Digital Input / Output

Introduction

This module introduces the first integrated peripherals of the F2833x Digital Signal
Controller. The device has not only a 32-bit processor core, but also all of the peripheral
units needed to build a single chip control system (SOC-“System on Chip”). These integrated
peripherals give the F2833x an important advantage over other processors.

We will start with the simplest peripheral unit-Digital 1/0. At the end of this chapter we will
exercise input lines (switches, buttons) and output lines (LEDs).

Data Memory Mapped Peripherals

All the peripheral units of the F2833x are memory mapped into the data memory space of its
Harvard Architecture Machine. This means that we control peripheral units by accessing
dedicated data memory addresses. The following slide shows these units:

F2833x Block Diagram

Program Bus ! 1
— ePWM .

1

]

1
1
! AP >
Sectored Boot DMAY, | f !
RAM ROM | | 6¢h i :
A(19-0) Flash 8 4 eQEP -
1
1
e DMABus k5] 1201t ADC -
I
D(31-0) . Watchdog .
L _______ 1
l PIE [:
32-bit R-M-W Interrupt L PLEN
. 32x32 bit . Managgr J CAN20B j¥
Auxiliary Multiplie Atomic||FPU i :
ultiplier IR
Registers P ALU ! 12C 1
e NSNS -] 1
JTAQ Register Bus Timers : SPI :
Emulation CPU i :

Data Bus
GPIO

F2833x - Digital I/O 5-1

Module Topics

Module Topics

Digital INPUL /T OULPUL. ... bbbttt b e bbb bt bt et e e ebe b e b sbeebeene e 5-1
L oo [Uo1 A To] o FO OSSPSR 5-1
Data Memory Mapped PeripheralS...... ...t s 5-1
(oo (U1 [T o] o] [ox PR U RSO SUPPPRPRURROS 5-2
The PeriPNeral FTAMES ..ottt bttt e bbbt st e et e st e b e b et sbe et e ne e 5-3
DIGITAL 1/O UNIE ...ttt bbbt bt s e e e b e ke s bt bt e bt e he e e e b e nbesbesbeebeaneas 5-5

F2833X PiN ASSIGNMENL....c.viitiitiiteeieseeieseesie e ste et e e s reste e ese e e et e saesresaesseeseeseeneeseeneesreaneenennes 5-7
(e L@ 1o o1V @ TN 1 o L1 o] o P 5-10
SUMMATY GPIO-REJISIETS .. vvivvivieeieiiieie sttt e ettt sresre e e e et e saesresresneenaenes 5-11
F2833X ClOCK MOGUIE ...t et bbbt sttt 5-12
LA (o] o oo T 11T TSR 5-14
System Control and StatUS REGISIENcveivireieiisiseee ettt e e seesbeseesnesreaneeneas 5-17
LOW POWEE IMOGE ...ttt bbbttt b e bbbt s b e nbe b e nbeebeebeene e 5-17
Lab 5_1: Digital OULPUL Bt 4 LEDS......c..oiiiiiiiieieieie ettt ettt 5-20
(O] 0TI [OSSPSR 5-21
e (oToT=To [N TR SO USRI 5-21
Create @ ProJECt FIle... ..ot bbb 5-21
o [=Toifl 21071 [0 J @] o] {To] LTRSS PURTURPRUR 5-22
MOiTY the SOUICE COUEocueieieecieeicie ettt st te e s e e et e saesrenreaneeneas 5-23
L (8o R g0 oo I (oo o I 5-23
2T o B TaTo I I Lo OO 5-24
LI5S S TSSOSO TP PP PR PRTPR PRI 5-24
Enable WatChdOg TIMENocv ettt st na e e snesrenresneenes 5-24
Service the WatChdog TIMET ..o bbb 5-25
Lab 5_2: Digital Output (MOITIEA)c.veieiiiiii e bbb 5-27
PIOCEAUIE ...ttt bbbttt bt bbb e bt e R e e e b e e b e sh e e b e e bt e b e e st eneenaeabenbesbenbesneaneas 5-27
Modify Code and PrOJECE FIle.......cceiiiieeeii ittt 5-27
Labh 5_3: DIgital INPUL.......oeoee e bbbttt e bbb b 5-28
(O] 0TI [OSSPSR 5-28
PIOCEUUIE ...ttt bbb bbbtttk b bbb bbbt e bttt n et 5-28
Modify Code and ProjECE FilB........cviiiieiece e enes 5-28
2T o B o I Vo o T OO OO 5-29
Lab 5 4: Digital In- and OULPULccveieeie et sneenenne e 5-30
L@ o =T {1 5-30
Modify Code and ProjECt FilE........cviieieiic e enes 5-30
T [y Y I oL S OSSPSR 5-30
BUIA, LOBA AN TEST.....ecuee ettt bbbt bbb et b e b sbesbesaeeneas 5-31
Lab 5_5: Digital In- and OUtput StArt / SEOPeoeiieiiiee e e 5-32
(O] o1 {1 OSSP RPRUROR 5-32
Modify Code and PrOJECE FIle.......cceiiiieeeii ittt 5-32
oo 3 = o1 oSS PRRSS 5-32
2T o B o I Vo o T OO OO 5-33

5-2 F2833x - Digital I/O

The Peripheral Frames

The Peripheral Frames

All peripheral registers are grouped together into what are known as “Peripheral Frames”-
PFO, PF1, PF2 and PF3. These frames are mapped in data memory only. Peripheral Frame
PFO includes register sets to control the internal speed of the FLASH memory, as well as the
timing setup for external memory devices, direct memory access unit registers, core CPU
timer registers and the code security module control block. Flash is internal non-volatile
memory, usually used for code storage and for data that must be present at boot time.
Peripheral Frame PF1 contains most of the peripheral unit control registers, such as ePWM,
eCAP, Digital Input/Output control and the CAN register block. CAN-“Controller Area
Network” is a well-established network widely used inside motor vehicles to build a network
between electronic control units (ECU). Peripheral Frame PF2 combines the core system
control registers, the Analogue to Digital Converter and all other communication channels
other than McBSP, which has been allocated to PF3.

TMS320F2833x Memory Map @
Data | Program E
g:gggggg MO SARAM (1Kw) 0x010000 reserved
M1 SARAM (1Kw) 0x100000
0x000800 XINTF Zone 6 (1Mw)
o) 0x200000
0x000D00 PIE Vectors! XINTF Zone 7 (IMw)
0x000E00 | &M i1 e | 0%x300000
0x002000 20 (BKW FLASH (256Kw) &Lm_%;%
0x004000 OX33FFF8 t ninzsasnstatntatiriaialnly ———
X XINTF Zone 0 (4Kw) 0x340000 - "ASSWORDS (&)
0x005000 PF 3 (4Kw) 0x380080 reserved
0x006000 PF 1 (aKw)| reserved 0X380090 ADC calibration data
0007000 o0 (akcw) 02380400 eserved SR
0x008000 User OTP (1K e
LO SARAM (4Kw) 0x380800 = o FLASH, ADC CAL,
0x009000 reserved oTP
L1 SARAM (4Kw) 0x3F8000
0x00A000 LO SARAM (4Kw)
L2 SARAM (4Kw) 0x3F9000
0x00B00O +———=—2 ~ OaFAOG0 L SARAM (4Kw) _
0x00C000 (kw) x L2 SARAM (4Kw) DMEYAGCESSIble:
OXOOD000 |4 SARAM (@Kw) Ox3FBO00 T = L4, L5, L6, L7,
L5 SARAM (4Kw) 0x3FC000 XINTF Zone 0, 6, 7
0x00E000 reserved
L6 SARAM (4Kw) Ox3FE000
L7 SARAM (4Kw) oot (8Kw)
0x010000 OX3FFFCO-----zosomoozsmmooooe o
. OX3FFFFF.__ BROM Vectors (64w)
° Data | Program 5.3

F2833x - Digital I/O 5-3

The Peripheral Frames

The detailed mapping of peripherals into data memory is as follows:

PFO: PIE: PIE Interrupt Enable and Control Registers plus PIE Vector Table
Flash: Flash Wait state Registers
XINTF: External Interface Registers
DMA: DMA Registers
Timers: CPU-Timers 0, 1, 2 Registers
CSM: Code Security Module KEY Registers
ADC: ADC Result registers (dual-mapped)
PF1l: eCAN: eCAN Mailbox and Control Registers
GPIO: GPIO MUX Configuration and Control Registers
ePWM: Enhanced Pulse Width Modulator Module and Registers (dual
mapped)
eCAP: Enhanced Capture Module and Registers
eQEP: Enhanced Quadrature Encoder Pulse Module and Registers
PF2: SYS: System Control Registers
SCI: Serial Communications Interface (SCI) Control and RX/TX Regis-
ters
SPI: Serial Port Interface (SPI) Control and RX/TX Registers
ADC: ADC Status, Control, and Result Register
12C: Inter-Integrated Circuit Module and Registers
XINT: External Interrupt Registers
PF3: McBSP: Multichannel Buffered Serial Port Registers
ePWM: Enhanced Pulse Width Modulator Module and Registers (dual
mapped)

Some of the memory areas are password protected by the “Code Security Module” (check
patterned areas of the slide above). This is a feature to prevent reverse engineering. Once the
password area is programmed, any access to the secured areas is only granted when the
correct password is entered into a special area of PFO.

Now let us start with a discussion of the Digital Input/Output unit.

5-4 F2833x - Digital I/O

Digital 1/0 Unit

Digital I/O Unit

All digital 1/O’s are grouped together into “Ports”, called GPIO-A, B and C. Here GPIO
means “general purpose input output”. The F2833x features a total of 88 1/O-pins, called
GPIOO0 to GPIO87. But there’s more. The device comes with so many additional internal
units, that not all features could be connected to dedicated pins of the device package at any
one time. The solution is: multiplex. This means, one single physical pin of the device can be
used for up to 4 different functions and it is up to the programmer to decide which function is
selected. The next slide shows a block diagram of one physical pin of the device:

F2833x GPIO Pin Block Diagram 2
|/o DIR Bit Pe”phefa' Perlpheral Peri%heral
GPxSET = Input
GPxXCLEAR Output
GPxTOGGLE
GPXDIR ./
GPxDAT 10

Bit (RIW) | |n MUX Control Bits

00 = GPIO
01 = Peripheral 1
10 = Peripheral 2

11 = Peripheral 3

out ./ GPXMUX1
/0 DAT oo.\T 11 CRRNNX2

Input
Qualification |
(12092101 0) F— (GPIO 0-63 only) GPxQSEL1
) GPXQSEL2
Internal Pull-Up GPxCTRL
0 = enable (default GPIO 12-31)
1 = disable (default GPIO 0-11)
Pin

5-4

The term “Input Qualification” refers to an additional option for digital input signals at
GPI0O0-63. When this feature is used, an input pulse must be longer than the specified
number of clock cycles to be recognized as a valid input signal. This is useful for removing
input noise.

Register Group “GPxPUD” can be used to disable internal pull-up resistors to leave the
voltage level floating or high-impedance.

When a digital I/O function is selected, then register group GPxDIR defines the direction of
the Input or Output. Clearing a bit position to zero configures the line as an input, setting the
bit position to 1 configures the line as an output.

A data read from an input line is performed with a set of GPXDAT registers.
A data write to an output line can also be performed with registers GPxDAT. Additionally,
there are 3 more groups of registers:

e GPxSET
e GPxCLEAR
e GPXTOGGLE

F2833x - Digital I/O 5-5

Digital 1/0O Unit

The objective of these registers is to use a mask technique to set, clear or toggle those output
lines, which correspond to a bit set to 1 in the mask in use. For example, to clear line GPIO5
to 0, one can use the instruction:

e GpioDataRegs.GPACLEAR.bit.GPIO5 = 1;

The following slide summarizes the 1/0 control register set:

GPIO Port A Mux1
Register (GPAMUX1)
[GPIO 0 to 15]

GPIO Port A Mux2
Register (GPAMUX2)
GPIO 16 to 31]

]

sng feusaiu|

GPIO Port B Mux1
Register (GPBMUX1)
GPIO 32 to 47]

A
A

GPIO Port B Mux2
Register (GPBMUX2)
GPIO 48 to 63]

b
y

GPIO Port C Mux1
Register (GPCMUX1)
GPIO 64 to 79]

GPIO Port C Mux2
Register (GPCMUX2)
GPIO 80 to 87]

F2833x GPIO Grouping Overview 2

Input ®
GPIO Port A < Qual < T
Direction Register ual (@]

(GPADIR) o[>
[GPIO 0 to 31] S
>
GPIO P B g %
ort - - N
Direction Register Qual o)

GPBDIR o[
[GPIO 32 to 63] > g
us]
@
GPIO Port C < g

Direction Register

(GPCDIR) o[«
[GPIO 64 to 87] g
O

5-5

F2833x - Digital I/O

Digital 1/0 Unit

F2833x Pin Assignment

The next five slides show the multiplex assignment for all 88 1/0-lines:

F2833x GPIO Pin Assighment
GPIO - A Multiplex Register GPAMUX1
GPAMUX1 - Bits 00 01 10 11

1,0 GPIOO EPWM1A - -

3,2 GPIO1 EPWM1B ECAP6 MFSRB

54 GPIO2 EPWM2A - -

7,6 GPIO3 EPWM2B ECAPS MCLKRB

9,8 GPIO4 EPWM3A - -
11,10 GPIO5 EPWM3B MFSRA ECAP1
13,12 GPIO6 EPWM4A EPWMSYNCI EPWMSYNCO
15,14 GPIO7 EPWM4B MCLKRA ECAP2
17,16 GPI08 EPWMS5A CANTXB /ADCSOCAO
19,18 GPIO9 EPWM5B SCITXDB ECAP3
21,20 GPIO10 EPWM6A CANRXB /ADCSOCBO
23,22 GPIO11 EPWM6B SCIRXDB ECAP4
25,24 GPIO12 ITZ1 CANTXB SPISIMOB
27,26 GPIO13 ITZ2 CANRXB SPISOMIB
29,28 GPIO14 /TZ3_/XHOLD SCITXDB SPICLKB
31,30 GPIO15 ITZA_[XHOLDA SCIRXDB /SPISTEB

5-6
F2833x GPIO Pin Assighment
GPIO - A Multiplex Register GPAMUX2
GPAMUX2 - Bits 00 01 10 11

1,0 GPIO16 SPISIMOA CANTXB ITZ5

3,2 GPIO17 SPISOMIA CANRXB ITZ6

5,4 GPIO18 SPICLKA SCITXDB CANRXA

7,6 GPIO19 ISPISTEA SCIRXDB CANTXA

9,8 GPIO20 EQEP1A MDXA CANTXB
11,10 GPl1021 EQEP1B MDRA CANRXB
13,12 GP1022 EQEP1S MCLKXA SCITXDB
15,14 GPI1023 EQEP1I MFSXA SCIRXDB
17,16 GPl1024 ECAP1 EQEP2A MDXB
19,18 GPI1025 ECAP2 EQEP2B MDRB
21,20 GPI1026 ECAP3 EQEP2I MCLKXB
23,22 GP1027 ECAP4 EQEP2S MFSXB
25,24 GP1028 SCIRXDA IXZCSs6 IXZCS6
27,26 GPI1029 SCITXDA XA19 XA19
29,28 GPIO30 CANRXA XA18 XA18
31,30 GPI0O31 CANTXA XA17 XA17

5-7

F2833x - Digital I/O

Digital 1/0O Unit

F2833x GPIO Pin Assighment
GPIO - B Multiplex Register GPBMUX1
GPBMUX1 - Bits 00 01 10 11

1,0 GPIO32 SDAA EPWMSYNCI IADCSOCAOQ

3,2 GPIO33 SCLA EPWMSYNCO /ADCSOCBO

54 GPIO34 ECAP1 XREADY XREADY

7,6 GPIO35 SCITXDA XR/W XR/W

9,8 GPIO36 SCIRXDA /XZCS0 IXZCS0o
11,10 GPIO37 ECAP2 IXZCSs7 IXZCSs7
13,12 GPIO38 - IXWEO IXWEQ
15,14 GPIO39 - XA16 XA16
17,16 GPIO40 - XAO/XWE1 XAO/XWE1
19,18 GPI1041 - XAl XAl
21,20 GP1042 - XA2 XA2
23,22 GPI1043 - XA3 XA3
25,24 GPI0O44 - XA4 XA4
27,26 GPI1045 - XA5 XA6
29,28 GPI1046 - XAG6 XA6
31,30 GPI1047 - XA7 XA7

5-8
F2833x GPIO Pin Assighment
GPIO - B Multiplex Register GPBMUX2
GPBMUX2 - Bits 00 01 10 11

1,0 GPI1048 ECAPS5 XD31 XD31

3,2 GPI1049 ECAP6 XD30 XD30

54 GPIO50 EQEP1A XD29 XD29

7,6 GPIO51 EQEP1B XD28 XD28

9,8 GPIO52 EQEP1S XD27 XD27
11,10 GPIO53 EQEP1I XD26 XD26
13,12 GPIO54 SPISIMOA XD25 XD25
15,14 GPIO55 SPISOMIA XD24 XD24
17,16 GPI1056 SPICLKA XD23 XD23
19,18 GPI057 ISPISTEA XD22 XD22
21,20 GPIO58 MCLKRA XD21 XD21
23,22 GPIO59 MFSRA XD20 XD20
25,24 GPI060 MCLKRB XD19 XD19
27,26 GPIO61 MFSRB XD18 XD18
29,28 GPI1062 SCIRXDC XD17 XD17
31,30 GPI063 SCITXDC XD16 XD16

5-9

F2833x - Digital I/O

Digital 1/0 Unit

F2833x GPIO Pin Assignment
GPIO - C Multiplex Register
GPCMUX1 - 00 or 01 10o0r 11 GPCMUX2 - 00 or 01 10o0r 11

Bits Bits

1,0 GPIO64 XD15 1,0 GPIO80 XA8
3,2 GPI1065 XD14 3,2 GPIO81 XA9
54 GPI1066 XD13 54 GPI082 XA10
7,6 GPI067 XD12 7,6 GPIO83 XA11
9,8 GPI1068 XD11 9,8 GPIO84 XA12
11,10 GPI1069 XD10 11,10 GPIO85 XA13
13,12 GPIO70 XD9 13,12 GPIO86 XA14
15,14 GPIO71 XD8 15,14 GP1087 XA15
17,16 GPI072 XD7 17,16 - -
19,18 GPIO73 XD6 19,18 - -
21,20 GPIO74 XD5 21,20 - -
23,22 GPIO75 XD4 23,22 - -
25,24 GPIO76 XD3 25,24 - -
27,26 GPIO77 XD2 27,26 - -
29,28 GPIO78 XD1 29,28 - -
31,30 GPIO79 XDO 31,30 - -

F2833x - Digital I/O

Digital 1/0O Unit

GPIO Input Qualification

As has already been stated, this feature on GP100-63 behaves like a low-pass input filter on

noisy input signals. It is controlled by a pair of additional registers.

F2833x GPIO Input Qualification

1T

&

Input to GPIO and
pin O o peripheral
Qualification modules
1

SYSCLKOUT

Qualification available on ports A & B (GPIO 0 - 63) only

.

¢ Individually selectable per pin e e
+ no qualification (peripherals only) ‘ l ‘
« sync to SYCLKOUT only
+ qualify 3 samples < -f\———/\"
+ qualify 6 samples | I I |

¢ Port C pins are fixed as T T 7
sync to SYSCLKOUT T = qualification period

5-11

F2833x GPIO Input Qualification Registers<2>

GPAQSEL1/ GPAQSEL2 / GPBQSEL1/ GPBQSEL2
31

[| [| [| 16 pins configured per register | | | | | |

00 = sync to SYSCLKOUT only
01 = qual to 3 samples

10 = qual to 6 samples
11 = no sync or qual (for peripheral only; GPIO same as 00)

GPACTRL / GPBCTRL

31 24

[QUALPRD3 |
GPIO63-56
GPIO31-24

0
[QUALPRDO |
GPI039-32
GPIO7-0

16 8
QUALPRD2 [
GP1055-48

GPI023-16

QUALPRD1
GPIO47-40
GPIO15-8

B:
A:

0x00
0x01
0x02

no qualification (SYNC to SYSCLKOUT)
QUALPRD = Tgygcrkout * 2
QUALPRD = TgyscLkour * 4

OXFF QUALPRD = Tgyscikour * 510

-12

F2833x - Digital I/O

Digital 1/0 Unit

Summary GPIO-Registers

The next two slides will summarize all registers of the GP1O-unit.

C2833x GPIO Control Registers

Register Description

GPACTRL GPIO A Control Register [GPIO 0 — 31]
GPAQSEL1 GPIO A Qualifier Select 1 Register [GPIO 0 — 15]
GPAQSEL2 GPIO A Qualifier Select 2 Register [GPIO 16 — 31]
GPAMUX1 GPIO A Mux1 Register [GPIO 0 — 15]

GPAMUX2 GPIO A Mux2 Register [GPIO 16 — 31]

GPADIR GPIO A Direction Register [GPIO 0 — 31]
GPAPUD GPIO A Pull-Up Disable Register [GPIO 0 — 31]
GPBCTRL GPIO B Control Register [GPIO 32 — 63]
GPBQSEL1 GPIO B Qualifier Select 1 Register [GPIO 32 — 47]
GPBQSEL2 GPIO B Qualifier Select 2 Register [GPIO 48 — 63]
GPBMUX1 GPIO B Mux1 Register [GPIO 32 — 47]

GPBMUX2 GPIO B Mux2 Register [GPIO 48 — 63]

GPBDIR GPIO B Direction Register [GPIO 32 — 63]
GPBPUD GPIO B Pull-Up Disable Register [GPIO 32 — 63]
GPCMUX1 GPIO C Mux1 Register [GPIO 64 — 79]

GPCMUX2 GPIO C Mux2 Register [GPIO 80 — 87]

GPCDIR GPIO C Direction Register [GPIO 64 — 87]
GPCPUD GPIO C Pull-Up Disable Register [GPIO 64 — 87]

&

C2833x GPIO Data Registers

Register Description

GPADAT GPIO A Data Register [GPIO 0 — 31]
GPASET GPIO A Data Set Register [GPIO 0 — 31]
GPACLEAR GPIO A Data Clear Register [GPIO 0 — 31]
GPATOGGLE GPIO A Data Toggle [GPIO 0 — 31]
GPBDAT GPIO B Data Register [GPIO 32 — 63]
GPBSET GPIO B Data Set Register [GPIO 32 — 63]
GPBCLEAR GPIO B Data Clear Register [GPIO 32 — 63]
GPBTOGGLE GPIO B Data Toggle [GPIO 32 - 63]
GPCDAT GPIO C Data Register [GPIO 64 — 87]
GPCSET GPIO C Data Set Register [GPIO 64 — 87]
GPCCLEAR GPIO C Data Clear Register [GPIO 64 — 87]
GPCTOGGLE GPIO C Data Toggle [GPIO 64 — 87]

&

F2833x - Digital I/O

F2833x Clock Module

F2833x Clock Module

Before we can start using the digital 1/Os, we need to setup the F2833x Clock Module. Like
all modern processors, the F2833x is driven externally by a much slower clock generator or
oscillator to reduce electromagnetic interference. An internal PLL circuit generates the
internal speed. The F28335 ControlCard in our Labs is running at 20MHz externally. To
achieve the internal frequency of 100 MHz, we have to use the multiply by a factor of 10,
followed by a divide by 2. This is implemented by programming the PLL control register
(PLLCR).

é F2833x Clock Module @

HSPCLK LSPCLK
ADC SCI, SPI, 12C,

Watchdog
CLKIN
XCLKIN Module C28x
Core
0SCCLK
(PLL bypass) | oo SYSCLKOUT
§ — 1/n
VCOCLK -

PLL , i | Hispcp | [LosPcP |

SysCtrIRegs.PLLCR.bit.DIV

SysCtrIRegs.PLLSTS.bit.DIVSEL McBSP
DIVSEL | n Div CLKIN clocked by BYSCLKOUT
0x /4 * 0000 OSCCLK /n * (PLL bypass)
10 2 0001 [oscCLKx1/n
11 n 0010 | OSCCLKx2/n Input Clock Fail Detect Circuitry
0011 | OscCLKx3/n .)

* default 0100 | osccLKx4/n PLL will issue a “limp mode”
Note: /1 mode can clock (1-4 MHz) if input clock is
only be used when 0101 | OSCCLKxS/n removed after PLL has locked
PLL is bypassed 0110 | OSCCLKx6/n :

0111 OSCCLK x 7/n An internal device reset will also
1000 OSCCLK x8/n be issued (XRSn pin not driven).
1001 | OSCCLKx9/n

1010 | OSCCLK x10/n 515

High-speed Clock Pre-scaler (HISPCP) and Low speed Clock Pre-scaler (LOSPCP) are used
as additional clock dividers. The outputs of the two pre-scalers are used as the clock source
for the peripheral units. We can set up the two pre-scalers individually and independently.

Note that;

(1) the signal “CLKIN” is of the same frequency as the core output signal “SYSCLKOUT”,
which is used for the external memory interface, for clocking the ePWMs and the CAN-unit.

(2) the Watchdog Unit is clocked directly by the external oscillator.

(3) the maximum frequency for the external oscillator is 35MHz.

5-12 F2833x - Digital I/O

F2833x Clock Module

é F2833x Clock Scaling @

SysCtrIRegs.HISPCP

15-3 2-0
reserved HSPCLK
ADC
SysCtrlIRegs.LOSPCP
15-3 2-0
reserved LSPCLK
SCI/SPI/
H/LSPCLK Peripheral Clock Frequency 12C / McBSP
000 SYSCLKOUT /1
001 SYSCLKOUT / 2 (default HISPCP) NOTE:
010 SYSCLKOUT / 4 (default LOSPCP) _
011 SYSCLKOUT / 6 All Other
100 SYSCLKOUT /8 Etlarlpkh%r%ls
101 SYSCLKOUT /10 ocked by
110 SYSCLKOUT / 12 SYSCLKOUT
111 SYSCLKOUT / 14

5-16

To use a peripheral unit, we have to enable its clock distribution by setting individual bit
fields of the PCLKCRX register. Bit field “GPIOIN_ENCLK” enables the clock signal for
the input qualification filter. If input qualification is not used, then it is not necessary to
enable this bit.

é F2833x Clock Control Unit @

SysCtrIRegs.PCLKCRO
15 14 13

12 11 10 9 8
ECANB | ECANA | MA MB SCB | SCIA [acored | SPA
ENCLK | ENCLK | ENCLK | ENCLK | ENCLK | ENCLK ENCLK
7 6 5 4 3 2 1 0
SCIC | 12CA [ADC [TBCLK

reserved | reserved ENCLK ENCLK ENCLK SYNC reserved | reserved

SysCtrlRegs.PCLKCR1
15 14 13 12 11 10 9 8

EQEP2 EQEP1 ECAP6 ECAP5 | ECAP4 ECAP3 ECAP2 | ECAP1
ENCLK ENCLK ENCLK ENCLK | ENCLK ENCLK ENCLK | ENCLK
7 6 5 4 3 2 1 0

EPWM6 | EPWM5 | EPWM4 | EPWM3 | EPWM2 | EPWM1
reserved | resenved | Encik | ENCLK | ENCLK | ENCLK | ENCLK | ENCLK

SysCtrIRegs.PCLKCR3
15-14 13 12 11 10 9 8 7-0

GPIOIN | XINTF | DMA | CPUTIMER2 | CPUTIMERL|CPUTIMERD
feseved | Encik | ENCLK | ENCLK | ENCLK ENCLK ENCLK | feseived

Module Enable Clock Bit
0 = disable (default) 1 =enable

F2833x - Digital I/O 5-13

Watchdog Timer

Watchdog Timer

A “Watchdog Timer” is a free running counter unit that triggers a reset if it is not cleared
periodically by a specific instruction sequence. It is used to recognize events where the
program leaves its designated sequence of execution, for example, if the program crashes.

¢ Resets the F2833x if the CPU crashes
« Watchdog counter runs independent of CPU

« If counter overflows, a reset or interrupt is
triggered (user selectable)

+ CPU must write correct data key sequence to
reset the counter before overflow

¢ Watchdog must be serviced or disabled
within 4.37ms after reset (assuming a 30
MHz OSCCLK)

¢ This time period translates into 645000
instructions, if CPU runs at 150MHz!

Watchdog Timer

5-18

Watchdog Timer Module 'I
0SCOLK , /64 11
6 - Bit /32 110 o O——— WDOVERRIDE
Free - /16 101 WDPS
/512 Running | _/8 100 5 (WDCR.2-0
Counter |4 0lln O—
2 2oor©
— CLR 001 o
WDDIS
. 000~
Shecer WDFLAG
Reset 7 8 - Bit Watchdog e
Counter OnDeé?ayCIe :
CLR y
WDRST
OPutIput
Detector | Good Key 3, 1\ WDENINT
{ 3’ Bad WDCR Key
Watchdog 1]o][1]
Register
5-19
5-14

F2833x - Digital I/O

Watchdog Timer

The Watchdog is always alive when the DSP is powered up! When we do not take care of
the Watchdog periodically, it will trigger a RESET. One of the simplest methods to deal with
the Watchdog is to disable it. This is done by setting bit 6 of register WDCR to 1. Of course
this is not a wise decision, because a Watchdog is a security feature and a real project should
always include as much security as possible or available.

The Watchdog Pre-scaler can be used to increase the Watchdog’s overflow period. The
Logic Check Bits (WDCHK) is another security bit field. All write accesses to the register
WDCR must include the bit combination “101” for this 3 bit field, otherwise the access is
denied and a RESET is triggered immediately.

The Watchdog Flag Bit (WDFLAG) can be used to distinguish between a normal power on
RESET (WDFLAG = 0) and a Watchdog RESET (WDFLAG = 1). NOTE: To clear this flag
by software, we have to write a ‘1’ into this bit!

Watchdog Timer Control Register @
Register: SysCtrIRegs.WDCR

WD Flag Bit
Gets set when the WD causes a reset
« Writing a 1 clears this bit
« Writing a 0 has no effect

15-8 7 6 5-3 2-0
reserved | WDFLAG | WDDIS WDCHK WDPS
Logic Check Bits WD Prescale
Write as 101 or reset Selection Bits

Watchdog Disable Bit ~ immediately triggered
Write 1 to disable
(Functions only if WD OVERRIDE
bitin SCSR is equal to 1)

Note: if for some reason the external oscillator clock fails, the Watchdog stops incrementing.
In an application we can catch this condition by reading the Watchdog counter register
periodically. In the case of a lost external clock, this register will not increment any longer.
The F2833x itself will still execute if in PLL mode, since the PLL will output a clock
between 1 and 4 MHz in a so-called “limp”-mode.

F2833x - Digital I/O 5-15

Watchdog Timer

How do we clear the Watchdog counter register, before it overflows? Answer: By writing a
“valid key” or “good key” sequence into register WDKEY':

Resetting the Watchdog @
15-8 7-0
reserved WDKEY

¢ WDKEY write values:
0x55 - counter enabled for reset on next OXAA write
OxAA - counter set to zero if reset enabled

¢ Writing any other value has no effect

¢ Watchdog should not be serviced solely in
an ISR

+ If main code crashes, but interrupt continues to
execute, the watchdog will not catch the crash

+ Could put the 0x55 WDKEY in the main code, and
the OXAA WDKEY in an ISR; this catches main
code crashes and also ISR crashes

& WDKEY Write Results <2>
Sequential | Value Written
Step to WDKEY | Result

1 AAh No action

2 AAh No action

3 55h WD counter enabled for reset on next AAh write

4 55h WD counter enabled for reset on next AAh write

5 55h WD counter enabled for reset on next AAh write

6 AAh WD counter is reset

7 AAh No action

8 55h WD counter enabled for reset on next AAh write

9 AAh WD counter is reset

10 55h WD counter enabled for reset on next AAh write

11 23h No effect; WD counter not reset on next AAh write

12 AAh No action due to previous invalid value

13 55h WD counter enabled for reset on next AAh write

14 AAh WD counter is reset

5-22

5-16 F2833x - Digital I/O

System Control and Status Register

System Control and Status Register

Register SCSR controls whether the Watchdog causes a RESET (WDENINT = 0) or an
Interrupt Service Request (WDENINT = 1). The default state after RESET is to trigger a
RESET.

The WDOVERRIDE bit is a “clear only” bit, that means, once we have closed this switch by
writing a 1 into the bit, we cannot re-open this switch again (see block diagram of the
Watchdog). At this point the WD-disable bit is ineffectual, so there is no way to disable the
Watchdog!

Bit 2 (WDINTS) is a read only bit that flags the status of the Watchdog Interrupt.

System Control and Status Register @

Register: SysCtrIRegs.SCSR

WD Override (protect bit)

Protects WD from being disabled

0 = WDDIS bit in WDCR has no effect (WD cannot be disabled)
1 =WDDIS bit in WDCR can disable the watchdog

« This bit is a clear-only bit (write 1 to clear)

* The reset default of this bitisa 1 \

15-3 2 1 0
reserved WDINTS |WDENINT [WDOVERRIDE
WD Interrupt Status WD Enable Interrupt
(read only) 0 = WD generates a DSP reset
0 = active 1 =WD generates a WDINT interrupt

1 =not active

Low Power Mode

To reduce power consumption, the F2833x is able to switch into 3 different low-power
operating modes. We will not use this feature in this chapter; therefore we can treat the Low
Power Mode control bits as “don’t care”. The Low Power Mode is entered by execution of
the dedicated Assembler Instruction “IDLE”. As long as we do not execute this instruction,
the initialization of the LPMCRO register has no effect.

The next four slides explain the Low Power Modes in detail.

F2833x - Digital I/O 5-17

Low Power Mode

6 Low Power Modes @

Low Power |CPU Logic | Peripheral |Watchdog | PLL/
Mode Clock Logic Clock Clock OosC
Normal Run on on on on
IDLE off on on on
STANDBY off off on on
HALT off off off off

See device datasheet for power consumption in each mode

Low Power Mode Control Register 0 <2>

Register: SysCtrIRegs.LPMCRO

e rasrant
STANDBY Wake from STANDBY 000001 = 3 OSCCLKs

0 = disable (default) GPIO signal qualification *

1=enable \11111'1 = 65 OSCCLKS (default)

15 14-8 7-2 1-0
WDINTE reserved QUALSTDBY | LPMO

- Low Power Mode Selection
Low Power Mode Entering 00 = Idle (default)

1. Set LPM bits 01 = Standby

2. Enable desired exit interrupt(s) 1x = Halt

3. Execute IDLE instruction

4. The Power down sequence of the hardware
depends on LP mode

* QUALSTDBY will qualify the GPIO wakeup signal in series with the GPIO port qualification.
This is useful when GPIO port qualification is not available or insufficient for wake-up purp%s_ez%.

F2833x - Digital I/O

Low Power Mode

Low Power Mode Exit

&

Exit
or Pprt A Interrupt Enabled
Low Power XNMI Signal Interrupt
Mode
IDLE yes yes yes yes
STANDBY yes yes yes no
HALT yes yes no no

GPIO Low Power Wakeup Select

&

Register: SysCtrIRegs.GPIOLPMSEL

30
GPIO30

31
GPIO31

29
GPI1029

28
GPIO28

27
GPIO027

26
GPIO26

25
GPI025

24
GPIO24

23
GPIO23

22
GPI022

21
GPIO21

20
GPI020

19
GPIO19

18
GPIO18

17
GPIO17

16
GPIO16

15
GPIO15

14
GPIO14

13
GPIO13

12
GPIO12

11
GPIO11

10 9
GPI0O10| GPIO9

8
GPIO8

7 6 5
GPIO7 | GPIO6 | GPIO5

4 3 2 1 0
GPIO4 | GPIO3 | GPIO2 | GPIO1 | GPIOO

Wake device from
HALT and STANDBY mode
(GPIO Port A)

0 = disable (default)
1 =-enable

F2833x - Digital I/O

Lab 5 _1: Digital Output at 4 LEDs

Lab 5 1: Digital Output at 4 LEDs
Lab 5 1: “Binary Counter” at 4 LEDs @

Objective:

* Display the 4 least significant bits of a counter variable at
LED LD1(GPIO9), LD2(GPIO11), LD3(GPIO34) and
LD4(GPI1049) of the Peripheral Explorer Board.

* Increment variable “counter” every 100 milliseconds

» Use a software delay loop to generate the interval of 100

milliseconds
0000 Project _Flles :
1. C - source file “Lab5_1.c”
I 0001 2. Start assembly code file:
L “DSP2833x_CodeStartBranch.asm”
I 0010 2. Register Variable Definition File:
“DSP2833x_GlobalVariableDefs.c”

3. Linker Command File:
- 1111 “28335_RAM_Ink.cmd”
“DSP2833x_Headers _nonBIOS.cmd”
4. Runtime Library “rts2800_fpu32.lib”

“DSP2833x_GlobalVariableDefs.c” 2

» Definition of global variables for all memory mapped
peripheral registers based on predefined structures
* Master Header File is “DSP2833x_Device.h”

 Example GpioDataRegs:
volatile struct GPIO_DATA_REGS GpioDataRegs;

» This structure variable combines all registers, which
belong to this peripheral group, e.g.:
GpioDataRegs.GPADAT
» Each register is declared as a union to allow 32-bit-

(“all”) and single bit field -accesses (“bit”), e.g.:
GpioDataRegs.GPADAT.bit.GPIO9 =1;
GpioDataRegs.GPADAT.all = 0OxO000FFFF;

e Stepsto be done are:
1. Add “DSP2833x_GlobalVariableDefs.c” to project
2. Include “DSP2833x_Device.h” into your C-code

5-20 F2833x - Digital I/O

Lab 5 1: Digital Output at 4 LEDs

“Lab 5 1 Register usage” @

Registers involved in LAB 5_1:
- Core Initialisation:

» Watchdog - Timer - Control : WDCR

* PLL Clock Register : PLLCR

» High Speed Clock Pre-scaler: HISPCP

» Low Speed Clock Pre-scaler : LOSPCP
* Peripheral Clock Control : PCLKCRx
» System Control and Status : SCSR

« Access to LED's (GPIO9, GP1011,GPI034,GPI1049):
* GPA and GPB Multiplex Register:
* GPAMUX1, GPAMUX2, GPBMUX1, GPBMUX2
* GPA and GPB Direction Register:
* GPADIR and GPBDIR
* GPA and GPB Data Register:
* GPASET, GPACLEAR, GPBSET, GPBCLEAR

Objective

The objective of this lab is to practice using basic digital 1/0-operations. GPIO9, GPIO11,
GP1034 and GP1049 are connected to 4 Leds (LD1-4) at the Peripheral Explorer Board; a
digital output value of ‘1’ will switch on a light, a digital ‘0" will switch it off. Lab5_1 will
use register GPAMUX1, GPBMUX1, GPADIR, GPBDIR and the data registers GPADAT,
GPBDAT, GPASET, GPACLEAR, GPBSET and GPBCLEAR.

The code of Lab5_1 will continuously increment an integer variable "counter" and display
the current value of its 4 least significant bits on LD1 to LDA4. For this first hardware based
lab we will not use any interrupts. The Watchdog-Timer unit and the core registers to set up
the controller speed are also used in this exercise.

Procedure

Create a Project File

1. Using Code Composer Studio, create a new project, called Lab5.pjt in
C:\DSP2833x_V4\Labs (or in another path that is accessible by you; ask your teacher
or a technician for an appropriate location!).

2. Define the size of the C system stack. In the project window, right click at project
“Lab5” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

3. Copy the provided source code file “Lab5 1.c” in the project folder
“C:\DSP2833x_V4\Labs\Lab5”. This step will automatically include the file in
project “Lab5”.

F2833x - Digital I/O 5-21

Lab 5 _1: Digital Output at 4 LEDs

Next, we will take advantage of some useful files, which have been created and provided by
Texas Instruments and should be already available on your hard disk drive C as part of the
so-called "Header File" package (sprc530.zip). If not, ask a technician to install that package
for you!

3. Inthe C/C++ perspective, right click at project “Lab5” and select “Link Files to Project”.
Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source’ and link:

o DSP2833x_GlobalVariableDefs.c

This file defines all global variable names to access memory mapped peripheral
registers.

4. Repeat the “Link Files to Project” step. From C:\tidcs\c28\dsp2833x\v131\
DSP2833x_common\source add:

o DSP2833x_CodeStartBranch.asm

This file contains a single Long Branch assembly instruction and must be placed into
the code entry point section "BEGIN" in code space. The Linker will that do for us,
based on the file that is added in the next step.

5. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link to project “Lab5”:
e DSP2833x_Headers_nonBIOS.cmd

This linker command file will connect all global register variables to their
corresponding physical addresses.

Project Build Options

6. We also have to extent the search path of the C-Compiler for include files. Right click at
project “Lab5” and select “Properties”. Select “C/C++ Build”, “C2000 Compiler”,
“Include Options”. In the box "Add dir to #include search path”, add the following line:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include

Note: Use the “Add” Icon to add the new path:

Specify a preinclude file (—preinclude) | Browse .. |

Add dirto #include search path {-include_path, -I) o] i ol D
"$iCG TOOL ROOThinclude"

" Add /|

Close the Property Window by Clicking <OK>.

5-22 F2833x - Digital I/O

Lab 5 _1: Digital Output at 4 LEDs

Modify the Source Code

After we have prepared our project, it is time to inspect and change the provided C-source
code file "Lab5_1.c". To find the correct setup for the registers, use the information from the
PowerPoint slides in the presentation of this chapter!

7.

8.

Open Lab5_1.c and search for the local function “InitSystem()”. You will find several
guestion marks in this code. Your task is to replace all the question marks to complete
the code.

e Set up the Watchdog-Timer (WDCR): disable the Watchdog and clear the
WD Flag bit.

e Set up the SCSR to generate a RESET out of a Watchdog event
(WDENINT)

e Setup the Clock-PLL (PLLCR)-multiply by 10/2. Assuming we use an
external 30 MHz oscillator this will set the DSP to 150 MHz internal
frequency. Set bit field "DIV" in PLLCR to 10 and field DIVSEL in
register PLLSTS to 2!

e Initialize the High speed Clock Pre-scaler (HISPCP) to “divide by 2%, the
Low speed Clock Pre-scaler (LOSPCP) to “divide by 4”.

e Enable the GPIO-Clock bit "GPIOINENCLK" in register PCLKCR3.
Disable all other peripheral clock units in register: PCLKCRO, PCLKCR1
and PCLKCRS.

Search for the local function “Gpio_select()”” and modify the code in it to:
o Set up all multiplex register to digital 1/0.
e Set up GPADIR: lines GPIO9 and GPI011 to output and all other lines to input.

e Set up GPBDIR: lines GPIO34 and GPIO49 to output and all other lines to
input.
e Set up GPCDIR: all lines to digital input.

Setup the control loop

9.

In “Lab5_1.c” look for the endless “while(1)” loop. After the increment of the variable
"counter” add some instructions to analyze the current value in "counter":

If bit 0 of counter is 1, set GPIO9 to 1, otherwise clear GPIO9 to 0

If bit 1 of counter is 1, set GPIO11 to 1, otherwise clear GPIO11to 0
If bit 2 of counter is 1, set GP1034 to 1, otherwise clear GP1034 to 0
If bit 3 of counter is 1, set GP1049 to 1, otherwise clear GP1049 to 0

Note: The GPIO data registers are accessible using a set of 4 registers (‘X’ stands
for A, B or C):

e GpioDataRegs.GPXDAT - access to data register
o GpioDataRegs.GPxSET - set those lines, which are marked with a 1
e GpioDataRegs.GPXCLEAR - clear the lines, which are marked with a 1

F2833x - Digital I/O 5-23

Lab 5 _1: Digital Output at 4 LEDs

e GpioDataRegs.GPXTOGGLE - invert the level at lines, which are marked
asl

Example to set pin GPIO5 to 1:
GpioDataRegs.GPASET.bit.GPIO5 = 1;

Build and Load

10. Click the “Rebuild Active Project ” button or perform:
Project = Rebuild All (Alt +B)

and watch the tools run in the build window. If you get errors or warnings debug as ne-
cessary.

11. Load the output file in the debugger session:
Target = Debug Active Project

and switch into the “Debug” perspective.

Test

12. Verify that in the debug perspective the window of the source code “Lab5 1.c” is hig-
hlighted and that the blue arrow for the current Program Counter position is placed under
the line *“void main(void)”.

13. Perform a real time run.
Target = Run

14. Verify that the LEDs behave as expected. In this case you have successfully finished the
first part of Lab5_1. Halt the Device (Target = Halt).

Enable Watchdog Timer

15. Now let us improve our Lab5_1 towards a more realistic scenario. Although it was very
easy to disable the watchdog for the first part of this exercise, it is not a good practice for
a ‘real’ hardware project. The watchdog timer is a security hardware unit; it is an internal
part of the F2833x and it should be used in all projects. So let us modify our code:

16. Switch back to the “C/C++” perspective. In file “Lab5_1.c” search the function
“InitSystem()” and modify the WDCR - register initialization

e Now do NOT disable the watchdog.
17. What will be the result?

e Answer: If the watchdog is enabled, our program will stop operations after a few
milliseconds somewhere in our while(1) loop. Depending on the preselected boot-

5-24 F2833x - Digital I/O

Lab 5 1: Digital Output at 4 LEDs

mode, the watchdog will force the controller into the hardware start sequence,
usually into the FLASH entry point. Since our program has been loaded in RAM
rather than in FLASH, it will not start again. As a result, our LED program will not
run any more!

e Note: The BOOT - Mode sequence of F2833x is selected with 4 GP10s (GP1087,
86, 85 and 84), which are sampled during startup. In case of the F28335ControlCard
all 4 pins are resistor pulled up to 3.3V, thus the "Jump to FLASH entry point"
option is selected by default. At the Peripheral Explorer Board pin GP1084 can be
forced to GND by closing jumper J3 (“Boot-2”) at the XDS100 module (“M1”) of
the Peripheral Explorer Board; this will select the option "SCI-A boot loader". All
remaining boot start options are not available for the combination
F28335ControlCard + Peripheral Explorer Board.

18. Click the “Rebuild All” button or perform:
Project = Rebuild Active Project
19. Load the output file in the debugger session:
Target = Debug Active Project
and switch back into the “Debug” perspective.
20. Perform a real time run.
Target 2 Run

Our LED code should not work any more! This is a sign that the F2833x has been RESET by
a watchdog overflow.

Service the Watchdog Timer

21. To enable the watchdog timer was only half of the task to use it properly. Now we have
to deal with it in our code. This means that if our control loop runs as expected, the
watchdog, although it is enabled, should never trigger a RESET. How can we achieve
this? Answer: We have to execute the watchdog reset key sequence somewhere in our
control loop. The key sequence consists of two write instructions into the WDKEY-
register, a 0x55 followed by a OXAA.

e Switch back to “C/C++” perspective and inspect file “Lab5_1.c”. Look for function
“delay_loop()” and uncomment the four lines:

EALLOW,;
SysCtrIRegs.WDKEY = 0x55;
SysCtrIRegs.WDKEY = 0xAA,;
EDIS;

Note: The C-Macro “EALLOW?” will open the access to certain CPU core registers,
including the Watchdog-Registers. The Macro “EDIS” will disable this access.

F2833x - Digital I/O 5-25

Lab 5 _1: Digital Output at 4 LEDs

22. Click the “Rebuild All”” button or perform:

Project = Rebuild Active Project
23. Load the output file in the debugger session:

Target = Debug Active Project
and switch back into the “Debug” perspective.
24. Perform a real time run.

Target 2 Run

25. Now our LED control code should run again as expected. The watchdog is still active
but due to our key sequence it will not trigger a RESET unless the F2833x code crashes.
Hopefully this will never happen!

END of Lab5 1

5-26 F2833x - Digital I/O

Lab 5_2: Digital Output (modified)

Lab 5 2: Digital Output (modified)

Let’s modify the code of Lab5_1. Instead of showing the four least significant bits of
variable "counter” as in Lab5_1, let us now produce a “running” LED from left to
right and vice versa (known as a “Knight Rider”):

Lab Exercise 5 2 @

Modify the C -source — code to:

« switch 4 LEDs at GPIO9, GPIO11, GPI034
and GPI1049 sequentially on and off
* use a software time delay from Lab5 1

GPIO9 GPI1011 GPI1034 GPIO49

Step 1
Step 2 |]:D Step 6
Step 3 D]] Step 5
Step 4 |:|:|]

Procedure

Modify Code and Project File

1. Open the source code “Lab5_1.c” from project Lab5.pjt in C:\DSP2833x_V4\Labs\Lab5
and save itas “Lab5_2.c”.

2. Exclude file “Lab5_1.c” from build. Right click at Lab5 1.c in the project window
and enable “Exclude File(s) from Build". Add the new source code file to your
project:

3. Modify the code inside the “Lab5 2.c” according to the new objective. Variable
“counter” is no longer needed, so remove it.

4. Rebuild and test as you have done in Lab5_1.
END of Lab 5_2

F2833x - Digital I/O 5-27

Lab 5_3: Digital Input

Lab 5 3: Digital Input

Objective

Now let us add some digital input function to our code. On the Peripheral Explorer Board,
the digital lines GPIO12 to GPIO15 are inputs from a 4-bit hexadecimal encoder device
(SW2). This device generates a 4-bit number between binary “0000” and “1111”, depending
on its position.

The objective of Lab5 3 is to read the status of this hexadecimal encoder and display it at
LEDs LD1 (GPIO9), LD2 (GPIO11), LD3 (GPIO34) and LD4 (GP1049) of the Peripheral
Explorer Board.

Lab 5 3: Digital Input (GPIO 15...12) @

Objective:

* a4 bit hex encoder connected to GP1015...GPIO12

e 4 LED's connected to GPIO9, GPIO11, GPI0O34 and
GPI0O49

 read the status of encoder and display it at the LEDs

Project - Files :

1 C - source file: “Lab5_3.c”

2. Register Definition File:
“DSP2833x_GlobalVariableDefs.c”

3. Linker Command File:
“28335_RAM_Ink.cmd”

4, Runtime Library: “rts2800_fpu32.lib”

Procedure

Modify Code and Project File

1. Open the source code “Lab5 1.c” from project “Lab5” in
C:\DSP2833x_V4\Labs\Lab5 and save itas “Lab5_3.c”.

2. Exclude file “Lab5_2.c” from build. Right click at Lab5_2.c in the project
window and select “ Exclude File(s) from Build”.

3. Modify Lab5 3.c. Remove variable "counter”. Keep the function calls to
“InitSystem()” and “Gpio_select()”. Inside the endless while(1)-loop, modify the
control loop as needed. Just copy the current value from input GPIO12 (encoder
bit 0) to output GPIO9 (LED1) and so on.

5-28 F2833x - Digital I/O

Lab 5_3: Digital Input

4. What about the watchdog? Recall that we serviced the watchdog inside
“delay_function()” - it would be unwise to remove this function call from our
control loop!

Build, Load and Test

5. Build, Load and Test as you have done in previous exercises.

When the code is running, turn the hex-encoder switch at the Peripheral Explorer
Board. Each clockwise turn should increment the binary pattern at the 4 LEDs,
an anti clockwise turn should decrement the pattern.

END of Lab 5_3

F2833x - Digital I/O 5-29

Lab 5_4: Digital In- and Output

Lab 5 4: Digital In- and Output

Objective

Now let us combine Lab5_1 and Lab5_ 3! That means your task is to control the speed of
your “LED”- counter code (Lab5_1) by the current status of the 4-bit hex encoder. It inputs a
value between 0 and 15. For example, we can use this number to change the input parameter
for function “delay_loop()” to generate a time interval between 100 milliseconds (hex-
encoder = 0) and 1.6 seconds (hex-encoder = 15).

» Mix between Lab5 1 and LAB5_3:

Lab 5 4: Digital In- and Output @

 change the loop — speed of Lab5_1 depending of
the status of the hex — encoder.

* If hex — encoder reads “0000”, set the time period
for the LED update to approximately 100 ms.

* If hex - encoder reads “1111”, set the time period for
the LED update to approximately 1.6 seconds.

* Adjust the period for all other encoder values
accordingly.

Modify Code and Project File

1.

Open the source code “Lab5 1.c” from project Lab5.pjt in
C:\DSP2833x_V4\Labs\Lab5 and save itas “Lab5 4.c”.

Exclude file “Lab5_3.c” from build. Right click at Lab5 3.c in the project
window and select “ Exclude File(s) from Build".

Modify Lab5 4.C

4.

In “main()”, modify the input parameter of the function “delay_loop()”. This
parameter defines the number of iterations of the for-loop. All you have to do is
to change the current parameter using the GPIO-inputs GPIO15...GP1012.

The best position to update the parameter for the delay loop time is inside the
endless loop of “main()”, between two steps of the LED-sequence. Recall, that
the 4-bit encoder will give you a number between 0 and 15. The task is to

F2833x - Digital I/O

generate a delay period between 100 milliseconds and 1.6 seconds. You need to
do a little bit of maths here. Assuming your DSP runs at 100 MHz, one loop of
the “for()” loop -instruction in function “delay_loop()” takes approximately 173
nanoseconds, so you need to scale the value accordingly.

Build, Load and Test

6. Build, Load and Test as you have done in previous exercises.

END of Lab5 4

F2833x - Digital I/O 5-31

Lab 5_5: Digital In- and Output Start / Stop

Lab 5 5: Digital In- and Output Start / Stop

Objective

As a final exercise in this chapter, let us add some start/stop functionality to our project. The
Peripheral Explorer Board is equipped with two push-buttons PB1 and PB2. If pushed, the
corresponding input line reads ‘0’; if not, it reads as ‘1’. Button PBL1 is wired to GPIO17 and
PB2 to GPI0O48.

The Task is:

@ to start the LED counting sequence from Lab5_4, if PB1 has been pushed.
2 to suspend the LED counting sequence, if PB2 has been pushed.
3 to resume the LED counting, if PB1 has been pushed again

Lab 5 5: Start - /Stop Control @

* Add a start/stop function to Lab5 4:

» Peripheral Explorer Board Pushbuttons:
* PB1 (GPIO17) to start/restart control code
* PB2 (GPI10O48) to stop/suspend control code

*If PB1is pushed, LED counting should start / resume
* If PB2 is pushed, LED counting should stop.

Modify Code and Project File

1. Open the source code “Lab5 4.c” from project Lab5.pjt in
C:\DSP2833x_V4\Labs\Lab5 and save itas “Lab5 5.c”.

2. Exclude file “Lab5 _4.c” from build. Right click at Lab5 4.c in the project
window and select “ Exclude File(s) from Build".
Modify Lab5 5.c

4. Inspect function “Gpio_select()” and make sure that GP1017 and GPIO48 are
initialized as input lines.

5-32 F2833x - Digital I/O

Lab 5_5: Digital In- and Output Start / Stop

5. At the beginning of Lab5 5.c add two definitions:
#define START GpioDataRegs.GPADAT.bit.GPIO17

#define STOP GpioDataRegs.GPBDAT.bit.GPIO48

Now we can use the symbols “START” and “STOP” instead of the long bit
variable names.

6. At the beginning of function “delay_loop()”, add a definition for a static variable
“run” and initialize it with 0:

static unsigned int run = 0;

This variable will later be used as a control switch. If run = 0, the control code
loop execution is stopped; If run = 1, the control code loop is enabled.

7. Inside the for()-loop of function “delay_loop()”, add a code sequence to
postpone the loop-execution as long as PB1 has not been pushed. One option is
to use a do-while construction:

do
{
EALLOW;
SysCtrIRegs.WDKEY = 0x55;
SysCtrIRegs.WDKEY = OxAA; /I service watchdog
EDIS;

if (START ==0 && STOP == 1) run =1; // run control code if PB1=0
} while (Irun);

Note: You will have to adjust the calculation of the input parameter for the
function “delay_loop()"!

8. After leaving this do-while loop, we need to check, if PB2 has been pushed. If
so, all we have to do is to set variable run = 0.

if(STOP ==0) run =0; /l suspend

With the next repetition of the for() -loop the processor will re-enter the do-
while construction and wait for a second START command.

Procedure step 7 and 8 are only one option to solve the task. You might find
other solutions even better suited.

Build, Load and Test

9. Build, Load and Test as you have done in previous exercises.

END of Lab 5 5

F2833x - Digital I/O 5-33

Lab 5_5: Digital In- and Output Start / Stop

Blank Page

5-34 F2833x - Digital I/O

	Digital Input / Output
	Introduction
	Data Memory Mapped Peripherals
	Module Topics
	The Peripheral Frames
	Digital I/O Unit
	F2833x Pin Assignment
	GPIO Input Qualification
	Summary GPIO-Registers

	F2833x Clock Module
	Watchdog Timer
	System Control and Status Register
	Low Power Mode
	Lab 5_1: Digital Output at 4 LEDs
	Objective
	Procedure
	Create a Project File
	Project Build Options
	Modify the Source Code
	Setup the control loop
	Build and Load
	Test
	Enable Watchdog Timer
	Service the Watchdog Timer

	Lab 5_2: Digital Output (modified)
	Procedure
	Modify Code and Project File

	Lab 5_3: Digital Input
	Objective
	Procedure
	Modify Code and Project File
	Build, Load and Test

	Lab 5_4: Digital In- and Output
	Objective
	Modify Code and Project File
	Modify Lab5_4.C
	Build, Load and Test

	Lab 5_5: Digital In- and Output Start / Stop
	Objective
	Modify Code and Project File
	Modify Lab5_5.c
	Build, Load and Test

