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Introduction  
One of the most important factors in embedded control is determining the computing time 
for a given task. Because embedded control has to cope with its tasks in a given and fixed 
amount of time, we call this “Real-Time Computing”. And, as you know, time goes very 
quickly. If the device is also responsible for control actions, such as sampling sensor signals, 
deviation control and adjusting actuator output signals then the term “Real-Time Control” is 
used. 

Therefore, one of the characteristics of a processor is its ability to do mathematical 
calculations in an optimal and efficient way. In recent years, the size of mathematical 
algorithms that have been implemented in embedded controller units has increased 
dramatically. Just take the number of pages for the requirement specification for one of the 
various electronic control modules for a passenger car:  

• 1990: 50 pages, 
• 2000: 3100 pages    (Source: Volkswagen AG) 

So, how does a processor operate with all these mathematical calculations? And, how does 
the processor access and process data?  

You probably know that the ‘native’ numbering scheme for a digital controller is binary 
numbers. Unfortunately, all process values are either in the format of integer or real 
numbers. Depending on how a processor deals with these numbers in its translation into 
binary numbers, we distinguish between two basic types of processor core: 

• Floating-Point Processors 
• Fixed-Point Processors 

This chapter will start with a brief comparison between the two types of processor. 

After a brief discussion about binary numbers, we will then look into the different options to 
use the Fixed-Point unit of the F2833x. It can perform various types of mathematical 
operations in a very efficient way, using only a few machine clock cycles. 

However, most of today’s numerical simulation systems, such as MATLAB and Simulink 
from The Mathworks Corp., operate on Floating-Point numbers. If such a simulation project 
is later implemented in a Fixed-Point microcontroller, a set of library functions is used to 
operate on Floating-Point numbers. The result will be a noticeably slower performance of 
such a system. But not so for the F2833x! This family of devices have an additional 
Floating-Point hardware unit, which can directly operate on Floating-Point numbers! 

A second option for the Fixed-Point part of the F2833x is called “IQ-Math”.  Texas 
Instruments provides a library that uses the internal hardware of the C28x in the most 
efficient way to operate with 32bit Fixed-Point numbers. Taking into account that most 
process data usually do not exceed a 16-bit resolution, the library gives enough headroom for 
advanced numerical calculations.  The latest version of Texas Instruments “IQ-Math” 
Library can be found with literature number “SPRC087” at www.ti.com. We will discuss this 
library in more detail in Chapter 17. 

        Numbering Systems 

http://www.ti.com/�
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Floating-Point, Integer and Fixed-Point 
All processors can be divided into two groups, “Floating-Point” and “Fixed-Point”. 
However, recent processor designs, such as the F2833x cover both numerical schemes. The 
core of a Floating-Point processor is a hardware unit that supports Floating-Point operations 
according to the international standard IEEE-754.  Intel’s x86-family of Pentium processors 
is probably the most popular example of this type. Floating-Point processors are very 
efficient when operating with Floating-Point data and allow a high dynamic range for 
numerical calculations. They are not so efficient when it comes to control tasks (bit 
manipulations, input/output control, and interrupt response) and they are usually more 
expensive than their Fixed-Point counter parts.  
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Floating-Point, Integer and Fixed-Point
 Two basic categories of processors:

 Floating-Point  
 Integer/Fixed-Point

 What is the difference?
 What are advantages /  

disadvantages ?
 Real-Time Control:  

 Most microcontrollers are Fixed-Point!
 F2833x supports both worlds in 

hardware! 

 

Fixed-Point Processors are based on internal hardware that supports operations with integer 
data. The Arithmetic Logic Unit (ALU) and in case of a Digital Signal Controller (DSC), the 
hardware multiply unit expects data to be in one of the Fixed-Point format data types. There 
are limitations in the dynamic range of a Fixed-Point processor, but they are inexpensive.  

But what happens, when we write a program for a Fixed-Point processor in C and we declare 
a Floating-Point data type ‘float’ or ‘double’? The answer is that library functions are 
provided to support this data type on a Fixed-Point machine. However, these standard ANSI-
C functions consume a lot of computing power. If we take into account the time constrains in 
a real time project, we just cannot afford to use these data types in most embedded control 
applications. 

But there is good news: the F2833x offer two solutions to reduce the computing time on 
Floating-Point numbers: (1) an optimized library called “IQ-Math” and (2) an additional 
Floating-Point hardware unit. The IQ-Math Library is a set of highly optimized and high 
precision mathematical functions used to seamlessly port Floating-Point algorithms into 
Fixed-Point code. In addition, by incorporating the ready to use high precision functions, the 
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IQ-Math library can significantly shorten an embedded control development time. We will 
discuss this in more detail in Chapter 17.    

Processor Types 
Most of today’s microprocessors fall into the category of Fixed-Point types. There is a wide 
range of semiconductor manufacturers that offer devices of this type. Just to name a few (the 
list is in random order and not exhaustive): 

• Atmel AVR, ARM7 and Cortex M3 based devices 
• Freescale HCS12X, MC56F83x, MCF523x 
• Renesas SH4 
• Texas Instruments MSP430, TMS320F280xx, Stellaris M3 
• Infineon XE166, XC878 
• ST Microelectronics STM32 
• NEC V850ES / IE2 
• Fujitsu MB91480 
• Microchip dsPIC 33FJxx 
• NXP LPC2900 
• Toshiba TMP370 
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Processor Types
 Floating-Point Processors

 Internal Hardware Unit to support Floating-
Point Operations  

 Examples:  Intel’s Pentium Series , Texas 
Instruments C6000 DSP

 High dynamic range for numeric calculation
 Usually more expensive

 Integer / Fixed-Point Processors
 Fixed-Point Arithmetic Unit
 Almost all embedded controllers are fixed 

point machines
 Examples:  all microcontroller families, e.g. 

Freescale S12X, Infineon C166, Texas 
Instruments MSP430,  Atmel AVR

 Lowest price per MIPS
 

The world of Floating-Point processors is not as widespread as the Fixed-Point group. The 
most famous member is Intel’s Pentium family, but there are also others (again, the list is in 
random order and not exhaustive): 

• Intel x86 Pentium 
• Freescale MPC556, PowerPC 
• Texas Instruments C6000, DaVinci , TMS320F2833x 
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IEEE-754 Floating-Point Format  
The IEEE Standard for Floating-Point Arithmetic (IEEE-754) is the most widely-used 
standard for Floating-Point computation, and is followed by many hardware and software 
implementations. Many computer languages allow or require that some or all arithmetic be 
carried out using IEEE-754 formats and operations. The current version is IEEE-754-2008, 
which was published in August 2008; it includes nearly all of the original IEEE-754-1985 
(which was published in 1985) and the IEEE Standard for Radix-Independent Floating-Point 
Arithmetic (IEEE-854-1987). 

The standard defines: 

• arithmetic formats: sets of binary and decimal Floating-Point data, which consist of 
finite numbers, (including signed zeros and subnormal numbers), infinities, and 
special 'not a number' values (NaNs)  

• interchange formats: encodings (bit strings) that may be used to exchange Floating-
Point data in an efficient and compact form  

• rounding algorithms: methods to be used for rounding numbers during arithmetic 
and conversions  

• operations: arithmetic and other operations on arithmetic formats  
• exception handling: indications of exceptional conditions (such as division by zero, 

overflow, etc.)  

The standard also includes extensive recommendations for advanced exception handling, 
additional operations (such as trigonometric functions), expression evaluation, and for 
achieving reproducible results. 

4 - 4

Standard IEEE-754 Single Precision
Floating-Point

s eeeeeeee fffffffffffffffffffffff
031 30 23 22

23 bit mantissa (fraction)8 bit exponent1 bit sign

Advantage ⇒ Exponent gives large dynamic range
Disadvantage ⇒ Precision of a number depends on its exponent

Case 1: if e = 255 and f = 0, then v = NaN

Case 2: if e = 255 and f = 0, then v = [(-1)s]*infinity

Case 3: if 0 < e < 255, then v = [(-1)s]*[2(e-127)]*(1.f)

Case 4: if e = 0 and f = 0, then v = [(-1)s]*[2(-126)]*(0.f)
Case 5: if e = 0 and f = 0, then v = [(-1)s]*0

/

/

 

In the following slides we will focus on the arithmetic numbering formats only.  



IEEE-754 Floating-Point Format 

4 - 6 F2833x - Numerical Systems 

32-bit Floating-Point format (C data type “float): 

• Sign Bit (S): 
 Negative:  bit 31 = 1  / Positive: Bit 31 = 0 

• Mantissa (M):             

∑
=

−−−− ⋅+=⋅++⋅+⋅+=
23

1

23
23

2
2

1
1 212...221

i

i
immmmM  

 Mantissa is normalized to m0 = 1; m0 will not be stored in memory!  

21 <≤ M  

• Exponent (E): 
 8 Bit signed exponent, stored with offset,  OFFSET = +127  

• Summary: 

  ( )
OFFSETE

S MZ
−

⋅⋅−= 21  

Example 1:    
0x 3FE0 0000 =  0011 1111 1110 0000 0000 0000 0000 0000 B    

S = 0 
   E = 0111 1111  = 127 
   M = (1).11000  = 1 + 0.5 + 0.25 = 1.75 
   Z  = (-1)0 * 1.75 * 2127-127 = 1.75 

Example 2:    
0x BFB0 0000 =  1011 1111 1011 0000 0000 0000 0000 0000 B    

S = 1 
   E = 0111 1111  = 127 
   M = (1).011  = 1 + 0.25 + 0.125 = 1.375 
   Z  = (-1)1 * 1.375 * 2127-127 = -1.375 

Example 3:    
Z =  - 2.5   S = 1 
   2.5 =  1.25 * 21 

1 = E – OFFSET   
E = 128 

   M = 1.25 =  (1).01  = 1 + 0.25  
     Binary Result:  1100 0000 0010 0000 0000 0000 0000 0000 B =  0x C020 0000 
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The advantage of Floating-Point is its huge dynamic range, which is given by the most 
positive exponent (+127, base 2). This exponent plus the maximum mantissa leads to a range 
of: 

Z =  ±(1 − 224) ∗ 2128 ≈ ± 3.403 ∗ 1038  

The resolution of a single precision Floating-Point number is given by the smallest number 
that can be represented in this format: 

𝑍𝑍 =  2−23 ∗ 2−126 = 2−149 ≈  1.401 ∗ 10−45  

 

It seems that with this dynamic range and resolution we should be able to solve any 
mathematical operation. However, when it comes to a simple add operation of a large 
number and a very small number, even a Floating-Point device can fail! Look at the 
following example for z = x + y: 
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Floating-Point does not solve 
everything!

Example: x = 10.0 (0x41200000)
+ y =   0.000000240 (0x3480D959)

z = 10.000000240 RIGHT?WRONG!
You cannot represent 10.000000240 with

single-precision floating-point

0x412000000 = 10.000000000
10.000000240 ⇐ can’t represent!

0x412000001 = 10.000001000

So z gets rounded down to 10.000000000

 

Such a rounding error can happen, when we have to add a compensation value (small) to a 
larger set point value in a closed control loop! The result would be a somewhat sluggish 
behavior of our digital controller. 

In the second part of this chapter you will learn that Fixed-Point numbers do not show this 
behavior, if we limit the dynamic range of the numbers to the expected area of a closed loop 
control system. When we use the Texas Instruments IQ-Math Fixed-Point hardware, it will 
add 10.0 and 0.00000024 to give the exact result of 10.00000024!  This is a considerable 
advantage of Fixed-Point numbers over Floating-Point numbers! 
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Integer Number Basics 

Two’s Complement representation 
The next slides summarize the basics of the two’s complement representation of signed 
integer numbers. You should already be familiar with these schemes from basic lessons on 
computer engineering or digital systems. If not, use Wikipedia to update yourself!  
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Integer Numbering System Basics

 Binary Numbers
01102 = (0*8)+(1*4)+(1*2)+(0*1) = 610 

111102 = (1*16)+(1*8)+(1*4)+(1*2)+(0*1) = 3010

 Two’s Complement Numbers
01102 = (0*-8)+(1*4)+(1*2)+(0*1) = 610 

111102 = (1*-16)+(1*8)+(1*4)+(1*2)+(0*1) = -210

 

In the signed integer format, the most significant bit (MSB) carries a negative weight of -1. If 
the MSB is set, we have to multiply its coefficient representation by -1 (compare example in 
the 2nd half of Slide 4-6).  

Binary Multiplication  
Now consider the process of multiplying two two's complement values, which is one of the 
most often used operations in digital control. As with “long hand” decimal multiplication, we 
can perform binary multiplication one “place” at a time, and sum the results together at the 
end to obtain the total product.  

Note: The method shown at the following slide is not the method the F22833x uses to 
multiply integer numbers - it is merely a way of observing how binary numbers behave in 
arithmetic processes.  

The F2833x uses 32-bit operands and an internal 64-bit product register. For the sake of 
clarity, consider the example below where we shall investigate the use of 4-bit values and an 
8-bit accumulation: 
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Four-Bit Integer Multiplication

0100
x 1101

00000100
0000000 
000100  

+ 11100   
11110100

Accumulator

Data Memory

11110100

4 
x  -3                                    

-12

?

Is there another (superior) numbering system?
 

 

In this example, consider the following:  

• 4 multiplied by (-3) gives (-12) in decimal.  

• The size of the product is twice as long as the input values (4 bits * 4 bits = 8 bits). 

• If this product is to be used in a next loop of a calculation, how can the result be 
stored back to memory in the same length as the inputs?  

 Store back upper 4 Bit of Accumulator?     -1 

 Store back lower 4 Bit of Accumulator?      +4 

 Store back all 8 Bit of Accumulator?           overflow of length  

• As a result, scaling of intermediate results is needed!  

 

From this analysis, it is clear that integers do not behave well when multiplied.  

The question is: might some other type of integer number system behave better? Is there a 
number system where the results of a multiplication have bounds?  
 

The answer is: yes, there is.  
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Binary Fractions 
 
In order to represent both positive and negative values, the two's complement process will 
again be used. However, in the case of fractions, we will not set the LSB to 1 (as was the 
case for integers). When we consider that the range of fractions is from -1 to ~+1, and that 
the only bit which conveys negative information is the MSB, it seems that the MSB must be 
the “negative ones position”. Since the binary representation is based on powers of two, it 
follows that the next bit would be the “one-half” position, and that each following bit would 
have half the magnitude again. 
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Binary Fractions

1 0 1 1
•

-1 1/2 1/4 1/8

= -1 + 1/4 + 1/8 = -5/8

Fractions have the nice property that
fraction x fraction = fraction

 
 
 

Multiplying Binary Fractions 
 
When the F2833x performs an integer multiplication, the process is identical for all oper-
ands, integers or fractions. Therefore, the user must determine how to interpret the results. 
As before, consider the 4-bit multiply example: 

The input numbers are now split into two parts - integer part (I-“integer”) and fractional part 
(Q-“quotient”). These type of Fixed-Point numbers are often called “IQ”-numbers, or for 
simplicity sometimes just Q-numbers.  

The example below shows 2 input numbers in I1Q3-Format. When multiplied, the length of 
the result will add both I and Q portions (see also next slide): 

I1Q3 * I1Q3  =  I2Q6 



 Binary Fractions 

F2833x - Numerical Systems 4 - 11 

 

 

4 - 9

Four-Bit  IQ - Multiplication

0100
x 1101

00000100
0000000 
000100  
11100   
11110100

11110100

1/2
x  - 3/8

-3/16

Accumulator

.

.

Data Memory -1/41110.

 

If we store back the intermediate product with the four bits around the binary point we keep 
the data format (I1Q3) in the same shape as the input values. There is no need to re-scale any 
intermediate results!  

Advantage:  With Binary Fractions we will gain a lot of speed in closed loop 
calculations.  

Disadvantage:  The result might not be the exact one. As you can see from the slide above 
we will end up with (-4/16) stored back to data memory. Bits 2-4 to 2-6 are truncated. The 
correct result would have been (-3/16).  

Recall that the 4-bit input operand multiplication operation is not the real size for the 
F2833x, which operates on 32-bit input values. In this case, the truncation will affect bits 2-32 
to 2-64. Given the real size of process data with, let us say 12-bit ADC measurement values, 
there is plenty of room left for truncation.   

In most cases we will truncate noise only. However, in some feedback applications like 
Infinite Impulse Response (IIR)-Filters the small errors can add and lead to a given degree of 
instability.  It is designer’s responsibility to recognize this potential source of failure when 
using binary fractions.  
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The “IQ”-Format 
So far we have discussed only the option of using fractional numbers with the binary point at 
the MSB-side of the number. In general, we can place this point anywhere in the binary 
representation. This gives us the opportunity to trade off dynamic range against resolution. 
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Fractional Representation

S IIIIIIII fffffffffffffffffffffff
031

32 bit mantissa

Advantage ⇒ Precision same for all numbers in an IQ format
Disadvantage ⇒ Limited dynamic range compared to Floating-Point

-2I + 2I-1 + … + 21 + 20 . 2-1 + 2-2 + … + 2-Q

“IQ” – Format 
“I” ⇒ INTEGER – Fraction

“Q” ⇒ QUOTIENT – Fraction 
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IQ - Examples

S fff
03

Most negative decimal number:   -1.0  = 1.000 B

Most positive decimal number:   + 0.875 = 0.111 B

Smallest negative decimal number: -1*2-3 (-0.125) = 1.111 B

Smallest positive decimal number: 2-3 (+0.125) = 0.001 B

I1Q3 – Format: 

Range:  -1.0 …. 0.875 (≈ + 1.0)
Resolution: 2-3
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IQ - Examples

SII f
03

Most negative decimal number:   -4.0 = 100.0 B

Most positive decimal number:   + 3.5 = 011.1 B

Smallest negative decimal number: -1 * 2-1 (- 0.5) = 111.1 B

Smallest positive decimal number: 2-1 (+0.5) = 000.1 B

I3Q1 – Format: 

Range:  -4.0 …. +3.5 (≈ + 4.0)
Resolution: 2-1
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IQ - Examples

S fff ffff ffff ffff ffff ffff ffff ffff
031

Most negative decimal number:   -1.0
1.000 0000 0000 0000 0000 0000 0000 0000 B

Most positive decimal number:  ≈ + 1.0
0.111 1111 1111 1111 1111 1111 1111 1111 B

Smallest negative decimal number: -1*2-31

1.111 1111 1111 1111 1111 1111 1111 1111 B

Smallest positive decimal number: 2-31

0.000 0000 0000 0000 0000 0000 0000 0001 B

I1Q31 – Format: 

Range:  -1.0 …. (+1.0)
Resolution: 2-31
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IQ - Examples

S III IIII ffff ffff ffff ffff ffff
031

Most negative decimal number:   -128
1000 0000. 0000 0000 0000 0000 0000 0000 B

Most positive decimal number:  ≈ + 128
0111 1111. 1111 1111 1111 1111 1111 1111 B

Smallest negative decimal number: -1*2-24

1111 1111. 1111 1111 1111 1111 1111 1111 B

Smallest positive decimal number: 2-24

0000 0000. 0000 0000 0000 0000 0000 0001 B

I8Q24 – Format: 

Range:  -128 …. (+128)
Resolution: 2-24

 

Now let us resume the failing Floating-Point example from the beginning of this module; IQ-
Math can do much better: 
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IQ-Math can do better!

I8Q24 Example: x = 10.0 (0x0A000000)
+ y =   0.000000240 (0x00000004)

z = 10.000000240 (0x0A000004)

Exact Result (this example)
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Fractional Data in C 
If by now you are convinced that fractional data has advantages over other number 
representations, the next question is, how do we code fractions in an ANSI-C environment?  
The ANSI-C standard does not define a dedicated data type, such as “fractional”.  There is a 
new ANSI-standard under development, called “embedded C”, which will eventually use 
this type. For now we can use the following trick, as shown in Slide 4-16:  
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How is a fraction coded?
~ 1

0

–½

–1

½

Fractions

~ 32K

0

–16K

–32K

16K

Integers

7FFF

0000

C000

8000

4000

Hex

void main(void)
{

int coef = 32768 * 707 / 1000;
}

⇒
*32768

 Example: represent the fraction number 0.707
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Fractional vs. Integer 

 Range
 Integers have a maximum range 

determined by the number of bits
 Fractions have a maximum range of ±1

 Precision
 Integers have a maximum precision of 1
 Fractional precision is determined by 

the number of bits
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Lab4:  Fixed-Point and Floating-Point 

Objective 
The objective of this lab is to practice and benchmark the different options for the F2833x in 
terms of numerical systems. We have already discussed that the F2833x supports both Fixed-
Point and Floating-Point numbers in hardware. In the following lab we will use the simple 
code example from Chapter 3 and compile it for the different numbering systems. To 
benchmark the results, we will use a time measurement tool, called “Profiler”, which is part 
of Code Composer Studio. The following procedure will summarize all steps discussed in 
this chapter. 
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Lab4: Fixed-Point and Floating-Point 

 Benchmark  Multiply Operation
 k = i * i
 Test setup:
1. Integer multiply operation
2. Floating-Point multiply by Floating-Point Library
3. Floating-Point multiply by Floating-Point 

Hardware unit 

Fixed-point Floating-Point -
Library

Floating-Point-
Hardware

code size (words) 3 89 9
clock cycles (6.67 ns) 3 112 5

Benchmark result:

 

Procedure 

Open Files, Create Project File 
1. Using Code Composer Studio Version 4, create a new project, called Lab4.pjt in 

C:\DSP2833x_V4\Labs (or another working directory used during your class, ask your 
instructor for specific location!) 
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Select a “C2000” project type: 

 

Do not select any other additional project settings: 

 

Finish the project design by adding the following parameters: 
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• Define the size of the C system stack. In the project window, right click at project 
“Lab4” and select “Properties”.  In category “C/C++ Build”, “C2000 Linker”, “Basic 
Options” set the C stack size to 0x400. 

• In the category “C/C++ Build”, “C2000 Compiler”, “Runtime Model Options” scroll 
down to “Specify Floating port support” and select “softlib”: 

 

 



 Lab4:  Fixed-Point and Floating-Point 

F2833x - Numerical Systems 4 - 19 

2. Open the file “main.c” from project “Lab3” and save it as “lab4_1.c” in subfolder 
“Lab4”: 

 
 File  Open File…  “main.c” 
 File  Save As…   “lab4_1.c” 

Build and Load 
 

3. Click the “Rebuild Active Project” button or perform: Project  Rebuild Active 
Project (Alt +Shift + P) and watch the tools run in the build window. If you get errors, 
debug as necessary before you continue.  

Create a Target Configuration 
4. Before we can download the machine code into the F28335, we have to define the 

“target configuration”. 
 Target  New Target Configuration 

 

Type a name for the target configuration file in box “File name”. You can use any 
name here but it makes sense to indicate the JTAG-emulation interface, which we will 
use for the download later. In case of the Peripheral Explorer Board we use the 
XDS100V2, so let us call the file “F28335_XDS100V2. The suffix “.ccxml” will be 
added automatically. 

This time mark “use shared location, because this will allow us to re-use this 
configuration in all future projects. 

In the window that appears next, select the emulator “Texas Instruments XDS100v2 
USB Emulator” via the “Connection” pull-down list and select the “TMS320F28335” 
device checkbox. 

Save and close the Target Configuration File “F28335_XDS100V2.ccxml”. 

In the “Target Configurations” window, right click at “F28335_XDS100V2.ccxml” 
and select “Set as Default”: 
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Load Code into Target 

5. Load the machine code into the device. Click: 

 Target  Debug Active Project 

Or use the “Debug” icon:     

At the top right corner of CCS, switch into the “Debug” perspective. 

A blue arrow at the left hand side of window “lab4_1.c” should point to the “for” – 
line. This is an indication that the machine code has been downloaded properly into 
the F28335.  

Test the Fixed-Point solution 
 

6. Reset the DSP by clicking on  Target  Reset  Reset CPU, followed by  Tar-
get  Restart 

7. Now, benchmark the results. In the “Disassembly” window, right click and enable 
“Show Source”, Inspect the code-line, which we used to multiply (k = i * i;) 

 

 

The C line “k = i*i” has been translated into a set of three assembly language 
instructions.  

• The first line moves a 16-bit value from data memory (to be exact: from offset 
address 8) to internal register ‘T’.  Obviously, offset 8 has been used for our 
global variable ‘i’. The offset address 8 corresponds to a data page, which has 
been initializes earlier (MOVW DP, # 0x0300). The hexadecimal number 
0x0300 is used as upper 16 - bit part of the 22 - bit physical address, whereas 
the offset 8 is the lower 6 bit part. If you do the math, you will get address 
0xC008, the same address shown in the watch window for variable ‘i’. 

• Line 2 multiplies the value in register T by the value from the same data 
memory location (variable ‘i’). The 32-bit product is stored in register 
“Accumulator (ACC)”. 
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• Line 3 stores the lower 16-bits of the 32-bit product (register “Accumulator-
low”, AL) back into memory at address 9 of the active page. Obviously, address 
9 at page 0x300 is the location of global variable ‘k’.   

Benchmark #1 (code-size):  

As you can see from the numbers at the left hand side, our code snippet “k = i * i” 
occupies the code memory addresses 0x9080 to 0x9082, which gives a code size of 3 
words. (Note: the absolute address numbers might be different on your CCS-session; 
however the size should be identical). 

 
Benchmark #2 (execution speed):  
 

To measure the number of execution clock cycles, we can use the CCS “Clock Profi-
ler”: 
   Target  Clock  Enable 

   Target  Clock  View 

A small yellow profiler clock will appear in the lower right corner of CCS. 

 

This is our time measurement system. Using “Step Into” (F5), run the code until you 
reach the line “k = i * i”. The number to the right of the clock gives the number of 
elapsed clock cycles. To clear this number, double click on the yellow clock icon. 

Now, with the yellow arrow still on line “k = i * i”, perform a single “Step Into” (F5). 
The profiler clock should show a ‘3’, which indicates that one execution of the line “k 
= i * i” took 3 clock cycles. This result corresponds to the three machine code 
instructions, which we inspected above. Each instruction is executed in 1 CPU clock 
cycle.  

 

Result 1 (Fixed-Point math):  

• Code size:  3 words 
• Clock cycles: 3   
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Floating-Point Library 
8. Now let us change the code from Fixed-Point to Floating-Point. In the “C/C++ 

Perspective” of project “Lab4” in file “lab4_1.c”, change the data type of ‘k’ from 
“unsigned int” to “float”.  

Add a new global variable “float f = 1.0;”. 

Change the code line “k = i * i;” into “k = f * f;”.  

After this line but still inside the for-loop, add a new line “f = f + 1.0;”  

Save the file as “Lab4_2.c”. Note: The file is added automatically to project “Lab4”.  

Exclude “Lab4_1.c” from the build. In the project window, right click on “Lab4_1.c” 
and select “Exclude from Build”. This technique allows us to keep more than one 
source code file in the project tree and we can change between the different files. Note 
the crossed out icon for “Lab4_1.c”, which indicates that this file has been excluded: 

 

9. Rebuild the project and reload the new code:  
   Target  Debug Active Project 

 
10. Now, benchmark the results. Change into “Debug” perspective. In the “Disassembly 

Window”, right click and enable “Show Source". Inspect the code-line, which we used 
to multiply f by f: 

 

The Floating-Point line “k = f * f” has been translated in a series of 6 assembly 
language instructions. This is because the variables are now of Floating-Point type. 
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• The 1st line reads a 32 bit value from data memory offset 2 into register ACC. 
This is the Floating-Point variable ‘f’ as the first factor.  

• Next and in preparation of the function call in line 4, this value is passed as an 
input parameter back to stack memory [SP-2]. 

• Line 3 reads once more variable ‘f’ and stores it again in register ACC. Register 
ACC is used to pass the 2nd multiply factor in the function call in line 4. 

• Line 4 calls a Floating-Point multiply function “FS$$MPY”.  The assembly 
instruction “LCR-Long Call with Return” calls a function from library 
“rts2800_ml.lib”, which performs a Floating-Point multiply on a Fixed-Point 
device. 

• The last two lines are used to store the result of the function call, which is 
returned in register ACC, into memory address 4 of the active data page (address 
of variable ‘k’). 

Benchmark #3 (code-size, Floating-Point library function):  

As you can see from the numbers at the left hand side, our code-snippet “k = f * f” 
occupies the code memory addresses 0x911D to 0x9124, which gives a code size of 8 
words. (Note: the absolute address numbers might be different on your CCS-session; 
however the size should be identical). However, this result is not the full story! For 
code size we have to add the size of function “FS$$MPY”. When you use “Assembly 
Single Step Into” until you reach the instruction “LCR” and continue with another 
assembly single step, CCS will open another disassembly window with the 
instructions of function “FS$$MPY”. If you scroll down this window, you will find an 
instruction “LRETR”, which is the return instruction of this function. The difference 
between start- and end- address (0x90C9 - 0x9078) is the size of function 
“FS$$MPY”.  

Result for code size: 8 + 81 = 89 words. 
 

Benchmark #4 (execution speed, Floating-Point library): 

To measure the number of clock cycles for one Floating-Point multiplication, we can 
use the same profiler steps as we did for the integer code: 

From the beginning of “main()”, single step until you reach the line “k = f * f”. Clear 
the profile clock counter (left double click) and perform another source single step 
(F5). The result is: 112 clock cycles. Note: The numbers were measured with C 
compiler - and library version 5.2.3. They might be different on your installation, but 
they should be in the same sort of range.  

 

 

Result for Floating-Point library: 

• Code size:  89 words 
• Clock cycles: 112 
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Floating-Point Hardware 
As a final step we will use the F2833x Floating-Point hardware unit and replace the Floating-
Point library function “FS$$MPY”(). This should reduce both the code size and the number 
of clock cycles back to the integer results. 

11. Add the Floating-Point support function to your project: 

In the “C/C++” perspective and in the project window, right click at project “Lab4” 
and select “Properties”. In the “Configuration Settings” select “Tool Settings” – 
“C2000 Compiler” and “Runtime Model Options” scroll down to “Specify floating 
point support” and select “fpu32”. 

 

12. Rebuild the project and reload the new code:  
   Target  Debug Active Project 

 
13. Now, benchmark the results. Again, in the “Debug Perspective” and the “Disassem-

bly” window enable Show Source”. Inspect the code lines, which we use to multiply f 
by f: 
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The Floating-Point line “k = f * f” has been translated in a series of 5 assembly 
instructions, which use the Floating-Point hardware unit: 

• The 1st line moves a 32-bit value from data memory offset location 2 into Floating-
Point register R0H. This is float variable ‘f’ as the first multiplication factor.  

• The 2nd line moves the same value into Floating-Point register R1H. This is our 2nd 
factor.  

• The next line is a Floating-Point multiply operation of R0H multiplied by R1H. The 
product is stored in register R0H. 

• Line 4 is a “no operation” instruction. It is used to compensate a clock difference 
between the Floating-Point unit and the main unit. 

• The last line stores the product (R0H) back in data memory at offset address 4 of the 
active data page.  

Benchmark #5 (code-size, Floating-Point hardware):  

As you can see from the numbers at the left hand side, our code-snippet “k = f * f” 
occupies the code memory addresses 0x904C to 0x9053, or 9 words. 

Benchmark #6 (execution speed, Floating-Point hardware): 

Using the profiler, measure the number of clock cycles for one Floating-Point 
multiplication. From the beginning of “main()”, single step until you reach the line “k = 
f * f”. Clear the clock counter and do another source single step. The result is 5! 
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Summary 
In Lab4 we benchmarked the 3 possible solutions that can be used to multiply two values. 
For a Fixed-Point processor the native numbering scheme is integer. As you can see from the 
numbers, both code size and clock cycles are minimal; we can generate an optimal solution 
for real-time control, where speed always has the highest priority. 

 

However, if the software designer decides to use Floating-Point data types for variables k 
and f, the library function will dramatically increase both code size and number of clock 
cycles. Such a solution could lead to code, which could well be too slow for use in real-time 
control. For most microcontrollers this is the end of the road… 

 

Not so for the F2833x!   

 

If we enable Floating-Point hardware support, we easily can use Floating-Point data types 
with approximately the same speed factor as in Fixed-Point! The code size is a little bit 
larger than for Fixed-Point numbers, but in most cases this does not matter. 

 

To resume the discussion:  With an F2833x device, the designer can use both worlds, Fixed- 
and Floating-Point, with the same code performance! 

 

 Fixed-
Point 

Floating-Point-
Library 

Floating-Point-
Hardware 

code size (words) 3 89 9 

clock cycles (6.67 ns) 3 112 5 
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