Algebra Lineare ed Elementi di Geometria Matematica per l'Economia e la Statistica 2 $A.A.\ 2023/24$ Prova scritta del 16.01.2024

Cognome	Nome							

(1)	(5	punti)	Si	dia	la	definizione	di	base	di	uno	spazio	vettoriale	V	su	un	campo	K	e e	li ir	ıdiper	ndenza	lineare	e di	γ
	vet	tori v_1 ,	,	v_n	$\in V$	7.																		

Si enunci e si dimostri il Teorema di Dimensione per applicazioni lineari.

(2) Sia $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da

$$f\left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 2x_1 + x_2 + 3x_3 \\ x_2 + 2x_3 \\ 2x_1 - x_2 - x_3 \end{array}\right).$$

(a) (2 punti) Si scriva la matrice $A = M_{\mathcal{E}}^{\mathcal{E}}(f)$ di f nella base canonica \mathcal{E} di \mathbb{R}^3 .

(b) (4 punti) Si determinino la dimensioni di ker f e imf e delle loro basi. Si esibisca un vettore v che appartiene a ker $f \cap \text{im} f$.

(c) (3 punti) Si trovi $\alpha \in \mathbb{R}$ tale per cui il sistema lineare $A \cdot X = \begin{pmatrix} 1 + \alpha \\ 3 \\ -4 \end{pmatrix}$ sia compatibile e si trovi la sua generica soluzione.

(3) Si consideri la matrice

$$A = \left(\begin{array}{ccc} -2 & 9 & -12 \\ 0 & 1 & 0 \\ 1 & -3 & 5 \end{array}\right).$$

(a) (4 punti) Si determini il polinomio caratteristico di $L_A : \mathbb{R}^3 \to \mathbb{R}^3$ e il suo spettro.

(b) (5 punti) Si trovi una base \mathcal{B} di autovettori per L_A . Si calcolino le matrici di cambio di base $M_{\mathcal{E}}^{\mathcal{B}}(L_A)$ e $M_{\mathcal{B}}^{\mathcal{E}}(L_A)$ dove \mathcal{E} è la base standard di \mathbb{R}^3 .

- (4) (a) (3 punti) Si determinino delle equazioni parametriche della retta piana $r \subset \mathbb{A}^2_{\mathbb{R}}$ tale che:

 r sia parallela alla retta piana $s \subset \mathbb{A}^2_{\mathbb{R}}$ di equazione cartesiana x+2y=1;

 r passi per il punto Q=(1,-2).

(b) (5 punti) Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ si considerino le due rette r ed s:

$$r: \begin{cases} x = 1 + t \\ y = 1 - t \\ z = -t \end{cases} \quad s: \begin{cases} x + z = 2 \\ x - y = -1 \end{cases}$$

Si dica se r ed s sono incidenti, parallele, o sghembe.

Se le rette sono incidenti o parallele, si determini un piano ${\cal H}$ che le contiene entrambe.

Se sono sghembe, si determinino due piani paralleli H_r ed H_s tali che $r \subset H_r$ e $s \subset H_s$.