.

F(ω)S(ω)

−λ λ1/(Δt)
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Sampling Theory

So, given f[nΔt] and an assumption that f(t) does 
not have frequencies greater than 1/(2Δt), we can 
write the formula:


f[nT] = f(t)∙SΔt(t) ⇔ F(ω)∗SΔt(ω)


F(ω) = (F(ω)∗SΔt(ω))∙Box1/(2Δt)(ω)

therefore,


f(t) = f[nΔt]∗sinc(t)

http://195.134.76.37/applets/AppletNyquist/Appl_Nyquist2.html

http://www.thefouriertransform.com/pairs/box.php


