Introduction

Numbering Systems

Introduction

One of the most important factors in embedded control is determining the computing time
for a given task. Because embedded control has to cope with its tasks in a given and fixed
amount of time, we call this “Real-Time Computing”. And, as you know, time goes very
quickly. If the device is also responsible for control actions, such as sampling sensor signals,
deviation control and adjusting actuator output signals then the term “Real-Time Control” is
used.

Therefore, one of the characteristics of a processor is its ability to do mathematical
calculations in an optimal and efficient way. In recent years, the size of mathematical
algorithms that have been implemented in embedded controller units has increased
dramatically. Just take the number of pages for the requirement specification for one of the
various electronic control modules for a passenger car:

e 1990: 50 pages,
e 2000: 3100 pages (Source: Volkswagen AG)

So, how does a processor operate with all these mathematical calculations? And, how does
the processor access and process data?

You probably know that the ‘native’ numbering scheme for a digital controller is binary
numbers. Unfortunately, all process values are either in the format of integer or real
numbers. Depending on how a processor deals with these numbers in its translation into
binary numbers, we distinguish between two basic types of processor core:

e Floating-Point Processors
o Fixed-Point Processors

This chapter will start with a brief comparison between the two types of processor.

After a brief discussion about binary numbers, we will then look into the different options to
use the Fixed-Point unit of the F2833x. It can perform various types of mathematical
operations in a very efficient way, using only a few machine clock cycles.

However, most of today’s numerical simulation systems, such as MATLAB and Simulink
from The Mathworks Corp., operate on Floating-Point numbers. If such a simulation project
is later implemented in a Fixed-Point microcontroller, a set of library functions is used to
operate on Floating-Point numbers. The result will be a noticeably slower performance of
such a system. But not so for the F2833x! This family of devices have an additional
Floating-Point hardware unit, which can directly operate on Floating-Point numbers!

A second option for the Fixed-Point part of the F2833x is called “l1Q-Math”. Texas
Instruments provides a library that uses the internal hardware of the C28x in the most
efficient way to operate with 32bit Fixed-Point numbers. Taking into account that most
process data usually do not exceed a 16-bit resolution, the library gives enough headroom for
advanced numerical calculations. The latest version of Texas Instruments “IQ-Math”
Library can be found with literature number “SPRCO087” at www.ti.com. We will discuss this
library in more detail in Chapter 17.

F2833x - Numerical Systems 4-1

http://www.ti.com/�

Module Topics

Module Topics

NUMDEEING SYSTEMS ...ttt bbb bbbttt bbbt een et 4-1
L] oo 001 1T) o SRS 4-1
T T LU T o] (oSS 4-2
Floating-Point, Integer and FIXed-POINt.........ccccveiviiiieiirnse s 4-3

PO CES SO TYPES ittt b et e etk e e bt et e e be e 4-4
IEEE-754 Floating-Point FOIMALccccviiiiiiieeie st ettt sne e e s 4-5
INtEGET NUMDEE BASICSc.vitiitiiiieiie ettt sttt b e bbbt ne e b e b b sbesneeneas 4-8

Two’s Complement rePreSENTALIONc.oiiiiiiiieee et b 4-8

Binary MUIIPHCAIIONciiiie et sb bbb 4-8
BINAIY FFACLIONS ...ttt bbbttt bbb bttt et et sbesbe b beenes 4-10

Multiplying Binary FraCtIONS.ccoiiiiiiiieiie ettt s 4-10
B LT (O I o 1= SRS 4-12

Fractional DAta iN C......ooveiiiiiiiii et b ettt 4-15
Lab4: Fixed-Point and FIoating-POoiNt...........cccviriiiiiiincine e 4-16

ODJECLIVE ...ttt b et bt bbbt b e bbb n bttt bt 4-16

PIOCEUUIE ...ttt bbbt bbbt b ettt b bbbttt e bttt ne st 4-16

Open Files, Create ProjECt FIlEccvvv v nre s eneas 4-16

BUIID 8N LOAA.c.eeviieiiciiie ettt bbb 4-19

L0Ad COUE INEO TAIGELveieeiie ettt ettt b e bbbt e et bbb b eneenes 4-20

Test the FiIXed-Point SOIULIONoviiiiiii s 4-20

FIOAtiNG-POINT LIDFATY ..o e bbb 4-22

FIOAtiNG-POINT HAMAWAIE.......c.eieiiiie ittt et bbb 4-24

SUMIMAIY ...ttt he bt bt e bt e s bt eh e eh b e s b e e ekt e ebe ekt e Re e e Re e she e ebe e abe et e enbeenbennee e 4-26

4-2 F2833x - Numerical Systems

Floating-Point, Integer and Fixed-Point

Floating-Point, Integer and Fixed-Point

All processors can be divided into two groups, “Floating-Point” and “Fixed-Point”.
However, recent processor designs, such as the F2833x cover both numerical schemes. The
core of a Floating-Point processor is a hardware unit that supports Floating-Point operations
according to the international standard IEEE-754. Intel’s x86-family of Pentium processors
is probably the most popular example of this type. Floating-Point processors are very
efficient when operating with Floating-Point data and allow a high dynamic range for
numerical calculations. They are not so efficient when it comes to control tasks (bit
manipulations, input/output control, and interrupt response) and they are usually more
expensive than their Fixed-Point counter parts.

Floating-Point, Integer and Fixed-Point

¢ Two basic categories of processors:
+ Floating-Point
+ Integer/Fixed-Point

¢ What is the difference?

¢ What are advantages /
disadvantages ?

¢ Real-Time Control:
+« Most microcontrollers are Fixed-Point!

+ F2833x supports both worlds in
hardware!

4-2

Fixed-Point Processors are based on internal hardware that supports operations with integer
data. The Arithmetic Logic Unit (ALU) and in case of a Digital Signal Controller (DSC), the
hardware multiply unit expects data to be in one of the Fixed-Point format data types. There
are limitations in the dynamic range of a Fixed-Point processor, but they are inexpensive.

But what happens, when we write a program for a Fixed-Point processor in C and we declare
a Floating-Point data type ‘float” or ‘double’? The answer is that library functions are
provided to support this data type on a Fixed-Point machine. However, these standard ANSI-
C functions consume a lot of computing power. If we take into account the time constrains in
a real time project, we just cannot afford to use these data types in most embedded control
applications.

But there is good news: the F2833x offer two solutions to reduce the computing time on
Floating-Point numbers: (1) an optimized library called “l1Q-Math” and (2) an additional
Floating-Point hardware unit. The 1Q-Math Library is a set of highly optimized and high
precision mathematical functions used to seamlessly port Floating-Point algorithms into
Fixed-Point code. In addition, by incorporating the ready to use high precision functions, the

F2833x - Numerical Systems 4-3

Floating-Point, Integer and Fixed-Point

IQ-Math library can significantly shorten an embedded control development time. We will

discuss this in more detail in Chapter 17.

Processor Types

Most of today’s microprocessors fall into the category of Fixed-Point types. There is a wide
range of semiconductor manufacturers that offer devices of this type. Just to name a few (the

list is in random order and not exhaustive):

The world of Floating-Point processors is not as widespread as the Fixed-Point group. The
most famous member is Intel’s Pentium family, but there are also others (again, the list is in

Atmel AVR, ARM7 and Cortex M3 based devices
Freescale HCS12X, MC56F83x, MCF523x
Renesas SH4

Texas Instruments MSP430, TMS320F280xx, Stellaris M3
Infineon XE166, XC878

ST Microelectronics STM32

NEC V850ES / IE2

Fujitsu MB91480

Microchip dsPIC 33FJxx

NXP LPC2900

Toshiba TMP370

Processor Types

¢ Floating-Point Processors

+ Internal Hardware Unit to support Floating-
Point Operations

+ Examples: Intel’s Pentium Series , Texas
Instruments C6000 DSP

+ High dynamic range for numeric calculation
+ Usually more expensive

¢ Integer / Fixed-Point Processors
+ Fixed-Point Arithmetic Unit

+ Almost all embedded controllers are fixed
point machines

+ Examples: all microcontroller families, e.g.
Freescale S12X, Infineon C166, Texas
Instruments MSP430, Atmel AVR

+ Lowest price per MIPS

4-

3

random order and not exhaustive):

Intel x86 Pentium
Freescale MPC556, PowerPC
Texas Instruments C6000, DaVinci , TMS320F2833x

F2833x - Numerical Systems

IEEE-754 Floating-Point Format

IEEE-754 Floating-Point Format

The IEEE Standard for Floating-Point Arithmetic (IEEE-754) is the most widely-used
standard for Floating-Point computation, and is followed by many hardware and software
implementations. Many computer languages allow or require that some or all arithmetic be
carried out using IEEE-754 formats and operations. The current version is IEEE-754-2008,
which was published in August 2008; it includes nearly all of the original IEEE-754-1985
(which was published in 1985) and the IEEE Standard for Radix-Independent Floating-Point
Arithmetic (IEEE-854-1987).

The standard defines:

arithmetic formats: sets of binary and decimal Floating-Point data, which consist of
finite numbers, (including signed zeros and subnormal numbers), infinities, and
special 'not a number' values (NaNs)

interchange formats: encodings (bit strings) that may be used to exchange Floating-
Point data in an efficient and compact form

rounding algorithms: methods to be used for rounding numbers during arithmetic
and conversions

operations: arithmetic and other operations on arithmetic formats

exception handling: indications of exceptional conditions (such as division by zero,
overflow, etc.)

The standard also includes extensive recommendations for advanced exception handling,
additional operations (such as trigonometric functions), expression evaluation, and for
achieving reproducible results.

Standard IEEE-754 Single Precision
Floating-Point

31 30 23 22 0
| s| eeeeeeee | FFFFFFFFFFFFFFFFFFFFFFT
1 bit sign 8 bit exponent 23 bit mantissa (fraction)

Casel: ife=255andf#£0, thenv=NaN

Case2: ife=255andf=0, thenv =][(-1)5]*infinity

Case 3:if 0 <e <255, then v = [(-1)s]*[2(e-127]*(1.f)
Case 4:ife=0and f # 0, then v = [(-1)5]*[2¢120)]*(0.f)
Case5: ife=0andf=0, then v = [(-1)5]*0

Advantage = Exponent gives large dynamic range
Disadvantage = Precision of a number depends on its exponent

In the following slides we will focus on the arithmetic numbering formats only.

F2833x - Numerical Systems 4-5

IEEE-754 Floating-Point Format

32-bit Floating-Point format (C data type “float):
. Sign Bit (S):
= Negative: bit31 =1 /Positive: Bit31=0
. Mantissa (M):

23 _
M=1+m -2 +m, 22+ +my- 22 =1+ m-2"
i=1

= Mantissa is normalized to my = 1; mO will not be stored in memory!

1<M<?2
« Exponent (E):
= 8 Bit signed exponent, stored with offset, OFFSET = +127

o Summary:

E-OFFSET

Example 1:
0Ox 3FEO 0000 = 0011 1111 1110 0000 0000 0000 0000 0000 B
S=0
E=01111111 =127
M =(1).11000 =1+0.5+0.25=1.75
Z =(-1)°*1.75* 2127127 = 1 75
Example 2:
Ox BFBO0O 0000 = 10111111 1011 0000 0000 0000 0000 0000 B
S=1
E=01111111 =127
M =(1).011 =1+ 0.25+0.125 = 1.375
Z =(-1)' *1.375 * 21¥"1%7= .1 375
Example 3:
Z=-25 S=1
25=1.25*2!
1=E - OFFSET
E=128

M=125= (1).01 =1+0.25
Binary Result: 1100 0000 0010 0000 0000 0000 0000 0000 B = 0x C020 0000

4-6 F2833x - Numerical Systems

IEEE-754 Floating-Point Format

The advantage of Floating-Point is its huge dynamic range, which is given by the most
positive exponent (+127, base 2). This exponent plus the maximum mantissa leads to a range
of:

Z=+(1-2%)%21?8 ~ +3.403 x 1038

The resolution of a single precision Floating-Point number is given by the smallest humber
that can be represented in this format:

7 = 2723527126 — 2-149 & 1401 % 107%

It seems that with this dynamic range and resolution we should be able to solve any
mathematical operation. However, when it comes to a simple add operation of a large
number and a very small number, even a Floating-Point device can fail! Look at the
following example forz=x +:

Floating-Point does not solve
everything!

Example: x=10.0 (0x41200000)
+ y= 0.000000240 (0x3480D959)

z=10.000000240 WRONG!

You cannot represent 10.000000240 with
single-precision floating-point

0x412000000 = 10.000000000
10.000000240 « can’t represent!
0x412000001 = 10.000001000

So z gets rounded down to 10.000000000 |

4-5

Such a rounding error can happen, when we have to add a compensation value (small) to a
larger set point value in a closed control loop! The result would be a somewhat sluggish
behavior of our digital controller.

In the second part of this chapter you will learn that Fixed-Point numbers do not show this
behavior, if we limit the dynamic range of the numbers to the expected area of a closed loop
control system. When we use the Texas Instruments 1Q-Math Fixed-Point hardware, it will
add 10.0 and 0.00000024 to give the exact result of 10.00000024! This is a considerable
advantage of Fixed-Point numbers over Floating-Point numbers!

F2833x - Numerical Systems 4-7

Integer Number Basics

Integer Number Basics

Two’s Complement representation

The next slides summarize the basics of the two’s complement representation of signed
integer numbers. You should already be familiar with these schemes from basic lessons on
computer engineering or digital systems. If not, use Wikipedia to update yourself!

Integer Numbering System Basics

¢ Binary Numbers
0110, = (0*8)+(1*4)+(1*2)+(0*1) = 6,4
11110, = (1*16)+(1*8)+(1*4)+(1*2)+(0*1) = 304,

¢ Two’s Complement Numbers
0110, = (0*-8)+(1*4)+(1*2)+(0*1) = 6,,
11110, = (1*-16)+(1*8)+(1*4)+(1*2)+(0*1) = -2,,

4-6

In the signed integer format, the most significant bit (MSB) carries a negative weight of -1. If
the MSB is set, we have to multiply its coefficient representation by -1 (compare example in
the 2™ half of Slide 4-6).

Binary Multiplication

Now consider the process of multiplying two two's complement values, which is one of the
most often used operations in digital control. As with “long hand” decimal multiplication, we
can perform binary multiplication one “place” at a time, and sum the results together at the
end to obtain the total product.

Note: The method shown at the following slide is not the method the F22833x uses to
multiply integer numbers - it is merely a way of observing how binary numbers behave in
arithmetic processes.

The F2833x uses 32-bit operands and an internal 64-bit product register. For the sake of
clarity, consider the example below where we shall investigate the use of 4-bit values and an
8-bit accumulation:

4-8 F2833x - Numerical Systems

Integer Number Basics

Four-Bit Integer Multiplication

0100 4
x 1101 x -3
00000100
0000000
000100
+ 11100

11110100 -12
Accumulator 1 11110100

Data Memory ?

Is there another (superior) numbering system?

In this example, consider the following:
e 4 multiplied by (-3) gives (-12) in decimal.
e The size of the product is twice as long as the input values (4 bits * 4 bits = 8 bits).

o If this product is to be used in a next loop of a calculation, how can the result be
stored back to memory in the same length as the inputs?

= Store back upper 4 Bit of Accumulator? = -1
= Store back lower 4 Bit of Accumulator? => +4
» Store back all 8 Bit of Accumulator? => overflow of length

e Asaresult, scaling of intermediate results is needed!

From this analysis, it is clear that integers do not behave well when multiplied.

The question is: might some other type of integer number system behave better? Is there a
number system where the results of a multiplication have bounds?

The answer is: yes, there is.

F2833x - Numerical Systems 4-9

Binary Fractions

Binary Fractions

In order to represent both positive and negative values, the two's complement process will
again be used. However, in the case of fractions, we will not set the LSB to 1 (as was the
case for integers). When we consider that the range of fractions is from -1 to ~+1, and that
the only bit which conveys negative information is the MSB, it seems that the MSB must be
the “negative ones position”. Since the binary representation is based on powers of two, it
follows that the next bit would be the *“one-half” position, and that each following bit would
have half the magnitude again.

Binary Fractions

1 \ 0 1 1
°

-1 1/2 1/4 1/8

=-1+1/4+1/8 =-5/8

Fractions have the nice property that
fraction x fraction = fraction

Multiplying Binary Fractions

When the F2833x performs an integer multiplication, the process is identical for all oper-
ands, integers or fractions. Therefore, the user must determine how to interpret the results.
As before, consider the 4-bit multiply example:

The input numbers are now split into two parts - integer part (I-“integer”) and fractional part
(Q-“quotient”). These type of Fixed-Point numbers are often called “IQ”-numbers, or for
simplicity sometimes just Q-numbers.

The example below shows 2 input numbers in 11Q3-Format. When multiplied, the length of
the result will add both 1 and Q portions (see also next slide):

11Q3 * 11Q3 = 12Q6

4-10 F2833x - Numerical Systems

Binary Fractions

Four-Bit 1Q - Multiplication

0100 1/2
x 1101 x - 3/8
00000100
0000000
000100
11100
11110100 -3/16

Accumulator 11110100 |

Data Memory 1110 -1/4

4-9

If we store back the intermediate product with the four bits around the binary point we keep
the data format (11Q3) in the same shape as the input values. There is no need to re-scale any
intermediate results!

Advantage: With Binary Fractions we will gain a lot of speed in closed loop
calculations.

Disadvantage: The result might not be the exact one. As you can see from the slide above
we will end up with (-4/16) stored back to data memory. Bits 2* to 2°° are truncated. The
correct result would have been (-3/16).

Recall that the 4-bit input operand multiplication operation is not the real size for the
F2833x, which operates on 32-bit input values. In this case, the truncation will affect bits 2%
to 2°°. Given the real size of process data with, let us say 12-bit ADC measurement values,
there is plenty of room left for truncation.

In most cases we will truncate noise only. However, in some feedback applications like
Infinite Impulse Response (11R)-Filters the small errors can add and lead to a given degree of
instability. It is designer’s responsibility to recognize this potential source of failure when
using binary fractions.

F2833x - Numerical Systems 4-11

The “IQ™-Format

The “1Q”

-Format

So far we have discussed only the option of using fractional numbers with the binary point at
the MSB-side of the number. In general, we can place this point anywhere in the binary
representation. This gives us the opportunity to trade off dynamic range against resolution.

20+2H+ L+ 20+ 20,21+ 22+ 1+ 20

Fractional Representation

31 0
'S 1INLLNN, FRFFFFFFFFFFFFFFFFFFFFF)

32 bit mantissa

“1Q” — Format

“1” = INTEGER - Fraction
“Q” = QUOTIENT - Fraction

A
Disa

dvantage = Precision same for all numbers in an 1Q format
dvantage = Limited dynamic range compared to Floating-Point

4-10
IQ - Examples
11Q3 — Format:
3 0
S, Tff
Most negative decimal number: -1.0 =1.000B
Most positive decimal number: + 0.875 =0.111B
Smallest negative decimal number: -1*2-3 (-0.125) =1.111B
Smallest positive decimal number: 2-3 (+0.125) =0.001B
Range: -1.0....0.875 (= + 1.0)
Resolution: 23
4-11

F2833x - Numerical Systems

The “IQ™-Format

IQ - Examples
13Q1 - Format:

3 0

Most negative decimal number: -4.0 =100.0B

Most positive decimal number: + 3.5 =011.1B

Smallest negative decimal number: -1 * 21 (- 0.5) =111.1B

Smallest positive decimal number: 21 (+0.5) =000.1B
Range: -4.0....+3.5 (= +4.0)

Resolution: 21

-12

1Q - Examples
11Q31 — Format:

31
‘ S, Tff Tfff ffff £fff ffff £ frff £Fff

Most negative decimal number: -1.0
1.000 0000 0000 0000 0000 0000 0000 0000 B

Most positive decimal number: ~ + 1.0
0.111 1111 1111 1111 1111 1111 1111 1111 B

Smallest negative decimal number: -1*2-31
1.111 1111 1711 12171 1111 1111 1111 1111 B

Smallest positive decimal number: 2-31
0.000 0000 0000 0000 0000 0000 0000 0001 B

Range: -1.0 (+1.0)
Resolution: 231

-13

F2833x - Numerical Systems

The “IQ™-Format

IQ - Examples
18Q24 — Format:

31
'S 111 1111, FFFF FFFF FEEF FEFFE FEFF |

Most negative decimal number: -128
1000 0000. 0000 0000 0000 0000 0000 0000 B

Most positive decimal number: ~ + 128
0111 1111. 1111 1111 1111 1111 1111 1111 B

Smallest negative decimal number: -1*2-24
1111 1117. 1111 11171 11171 1111 1111 1111 B

Smallest positive decimal number: 2-24
0000 0000. 0000 0000 0000 0000 0000 0001 B

Range: -128 (+128)
Resolution: 224

4-14

Now let us resume the failing Floating-Point example from the beginning of this module; 1Q-
Math can do much better:

|Q-Math can do better!

18Q24 Example: x=10.0 (OxOA000000)
+ y= 0.000000240 (0x00000004)

z = 10.000000240 (Ox0OA000004)

Exact Result (this example)

4-14 F2833x - Numerical Systems

The “IQ™-Format

Fractional Data in C

If by now you are convinced that fractional data has advantages over other number
representations, the next question is, how do we code fractions in an ANSI-C environment?
The ANSI-C standard does not define a dedicated data type, such as “fractional”. There is a
new ANSI-standard under development, called “embedded C”, which will eventually use
this type. For now we can use the following trick, as shown in Slide 4-16:

How is a fraction coded?

~1 — ~ 32K —— 7FFF ——

Yo =+ 16K = 4000 =

0 -+ = 0 — 0000 ——
*32768

RV _16K - C000 —+

-1 - 32K - 8000 ——

Fractions Integers Hex

¢ Example: represent the fraction number 0.707

void main(void)

int coef = 32768 * 707 / 1000;

Fractional vs. Integer

¢ Range

+ Integers have a maximum range
determined by the number of bits

+ Fractions have a maximum range of =1
¢ Precision
+ Integers have a maximum precision of 1

+ Fractional precision is determined by
the number of bits

F2833x - Numerical Systems 4-15

Lab4: Fixed-Point and Floating-Point

Lab4: Fixed-Point and Floating-Point

Objective

The objective of this lab is to practice and benchmark the different options for the F2833x in
terms of numerical systems. We have already discussed that the F2833x supports both Fixed-
Point and Floating-Point numbers in hardware. In the following lab we will use the simple
code example from Chapter 3 and compile it for the different numbering systems. To
benchmark the results, we will use a time measurement tool, called “Profiler”, which is part
of Code Composer Studio. The following procedure will summarize all steps discussed in
this chapter.

Lab4: Fixed-Point and Floating-Point

¢ Benchmark Multiply Operation
& k=i%*i

¢ Test setup:

1. Integer multiply operation

2.
3.

Floating-Point multiply by Floating-Point Library

Floating-Point multiply by Floating-Point
Hardware unit

Benchmark result:
Fixed-point Floating-Point - Floating-Point-

Library Hardware
code size (words) 3 89 9
clock cycles (6.67 ns) 3 112 5

Procedure

Open Files, Create Project File

1. Using Code Composer Studio Version 4, create a new project, called Lab4.pjt in
C:\DSP2833x_V4\Labs (or another working directory used during your class, ask your
instructor for specific location!)

4-16 F2833x - Numerical Systems

Lab4: Fixed-Point and Floating-Point

& New CCS Project

CCS Project
Create a new CCS Project.

Select a “C2000” project type:
& New CCS Project

Select a type of project
Select the platform and corfigurations you wish to deploy on

& Mew CCS Project

Additional Project Settings
Define the inter-project dependencies, f any.

Finish the project design by adding the following parameters:

F2833x - Numerical Systems 4-17

Lab4: Fixed-Point and Floating-Point

& New CCS Project

CCS Project Settings

selectfiter- 7] [TMS320F28335 7]
e
mvs23 [z

<automatic:

e Define the size of the C system stack. In the project window, right click at project
“Lab4” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

e In the category “C/C++ Build”, “C2000 Compiler”, “Runtime Model Options” scroll
down to “Specify Floating port support” and select “softlib”:

4-18 F2833x - Numerical Systems

Lab4: Fixed-Point and Floating-Point

2. Open the file “main.c” from project “Lab3” and save it as “lab4_1.c” in subfolder
“Lab4”:

= File = Open File... = “main.c”
= File & Save As... = “lab4 _1.c”

Build and Load

3. Click the “Rebuild Active Project” button or perform: Project = Rebuild Active
Project (Alt +Shift + P) and watch the tools run in the build window. If you get errors,
debug as necessary before you continue.

Create a Target Configuration

4, Before we can download the machine code into the F28335, we have to define the
“target configuration”.

=>» Target = New Target Configuration

@ MNew Tamget Configuration
Target Configuration
Create a new Tanget Configuration file.

File name: |F23335)(D 5100v2

[V Use ghared location

Location |C:\DSF‘2333K_\|’4\Iab5 Eruwse...l
covs_|

Type a name for the target configuration file in box “File name”. You can use any
name here but it makes sense to indicate the JTAG-emulation interface, which we will
use for the download later. In case of the Peripheral Explorer Board we use the
XDS100V2, so let us call the file “F28335_XDS100V2. The suffix “.ccxml” will be
added automatically.

This time mark “use shared location, because this will allow us to re-use this
configuration in all future projects.

In the window that appears next, select the emulator “Texas Instruments XDS100v2
USB Emulator” via the “Connection” pull-down list and select the “TMS320F28335”
device checkbox.

Save and close the Target Configuration File “F28335_XDS100V2.ccxml”.

In the “Target Configurations” window, right click at “F28335_XDS100V2.ccxml”
and select “Set as Default™:

F2833x - Numerical Systems 4-19

Lab4: Fixed-Point and Floating-Point

B CAC s — labd_1 < - Code Compons Studio (Licennad

File Edt Vew Movigate Frojest Tookh Taget o)

Load Code into Target

5. Load the machine code into the device. Click:

=> Target = Debug Active Project

Or use the “Debug” icon:
At the top right corner of CCS, switch into the “Debug” perspective.
A blue arrow at the left hand side of window “lab4_1.c” should point to the “for” —

line. This is an indication that the machine code has been downloaded properly into
the F28335.

Test the Fixed-Point solution

6. Reset the DSP by clicking on =» Target =» Reset = Reset CPU, followed by =» Tar-
get =» Restart

7. Now, benchmark the results. In the “Disassembly” window, right click and enable
“Show Source”, Inspect the code-line, which we used to multiply (k =i * i;)

10 k= 1i*i;
CEDWSLS main$3SE, C5L2, CSDWSLS main$23E:
0x009080: | 2D0B MOV T, @8
0x009081 1208 ACC, T
0x009082 AL

The C line “k = i*i” has been translated into a set of three assembly language
instructions.

e The first line moves a 16-bit value from data memory (to be exact: from offset
address 8) to internal register ‘“T’. Obviously, offset 8 has been used for our
global variable “i’. The offset address 8 corresponds to a data page, which has
been initializes earlier (MOVW DP, # 0x0300). The hexadecimal number
0x0300 is used as upper 16 - bit part of the 22 - bit physical address, whereas
the offset 8 is the lower 6 bit part. If you do the math, you will get address
0xC008, the same address shown in the watch window for variable “i’.

e Line 2 multiplies the value in register T by the value from the same data
memory location (variable ‘i’). The 32-bit product is stored in register
“Accumulator (ACC)”.

4-20 F2833x - Numerical Systems

Lab4: Fixed-Point and Floating-Point

e Line 3 stores the lower 16-bits of the 32-bit product (register “Accumulator-
low”, AL) back into memory at address 9 of the active page. Obviously, address
9 at page 0x300 is the location of global variable ‘k’.

Benchmark #1 (code-size):

As you can see from the numbers at the left hand side, our code shippet “k =i * i”
occupies the code memory addresses 0x9080 to 0x9082, which gives a code size of 3
words. (Note: the absolute address numbers might be different on your CCS-session;
however the size should be identical).

Benchmark #2 (execution speed):

To measure the number of execution clock cycles, we can use the CCS “Clock Profi-
ler”:

=» Target = Clock = Enable

=» Target =» Clock = View

A small yellow profiler clock will appear in the lower right corner of CCS.

|{E}:3 J

This is our time measurement system. Using “Step Into” (F5), run the code until you
reach the line “k = i * i”. The number to the right of the clock gives the number of
elapsed clock cycles. To clear this number, double click on the yellow clock icon.

Now, with the yellow arrow still on line “k =i * i”, perform a single “Step Into” (F5).
The profiler clock should show a “3’, which indicates that one execution of the line “k
=i * i” took 3 clock cycles. This result corresponds to the three machine code
instructions, which we inspected above. Each instruction is executed in 1 CPU clock

cycle.

| Writable | Smart Insert 8:1 | (G J

Result 1 (Fixed-Point math):

e Code size: 3 words
e Clock cycles: 3

F2833x - Numerical Systems 4-21

Lab4: Fixed-Point and Floating-Point

Floating-Point Library

8. Now let us change the code from Fixed-Point to Floating-Point. In the “C/C++
Perspective” of project “Lab4” in file “lab4_1.c”, change the data type of ‘k’ from
“unsigned int” to “float™.

Add a new global variable “float f = 1.0;”.
Change the code line “k =i *i;” into “k = f * f;”,
After this line but still inside the for-loop, add a new line “f =f + 1.0;”
Save the file as “Lab4_2.c”. Note: The file is added automatically to project “Lab4”.
Exclude “Lab4_1.c” from the build. In the project window, right click on “Lab4 1.c”
and select “Exclude from Build”. This technique allows us to keep more than one
source code file in the project tree and we can change between the different files. Note
the crossed out icon for “Lab4_1.c”, which indicates that this file has been excluded:
TN
B-1c= Lab4 [Active - Debug]
(} Binaries
é Includes
[Z> Debug
Ef lab4_1.c [Excluded from Build]
#-[g labd_2c
i) 28335_RAM_Ink.cmd
9. Rebuild the project and reload the new code:
=> Target =» Debug Active Project

10. Now, benchmark the results. Change into “Debug” perspective. In the “Disassembly
Window”, right click and enable “Show Source". Inspect the code-line, which we used
to multiply f by f:

==% Digassembly (C3OWSLS main$23E) X
Enter location here - ||@ i | b | ||¢¢' W
11 | k= £*£; -
CEDWSLS main$3SB, CS5L2, C3DWSLS main$23E:

0x00911D: | 06802 MOVL ACC, @2

0x00911E: | 1E42 MOVL *-5P[2],ACC

0x00911F: | 0602 {0VL ACC, B2

0x009120: | 76403078 LCR FS&EMEY J

0x009122: | 7&1F0300 OV DF, $0x0300

0x009124: | 1E04 MOV B4, ACC

12 £=f£+ 1.0; -

- TR _ _ ;lj
The Floating-Point line “k = f * f” has been translated in a series of 6 assembly
language instructions. This is because the variables are now of Floating-Point type.

4-22 F2833x - Numerical Systems

Lab4: Fixed-Point and Floating-Point

e The 1* line reads a 32 bit value from data memory offset 2 into register ACC.
This is the Floating-Point variable ‘f” as the first factor.

e Next and in preparation of the function call in line 4, this value is passed as an
input parameter back to stack memory [SP-2].

e Line 3 reads once more variable ‘f” and stores it again in register ACC. Register
ACC is used to pass the 2™ multiply factor in the function call in line 4.

e Line 4 calls a Floating-Point multiply function “FS$$MPY”. The assembly
instruction “LCR-Long Call with Return” calls a function from library
“rts2800_ml.lib”, which performs a Floating-Point multiply on a Fixed-Point
device.

e The last two lines are used to store the result of the function call, which is
returned in register ACC, into memory address 4 of the active data page (address
of variable ‘k’).

Benchmark #3 (code-size, Floating-Point library function):

As you can see from the numbers at the left hand side, our code-snippet “k = f * f”
occupies the code memory addresses 0x911D to 0x9124, which gives a code size of 8
words. (Note: the absolute address numbers might be different on your CCS-session;
however the size should be identical). However, this result is not the full story! For
code size we have to add the size of function “FS$$MPY”. When you use “Assembly
Single Step Into” until you reach the instruction “LCR” and continue with another
assembly single step, CCS will open another disassembly window with the
instructions of function “FS$$MPY™. If you scroll down this window, you will find an
instruction “LRETR”, which is the return instruction of this function. The difference
between start- and end- address (0x90C9 - 0x9078) is the size of function
“FS$SMPY”.

Result for code size: 8 + 81 = 89 words.

Benchmark #4 (execution speed, Floating-Point library):

To measure the number of clock cycles for one Floating-Point multiplication, we can
use the same profiler steps as we did for the integer code:

From the beginning of “main()”, single step until you reach the line “k = f * . Clear
the profile clock counter (left double click) and perform another source single step
(F5). The result is: 112 clock cycles. Note: The numbers were measured with C
compiler - and library version 5.2.3. They might be different on your installation, but
they should be in the same sort of range.

Witable Smart Insett | 12:1 ©&om |

Result for Floating-Point library:

e Code size: 89 words
e Clock cycles: 112

F2833x - Numerical Systems 4-23

Lab4: Fixed-Point and Floating-Point

Floating-Point Hardware

As a final step we will use the F2833x Floating-Point hardware unit and replace the Floating-
Point library function “FS$$MPY (). This should reduce both the code size and the number
of clock cycles back to the integer results.

11.

In the “C/C++” perspective and in the project window, right click at project “Lab4”
and select “Properties”. In the “Configuration Settings” select “Tool Settings” —
“C2000 Compiler” and “Runtime Model Options” scroll down to “Specify floating

point support” and select “fpu32”.

) Properties for Lab4

ype fiter teat

- Builders

C/C++ Build

C/C++ Documentation
C/C++ File Types

i C/C++ Indexer

. Project References
Rifactaring Histary

Add the Floating-Point support function to your project:

Configuration: | Debug

I [=l Y
C/C++ Build .
|- Active config.
Project Type: 22000 =

=] Manage

~Confiquration Settings

(2 Basic Settings:
£ C2000 Compiler
(2 Basic Options:
(2 Language Options:
----- (2 Parser Preprocessing Options
(2 Predsfined Symbols:
{2 Include Options:
----- (2% Diagnostic Options:
{2 Runtime Modsl Options:
(2 Opimizations:
----- (2 Entry/Bxit Hook Options
(2 Feedback Options:
(22 Library Function Assumptions
----- (2 Assembler Options:
(2 File Typs Specfier:
{2 Directory Specifier
----- (22 Default File Extensions:
{2 Command Fiss:
B C2000 Linker

(2 Basic Options

Teol Settings | Buid Settings | Buid Steps | Eror Parsers | Binary Parser | Environment: | Macros |

1 Command Fle Pranmeassin: = [| Optimize for code size (-opt_for_space, ms)

Assembler fill value for data section (~asm_data_fil} |
™ Compile for power profiling (~profile power)

I™ Disable C28« fast branch instructions (~no_fast_branch, -me)
¥ Use largs memory mode! (arge_memory_model, -mi)

™ Unified memery (~unified_memory, mt)

™ Dont generate RPT instructions (-na_rpt, -mi)

Allow reassociation of FP arthmetic (-fp_reassoc) |
I Place each function in a separate subsection {-gen_func_subsections, -ma)

Assembler ill value for code section (-asm_code fil) [
™ C2XLP source compatibillty (~c2dp_src_compatible, m20)
Optirmize for speed {-opt_for_speed.) |
™ Mo DP load optimization (~disable_dp_load_opt, md)

Speciy CLA support (~cla_suppar) | =
Specily floating paint support {-float_support) B
Speciy max number of repefiions in a RPT instruction (-mt_threshold) (0-258] [

=

]

Restore Defauits Apply

Cancel

12.

Rebuild the project and reload the new code:

=>» Target = Debug Active Project

13.

by f:

Enter location here

[l

= B s

11

W 0x00904C:
0x00904E:
0x009050:
0x009052:
0x009053:
12

k = I*£;

C3DWSLS main$33B,

C:$L2 ; C3DWSLS main$23E:

Sl

Now, benchmark the results. Again, in the “Debug Perspective” and the “Disassem-
bly” window enable Show Source”. Inspect the code lines, which we use to multiply f

F2833x - Numerical Systems

Lab4: Fixed-Point and Floating-Point

The Floating-Point line “k = f * f” has been translated in a series of 5 assembly
instructions, which use the Floating-Point hardware unit:

The 1% line moves a 32-bit value from data memory offset location 2 into Floating-
Point register ROH. This is float variable “f” as the first multiplication factor.

The 2™ line moves the same value into Floating-Point register R1H. This is our 2™
factor.

The next line is a Floating-Point multiply operation of ROH multiplied by R1H. The
product is stored in register ROH.

Line 4 is a “no operation” instruction. It is used to compensate a clock difference
between the Floating-Point unit and the main unit.

The last line stores the product (ROH) back in data memory at offset address 4 of the
active data page.

Benchmark #5 (code-size, Floating-Point hardware):

As you can see from the numbers at the left hand side, our code-snippet “k = f * f”
occupies the code memory addresses 0x904C to 0x9053, or 9 words.

Benchmark #6 (execution speed, Floating-Point hardware):

Using the profiler, measure the number of clock cycles for one Floating-Point
multiplication. From the beginning of “main()”, single step until you reach the line “k =

f* 7. Clear the clock counter and do another source single step. The result is 5!

Witable Smat Insert | 12:1 &5 |

F2833x - Numerical Systems 4-25

Lab4: Fixed-Point and Floating-Point

Summary

In Lab4 we benchmarked the 3 possible solutions that can be used to multiply two values.
For a Fixed-Point processor the native numbering scheme is integer. As you can see from the
numbers, both code size and clock cycles are minimal; we can generate an optimal solution
for real-time control, where speed always has the highest priority.

Fixed- Floating-Point- Floating-Point-
Point Library Hardware
code size (words) 3 89 9
clock cycles (6.67 ns) 3 112 5

However, if the software designer decides to use Floating-Point data types for variables k
and f, the library function will dramatically increase both code size and number of clock
cycles. Such a solution could lead to code, which could well be too slow for use in real-time
control. For most microcontrollers this is the end of the road...

Not so for the F2833x!

If we enable Floating-Point hardware support, we easily can use Floating-Point data types
with approximately the same speed factor as in Fixed-Point! The code size is a little bit
larger than for Fixed-Point numbers, but in most cases this does not matter.

To resume the discussion: With an F2833x device, the designer can use both worlds, Fixed-
and Floating-Point, with the same code performance!

4-26 F2833x - Numerical Systems

	Numbering Systems
	Introduction
	Module Topics
	Floating-Point, Integer and Fixed-Point
	Processor Types

	IEEE-754 Floating-Point Format
	Integer Number Basics
	Two’s Complement representation
	Binary Multiplication

	Binary Fractions
	Multiplying Binary Fractions

	The “IQ”-Format
	Fractional Data in C

	Lab4: Fixed-Point and Floating-Point
	Objective
	Procedure
	Open Files, Create Project File
	Build and Load
	Load Code into Target
	Test the Fixed-Point solution
	Floating-Point Library
	Floating-Point Hardware
	Summary

