
F2833x - PWM and Capture Units 7 - 1

Introduction
Today’s electronic systems are described using terms such as “direct digital control”, “digital
power supply”, “digital power converters” and so on. A core feature of all these applications
is the ability to generate different series of digital pulse patterns to control power electronic
switches based on the results of sophisticated numerical calculations. The F283xx family
provides such hardware units; several pulse width modulation (PWM) output signals, along
with time measurements units (“Capture Units”).

In Chapter 6 we have already implemented a time base unit, using the CPU core timers 0 to
2. Although these units are also hardware based time units, they are only able to 'signal' the
end of a pre-defined period. On such an event, an interrupt service routine could be requested
to start and perform desired activities by a software sequence. While this scenario is
sufficient for most time-based software activities, it is not suitable for hardware related
actions, such as switching the control line of an output stage from passive to active. In this
case we need much more precise and automatic response to the actuator control lines, based
on different events on the timeline. This is where PWM - lines come into the play.

The main applications of PWM are:

• Digital Motor Control (DMC)

• Control of switching pulses for Digital Power Supply (DPS) systems

• Analogue Voltage Generators

Later we will discuss these main application areas in more detail. The F2833x is equipped
with different and independent numbers of PWM channels; a F28335, for example, has 6
PWMs.

The F2833x is also able to perform time measurements using hardware signals. With the
help of independent edge detector state machines, called ‘Capture Units’ we can measure the
time difference between edges to determine the speed of a rotating shaft in revolutions per
minute or the active duty cycle of a feedback signal.

A third hardware part of the Control System is called a ‘Quadrature Encoder Pulse’ -unit
(QEP). This is a unit that is used to derive the speed and direction information of a rotating
shaft directly from hardware signals from incremental encoders or resolvers.

Our lab series Lab 7-1 to Lab 7-9 will include the most important operating modes of a
PWM signal. A typical requirement in control loop calculations is the operation using
complex numbers, which are translated according to Euler's law into sine and cosine
components. Instead of calculating a new sine-value each time we need one, we can access a
look-up table, which is already available inside the F283xx! This is exactly what we will do
in Lab 7- 9 (“Generate a pulse width modulated sine wave signal”) to implement a practical
example.

 F2833x PWM, Capture and QEP

Module Topics

7 - 2 F2833x - PWM and Capture Units

Module Topics
F2833x PWM, Capture and QEP ... 7-1

Introduction ... 7-1

Module Topics ... 7-2

ePWM Block Diagram .. 7-3

ePWM Time Base Unit .. 7-4

ePWM Phase Synchronisation .. 7-5

Timer Operating Modes .. 7-6

Time Base Registers .. 7-7

Lab 7_1: Generate an ePWM signal ... 7-11

Lab 7_2: Generate a 3 - phase signal system .. 7-16

Purpose of Pulse Width Modulation ... 7-19

ePWM Compare Unit .. 7-21

ePWM Action Qualifier Unit ... 7-24

Lab 7_3: A 1 kHz with variable pulse width ... 7-30

Lab 7_4: a pair of complementary 1 kHz-Signals ... 7-32

Lab 7_5: Independent Modulation on ePWM1A / 1B ... 7-34

ePWM Dead Band Module .. 7-38

Lab 7_6: Dead Band Unit on ePWM1A / 1B .. 7-43

ePWM Chopper Module .. 7-46

Lab 7_7: Chopped Signals at ePWM1A / 1B .. 7-50

ePWM Over Current Protection .. 7-52

Lab 7_8: Trip Zone protection with TZ6 ... 7-56

ePWM Interrupt Sources ... 7-61

Lab7_9: ePWM Sine Wave Modulation .. 7-65

eCAP Capture Module .. 7-71

Capture Units Registers .. 7-74

Lab7_10: ePWM1A 1 kHz captured by eCAP1 ... 7-79

Enhanced QEP module ... 7-82

Infrared Remote Control ... 7-84

Lab7_11: eCAP4 to receive a RC5 IR-signal .. 7-87

 ePWM Block Diagram

F2833x - PWM and Capture Units 7 - 3

ePWM Block Diagram
Each enhanced Pulse Width Modulation (ePWM) unit is controlled by its own logic block, as
shown in Slide 7_2 below. This logic is able both to automatically generate signals on
different time events and also to request various interrupt services from the F2833x PIE
interrupt system, to support its operational modes.

7 7 -- 22

ePWM Block DiagramePWM Block Diagram

1616--BitBit
TimeTime--BaseBase

CounterCounter

CompareCompare
LogicLogic

ActionAction
QualifierQualifier

DeadDead
BandBand

PWMPWM
ChopperChopper

TripTrip
ZoneZone

Shadowed

CompareCompare
RegisterRegister

Shadowed

PeriodPeriod
RegisterRegister

ClockClock
PrescalerPrescaler

Shadowed

CompareCompare
RegisterRegister

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0
AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0

TZSEL . 15 - 0

EPWMxAEPWMxA

EPWMxBEPWMxBSYSCLKOUTSYSCLKOUT

TZyTZy

EPWMxSYNCIEPWMxSYNCI EPWMxSYNCOEPWMxSYNCO

TBCLKTBCLK

A unique feature of an ePWM - module is its ability to start the Analogue to Digital
Converter (ADC) without software interaction, directly from an internal hardware event. A
common microcontroller would have to request an interrupt service to do the same - the
F2833x does this automatically. We will use this feature in the next module!

Note: There are two basic operating modes of the ePWM system: (1) standard ePWM 16-bit
mode and (2) 24-bit High Resolution PWM mode (HRPWM). For now we will discuss the
16-bit mode.

The purpose of an ePWM unit is to generate a single ended signal or a pair of output signals,
called EPWMxA and EPWMxB, which are related to each other. The lower case letter x is a
placeholder for the number of the ePWM unit, e.g. 1…6.

Note: to generate a physical output signal on the F2833x we have to set the multiplex
registers for the I/O ports accordingly - please refer to Chapter 5!

As you can see from Slide 7-2, to generate a physical output signal we will have to setup a
few units: time base, compare logic, action qualifier, dead band unit, chopper and trip zone.
On first glance this looks cumbersome. However, it does allow us to setup a range of
different operating modes, all of which can be used in modern digital control. So, let us
make use of it!

ePWM Time Base Unit

7 - 4 F2833x - PWM and Capture Units

ePWM Time Base Unit
The central block of an ePWM unit is a 16-bit timer (register "TBCTR"), with signal
SYSCLKOUT as its time-base. In Chapter 5 we initialized the core to run at 100 MHz or 150
MHz, depending on the external clock of the F2833x. This frequency sets the time-base for
all ePWM units.

7 7 -- 33

ePWM TimeePWM Time--Base ModuleBase Module

1616--BitBit
TimeTime--BaseBase

CounterCounter

CompareCompare
LogicLogic

ActionAction
QualifierQualifier

DeadDead
BandBand

PWMPWM
ChopperChopper

Shadowed

CompareCompare
RegisterRegister

Shadowed

PeriodPeriod
RegisterRegister

ClockClock
PrescalerPrescaler

Shadowed

CompareCompare
RegisterRegister

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0
AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUTSYSCLKOUT

EPWMxSYNCIEPWMxSYNCI EPWMxSYNCOEPWMxSYNCO

TBCLKTBCLK

TripTrip
ZoneZone

TZSEL . 15 - 0

EPWMxAEPWMxA

EPWMxBEPWMxB

TZyTZy

A clock prescaler (register TBCTL, bits 12 to 7) can be used to reduce the input counting
frequency by a selectable factor between 1 and 1792.

Register TBPRD defines the length of a period of an output signal, in multiples of the time-
period of the input signal.

Another unique feature of the F2833x is its “shadow” functionality of operating registers, in
the case of ePWM units available for compare register A, B and period register. For some
applications it is necessary to modify the values inside a compare or period register, every
period. The advantage of the background registers is that we can prepare the values for the
next period in the current one. Without a background function we would have to wait for the
end of the current period, and then trigger a high prioritized interrupt. Sometimes this form
of scheduling will miss its deadline…

 ePWM Phase Synchronisation

F2833x - PWM and Capture Units 7 - 5

ePWM Phase Synchronisation
Two hardware signals "SYNCI" (synch in) and "SYNCO" (synch out) can be used to
synchronize ePWM units to each other. For example, we could define one ePWM unit as a
"master" to generate an output signal "SYNCO" each time the counter equals period. Two
more ePWM units could be initialized to recognize this signal as "SYNCI" and start
immediately counting, each time they receive this signal. In such way we have established a
synchronous set of 3 ePWM channels. But we can do even better. By using another register
called "TBPHS" we can introduce a phase shift between master, slave 1 and slave 2, an
absolute necessity for three-phase control systems.

7 7 -- 44

ePWM Phase SynchronizationePWM Phase Synchronization

SyncInSyncIn

SyncOutSyncOut

CTR=zeroCTR=zero
CTR=CMPBCTR=CMPB

XX

EnEn

o
o

o

o
o

ooφφ=120=120°°
PhasePhase . EPWM2AEPWM2A

EPWM2BEPWM2B

SyncInSyncIn

SyncOutSyncOut

CTR=zeroCTR=zero
CTR=CMPBCTR=CMPB

XX

EnEn

o
o

o

o
o

ooφφ=240=240°°
PhasePhase . EPWM3AEPWM3A

EPWM3BEPWM3B

SyncInSyncIn

SyncOutSyncOut

CTR=zeroCTR=zero
CTR=CMPBCTR=CMPB

XX

EnEn

o
o

o

o
o

ooφφ=0=0°°
PhasePhase . EPWM1AEPWM1A

EPWM1BEPWM1B

φφ=120=120°°

φφ=120=120°°

φφ=240=240°°

Ext. SyncIn
(optional)

To eCAP1
SyncIn

Slide 7-4 shows such an example, where register TBCNT of ePWM2 and ePWM3 are
preloaded with a start value that corresponds to 120° and 240° respectively. In this example
ePWM1 has been initialized as master to generate SYNCO each time the counter register
equals zero. With the enabled phase input feature for ePWM2 and ePWM3 the two channels
operate as slave 1 and slave 2 and will load their counter registers TBCNT with numbers
stored in the corresponding phase registers TBPHS.

Example:

• ePWM1 counts from 0 to 6000. TBPRD = 6000

• ePWM2 register TBPHS = 2000

• ePWM3 register TBPHS = 4000

Timer Operating Modes

7 - 6 F2833x - PWM and Capture Units

Timer Operating Modes
Each ePWM module is able to operate in one of 3 different counting modes, selected by bits
1 and 0 of register TBCTL:

• count up mode

• count down mode

• count up and down mode

7 7 -- 55

ePWM TimeePWM Time--Base Count ModesBase Count Modes
TBCTRTBCTR

TBCTRTBCTR

TBCTRTBCTR

TBPRDTBPRD

TBPRDTBPRD

TBPRDTBPRD

Count Up ModeCount Up Mode

Count Down ModeCount Down Mode

Count Up and Down ModeCount Up and Down Mode

AsymmetricalAsymmetrical
WaveformWaveform

AsymmetricalAsymmetrical
WaveformWaveform

SymmetricalSymmetrical
WaveformWaveform

Which of the three modes is used is mostly determined by the application. The first two
operating modes are called "Asymmetrical" because in of the shape of the counting pattern
from 0 to TBPRD (count up) or from TBPRD to 0 (count down). Also, in a three phase
system, one could define three different timing events between 0 and TBPRD to switch a
phase output signal to "ON" and to use the match between TBCNT and TBPRD to switch
"OFF" all three phases simultaneously, thus generating an asymmetrical shape of the switch
signals.

In "Symmetrical" waveform mode, the register TBCNT starts from zero to count up until it
equals TBPRD. Then TBCNT turns direction to count down back to zero to finish a counting
period.

 Time Base Registers

F2833x - PWM and Capture Units 7 - 7

Time Base Registers
To initialize the time base for one of the ePWM units it is necessary to initialize a first group
of registers, shown in slide 7-6:

7 7 -- 66

ePWM TimeePWM Time--Base Module RegistersBase Module Registers

NameName DescriptionDescription StructureStructure
TBCTLTBCTL TimeTime--Base ControlBase Control EPwmEPwmxRegs.TBCTL.allRegs.TBCTL.all ==
TBSTSTBSTS TimeTime--Base StatusBase Status EPwmEPwmxRegs.TBSTS.allRegs.TBSTS.all ==
TBPHSTBPHS TimeTime--Base PhaseBase Phase EPwmEPwmxRegs.TBPHSRegs.TBPHS ==
TBCTRTBCTR TimeTime--Base CounterBase Counter EPwmEPwmxRegs.TBCTRRegs.TBCTR ==
TBPRDTBPRD TimeTime--Base PeriodBase Period EPwmEPwmxRegs.TBPRDRegs.TBPRD ==

To access these registers using the C programming language, we can take advantage of the
source code file "DSP2833x_GlobalVariableDefs.c", which defines all memory mapped
hardware registers as global variables. All variables are based on structure and union data
types, also already defined by Texas Instruments and included with a master header file
"DSP2833x_headers.h".

For the purpose of ePWMs this file defines 6 structures "EPwm1Regs" to "EPwm6Regs",
which include all registers that belong to one of these hardware units.

Time related registers such as the period register can be accessed directly, e.g. to define a
period of 6000 count pulses we can use:

 EPwm1Regs.TBPRD = 6000;

For control registers, such as TBCTL, the structure members have been defined as unions.
This technique allows us to access the register en bloc (union member "all") or just
individual bit groups (union member "bit"). For example, a line to write the full register
TBCTL would look like this:

 EPwm1Regs.TBCTL.all = 0x1234;

A bit field access to fields "CLKDIV" only would look like:

 EPwm1Regs.TBCTL.bit.CLKDIV = 7;

Time Base Registers

7 - 8 F2833x - PWM and Capture Units

Time Base Control Register TBCTL
The master control register for an ePWM unit is register TBCTL.

7 7 -- 77

ePWM Register TBCTLePWM Register TBCTL

Upper Register:Upper Register:

FREE_SOFTFREE_SOFT PHSDIRPHSDIR CLKDIVCLKDIV HSPCLKDIVHSPCLKDIV
15 15 -- 1414 1313 12 12 -- 1010 9 9 -- 77

TBCLK = SYSCLKOUT / (HSPCLKDIV * CLKDIV)TBCLK = SYSCLKOUT / (HSPCLKDIV * CLKDIV)

TB Clock TB Clock PrescalePrescale
000 = 000 = /1 (default)/1 (default)
001 = /2001 = /2
010 = /4010 = /4
011 = /8011 = /8
100 = /16100 = /16
101 = /32101 = /32
110 = /64110 = /64
111 = /128111 = /128

High Speed TBHigh Speed TB
Clock Clock PrescalePrescale
000 = 000 = /1/1
001 = /2 (default)001 = /2 (default)
010 = /4010 = /4
011 = /6011 = /6
100 = /8100 = /8
101 = /10101 = /10
110 = /12110 = /12
111 = /14111 = /14

Emulation Halt BehaviorEmulation Halt Behavior
00 = stop after next CTR inc/00 = stop after next CTR inc/decdec
01 = stop when:01 = stop when:

Up Mode; CTR = PRDUp Mode; CTR = PRD
Down Mode; CTR = 0Down Mode; CTR = 0
Up/Down Mode; CTR = 0Up/Down Mode; CTR = 0

1x = free run (do not stop)1x = free run (do not stop)

Phase DirectionPhase Direction
0 = count down after sync0 = count down after sync
1 = count up after sync1 = count up after sync

(HSPCLKDIV is for legacy compatibility)

FREE_SOFT:

• controls the interaction between the DSC and the JTAG - Emulator.

• if the execution sequence of the code hits a breakpoint, we can specify what
should happen with to this ePWM unit.

PHSDIR:

• specifies if this ePWM unit starts counting up or down after a SYNCIN pulse
has been seen.

• In case of a single ePWM setup with a disabled sync in feature, this bit is a
"don't care"

CLKDIV and HSPCLKDIV:

• Prescaler Bit fields to reduce the input frequency "SYSCLKOUT"

• For a 100MHz-System each pulse translates into 10 ns, for a 150MHz - System
into 6.667 ns.

 Time Base Registers

F2833x - PWM and Capture Units 7 - 9

7 7 -- 88

ePWM Register TBCTLePWM Register TBCTL

Lower Register:Lower Register:

CTRMODECTRMODESWFSYNCSWFSYNC SYNCOSELSYNCOSEL PRDLDPRDLD PHSENPHSEN
66 5 5 -- 44 33 1 1 -- 0022

Software Force Sync PulseSoftware Force Sync Pulse
0 = no action0 = no action
1 = force one1 = force one--time synctime sync

Sync Output SelectSync Output Select
(source of EPWMxSYNC0 signal)
00 = 00 = EPWMxSYNCIEPWMxSYNCI
01 = CTR = 001 = CTR = 0
10 = CTR = CMPB10 = CTR = CMPB
11 = disable 11 = disable SyncOutSyncOut

Counter ModeCounter Mode
00 = count up00 = count up
01 = count down01 = count down
10 = count up and down10 = count up and down
11 = stop 11 = stop –– freeze (default)freeze (default)

Period Shadow LoadPeriod Shadow Load
0 = load on CTR = 00 = load on CTR = 0
1 = load immediately1 = load immediately

Phase Reg. EnablePhase Reg. Enable
0 = disable0 = disable
1 = CTR = TBPHS on1 = CTR = TBPHS on

EPWMxSYNCIEPWMxSYNCI signalsignal

SWFSYNC:

• An instruction that sets this bit will immediately produce a "SYNCO" pulse from
this ePWM unit

SYNCOSEL:

• Selection of the source for the SYNCO signal.

• If no channel synchronization is used, switch off this feature

PRDLD:

• Enables (0) or disables (1) the shadow register function of TBPRD. If disabled,
all write instructions to TBPRD will directly change the period register. If
enabled, a write instruction will store a new value in shadow. With the next
event CTR = 0 the shadow value will be loaded into TBPRD automatically.

PHSEN:

• Enables (1) the preload of register TBCTR from TBPHS by a "SYNCIN"
trigger

CTRMODE:

• Defines the operating mode of this ePWM unit

Time Base Registers

7 - 10 F2833x - PWM and Capture Units

Time Base Status Register TBSTS
This register flags the current status of the ePWM unit

7 7 -- 99

ePWM Register TBSTSePWM Register TBSTS

CTRDIRCTRDIRCTRMAXCTRMAX SYNCISYNCIreserved
15 15 -- 33 0022 11

Counter Max LatchedCounter Max Latched
0 = max value not reached0 = max value not reached
1 = CTR = 0xFFFF (write 1 to clear)1 = CTR = 0xFFFF (write 1 to clear)

External Input Sync LatchedExternal Input Sync Latched
0 = no sync event occurred0 = no sync event occurred
1 = sync has occurred (write 1 to clear)1 = sync has occurred (write 1 to clear)

Counter DirectionCounter Direction
0 = CTR counting down0 = CTR counting down
1 = CTR counting up1 = CTR counting up

CTRDIR:

• Indicates, if ePWM counts up (1) or down(0)

SYNCI:

• If an SYNCI event has been seen by this ePWM unit, this bit is 1, if not, it is 0.

• Note: To clear this bit, one must write a 1 into it!

CTRMAX:

• If for some reason the 16-bit counter register TBCTR overflows, bit
"CTRMAX" will be set to 1. Under normal circumstances this should not
happen, so we can treat this bit as a security alert signal.

• Note: To clear this bit, one must write a 1 into it!

 Lab 7_1: Generate an ePWM signal

F2833x - PWM and Capture Units 7 - 11

Lab 7_1: Generate an ePWM signal
Although we have not discussed all the remaining modules inside the ePWM units,
let us start an exercise to generate a single ended ePWM output signal. We will
resume the discussion of additional modules in an ePWM unit later. The following
procedure will guide you through the task of the exercise and will give you all
necessary information.

7 7 -- 1010

Lab 7_1: Generate a 1 KHz Signal at ePWM1ALab 7_1: Generate a 1 KHz Signal at ePWM1A

• Generate a 1 KHz square wave signal at ePWM1A with a
duty cycle of 50 %

• Measure it with an oscilloscope or
• Connect the signal to an external buzzer or loudspeaker

• Registers involved:
• TBPRD: define signal frequency
• TBCTL: setup operating mode and time prescale
• AQCTLA: define signal shape for ePWM1A

Objective:Objective:

HSPCLKDIVCLKDIVT
TTBPRD

SYSCLKOUT

PWM

∗∗
∗=

2
1

Objective
The objective of this lab is to generate a square wave signal of 1 kHz at line
ePWM1A. With the help of an oscilloscope connected to header J6-1 of the
Peripheral Explorer Board, we can monitor the signal. A small external circuit
featuring a buzzer would allow us to make the signal audible. A possible schematic
is given at the end of this exercise.

Procedure

Create a new Project File
1. Using Code Composer Studio, create a new CCS project, called Lab7.pjt in

C:\DSP2833x_V4\Labs (or in another path that is accessible by you; ask your teacher
or a technician for an appropriate location!).

2. Open the file Lab6.c from C:\DSP2833x_V4\Labs\Lab6 and save it as Lab7_1.c in
C:\DSP2833x_V4\Labs\Lab7.

Lab 7_1: Generate an ePWM signal

7 - 12 F2833x - PWM and Capture Units

3. Define the size of the C system stack. In the project window, right click at project
“Lab6” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

As we did in previous labs, let us add some of the files, provided by Texas Instruments, to
the project:

4. In the C/C++ perspective, right click at project “Lab7” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source”
and link:

• DSP2833x_GlobalVariableDefs.c

5. Repeat the “Link Files to Project” step. From C:\tidcs\c28\dsp2833x\v131\
DSP2833x_common\source add:

• DSP2833x_CodeStartBranch.asm
• DSP2833x_SysCtrl.c
• DSP2833x_ADC_cal.asm
• DSP2833x_usDelay.asm
• DSP2833x_CpuTimers.c
• DSP2833x_PieCtrl.c
• DSP2833x_PieVect.c
• DSP2833x_DefaultIsr.c

6. From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link to project “Lab7”:

• DSP2833x_Headers_nonBIOS.cmd

Project Build Options
7. We also have to extent the search path of the C-Compiler for include files. Right

click at project “Lab7” and select “Properties”. Select “C/C++ Build”, “C2000
Compiler”, “Include Options”. In the box: “Add dir to #include search path”, add the
following lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include

C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Close the Property Window by Clicking <OK>.

 Lab 7_1: Generate an ePWM signal

F2833x - PWM and Capture Units 7 - 13

Build, Load and Test
8. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

9. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

10. Verify that in the debug perspective the window of the source code “Lab7_1.c” is

high-lighted and that the blue arrow for the current Program Counter position is
placed under the line “void main(void)”.

11. Perform a real time run.

Target  Run

If the code does not work as it did in Lab6, do not continue with the next steps! Go back and
try to find out which step of the procedure you missed.

Modify Source Code

12. In CCS, switch to the “C/C++” perspective. In function "Gpio_select()", set multip-

lex register line GPIO0 to enable ePWM1A as output signal.

13. In “main()”, just after the call to the function "Gpio_select()", call a new function

"Setup_ePWM1A()". Also, add a new function prototype at the beginning of
“Lab7_1.c”:

void Setup_ePWM1A(void);

14. At the end of Lab7_1.c, add the definition of the new function "Setup_ePWM1A()".

We will use this function to initialize ePWM1 to generate a 1 kHz square wave sig-
nal. We have to initialize the following registers:

• EPwm1Regs.TBCTL
• EPwm1Regs.TBPRD
• EPwm1Regs.AQCTLA

To setup the registers we can use either the "all"-member of the register union or the individ-
ual bit field member "bit". An instruction to "all" would require us to calculate a hexadecim-
al number for all 16 bits. By using the "bit" - structure we can leave the task to calculate the
correct logical and/or -instruction to set or clear individual bit fields with the C-compiler. As

Lab 7_1: Generate an ePWM signal

7 - 14 F2833x - PWM and Capture Units

an example, an instruction to setup the operating mode to "up/down"-mode would look like
this:

• EPwm1Regs.TBCTL.bit.CTRMODE = 2;

Furthermore, we have to calculate the value for register TBPRD. If we use the "up/down" -
counting operating mode for ePWM1A, the formula is:

HSPCLKDIVCLKDIVf
fTBPRD

PWM

SYSCLKOUT

∗∗
∗=

2
1

The factor 1/2 must be used in "up/down operating mode. Remember that TBPRD is a 16-
bit register, therefore the maximum number for TBPRD is (216 -1) or 65535.

Now, recall the objective is to generate a PWM signal of 1 kHz with the F28335ControlCard
running at 150 MHz. Your task is to calculate appropriate numbers for CLKDIV,
HSPCLKDIV and TBPRD.

In function "Setup_ePWM1A()" initialize:

EPwm1Regs.TBCTL.bit.CLKDIV = ?
EPwm1Regs.TBCTL.bit.HSPCLKDIV = ?
EPwm1Regs.TBCTL.bit.CTRMODE = 2; // up-down mode
EPwm1Regs.TBPRD = ?
EPwm1Regs.AQCTLA.all = 0x0006; // zero = set; period = clear

Re-Build, Load and Test
15. Now rebuild, load and test the new project. The program should still show the binary

counter from Lab6 at LEDs LD1…LD4. The new addition is a 1 kHz - signal at
output ePWM1A (header J6-1 at the Peripheral Explorer Board).

16. Use a scope to inspect this signal. It should look like:

 Lab 7_1: Generate an ePWM signal

F2833x - PWM and Capture Units 7 - 15

17. Optional exercise: experiment with different frequencies by changing the value for
register TBPRD!

18. Optional Hardware: Make your frequency audible! By adding the following
circuitry to your Peripheral Explorer Board, we can do it!

Device B1 (“Beeper”) can be a Digisound F/SMD8585JSLF (Mouser Part # 847 -
FSMD8585JS) or a Digisound F/PCW04A.

END of LAB 7_1

ePWM1A

Lab 7_2: Generate a 3 - phase signal system

7 - 16 F2833x - PWM and Capture Units

Lab 7_2: Generate a 3 - phase signal system
Now let us experiment with a 3-phase system with a phase shift of 120° and 240°
between the signals. We will use ePWM1A, ePWM2A and ePWM3A for this
exercise. Signal ePWM1A will be the master phase and ePWM2A and 3A will trail
at 120° and 240° respectively.

7 7 -- 1111

Lab 7_2: Generate a 3 phase systemLab 7_2: Generate a 3 phase system

• Generate three 1 KHz square wave signals at ePWM1A, 2A
and 3A with duty cycles of 50 % and a phase shift of 120°
and 240° between the signals

• Measure all three signals with an oscilloscope

• Registers involved:
• TBPRD: define signal frequency
• TBCTL: setup operating mode and time prescale
• AQCTLA: define signal shape for ePWM1A
• TBPHS: definition of the phase shift for 2A and 3A

Objective:Objective:

HSPCLKDIVCLKDIVT
TTBPRD

SYSCLKOUT

PWM

∗∗
∗=

2
1

Objective
The objective of this lab is to generate a set of 3 square wave signals of 1 kHz each at lines
ePWM1A, ePWM2A and ePWM3A. With the help of a 4 channel oscilloscope connected to
header J6-1, 2 and 3 of the Peripheral Explorer Board, we can visualize the signal.

Procedure

Open Project File
1. If not still open from Lab7_1, re-open project Lab7.pjt in “C/C++” - perspective.

2. Open file “Lab7_1.c” and save it as “Lab7_2.c”

3. Exclude file “Lab7_1.c” from build. Use a right mouse click at file “Lab7_1.c”, and
enable “Exclude File(s) from Build”.

 Lab 7_2: Generate a 3 - phase signal system

F2833x - PWM and Capture Units 7 - 17

Modify Source Code
4. In file “Lab7_2.c” change the function name “Setup_ePWM1A”. Since we will also

initialize ePWM2A and ePWM3A with this function, the function name is now
somewhat misleading. Change the name into “Setup_ePWM”, including the function
prototype and the calling line in the “main()” - loop.

5. In local function “Gpio_select()”, add instructions to initialize the pin functions of
GPIO2 and GPIO4 to ePWM2A and ePWM3A respectively.

6. In function “Setup_ePWM()”, repeat the initialization for ePWM1A with the same
instructions for ePWM2A and ePWM3A. Apply identical values as for ePWM1A to
the following registers:

• EPwm2Regs.TBCTL
• EPwm2Regs.TBPRD
• EPwm2Regs.AQCTLA
• EPwm3Regs.TBCTL
• EPwm3Regs.TBPRD
• EPwm3Regs.AQCTLA

If you now recompile, load and test your new code, you should get 3 identical 1 kHz -
signals with zero phase-shift between the 3 ePWM lines:

7. Now let us add the phase shift commands between ePWM1A, ePWM2A and
ePWM3A. To do so, we will have to program the phase registers of ePWM2A and
ePWM3A. Also, we must define ePWM1A as the master phase to generate a
SYNCOUT pulse each time its counter register TBCNT equals zero. For ePWM2,
we must enable a SYNCIN - pulse and also define SYNCIN as SYNCOUT to drive
it into ePWM3 unit. Recall that the period register TBPRD of ePWM1A has been
initialized with a value that corresponds to a time period of 1 millisecond. Now for
ePWM2 and ePWM3 we need a phase shift of 1/3rd and 2/3rd of that value preloaded
in register TBPHS.

Lab 7_2: Generate a 3 - phase signal system

7 - 18 F2833x - PWM and Capture Units

Summary: In function “Setup_ePWM()” add the following instructions:

EPwm1Regs.TBCTL:

• Sync Out Select: generate a signal if CTR = 0

EPwm2Regs.TBCTL:

• Set phase enable

• Sync Out Select: SYNCIN = SYNCOUT

EPwm2Regs.TBPHS:

• Load it with 1/3rd of TBPRD

• Since TBPHS is a union type, a valid access is made like this:

EPwm2Regs.TBPHS.half.TBPHS = ????? ;

Epwm3Regs.TBCTL:

• Set phase enable

EPwm3Regs.TBPHS:

• Load TBPHS with 2/3rd of TBPRD

Build, Load and Test
8. Now build, load and test the modified project. Using an oscilloscope you should see

3 time shifted signals on ePWM1A, ePWM2A and ePWM3A:

END OF LAB 7_2

 Purpose of Pulse Width Modulation

F2833x - PWM and Capture Units 7 - 19

Purpose of Pulse Width Modulation
In Lab7_1 and Lab7_2 we created square wave signals with a pulse duty cycle of 50% low
and 50% high. We are also able to produce a sequence of time-shifted signals on a group of
output signals. But so far, we are still not able to change or “to modulate” the width of the
pulses - even though this hardware unit is called “Pulse Width Modulation”. This modulation
is based on another set of control registers of a unit called “Compare Module”.

Before we discuss the compare module, let us look into the technical background and
purpose of PWM.

7 7 -- 1212

What is Pulse Width Modulation?What is Pulse Width Modulation?

 PWM is a scheme to represent a PWM is a scheme to represent a
signal as a sequence of pulsessignal as a sequence of pulses
 fixed carrier frequencyfixed carrier frequency
 fixed pulse amplitudefixed pulse amplitude
 pulse width proportional to pulse width proportional to

instantaneous signal amplitudeinstantaneous signal amplitude
 PWM energy PWM energy ≈≈ original signal energyoriginal signal energy

t

Original SignalOriginal Signal
T

t

PWM representationPWM representation

PWM is nothing more than a digital output signal with binary amplitude, 0 or 1. In technical
terms, the voltage at this output pin is either 0V or 3.3V. However, we can setup a point
within a period, at which we switch the output from 0 to 3.3V and vice versa. By changing
this set-point between 0 and 100% of the period, we can adjust the duty cycle of the output
signal.

With a PWM signal we can represent any analogue output signal as a series of digital pulses!
All we need to do with this pulse series is to integrate it (with a simple low pass filter) to
imitate the desired signal. This way we can build a sine wave shaped output signal. The more
pulses we use for one period of the desired signal, the more precisely we can imitate it. We
speak very often of two different frequencies, the PWM-frequency (or sometimes “carrier
frequency”) and the desired signal frequency.

A lot of practical applications have an internal integrator. For example the windings of an
electrical motor are perfectly suited to behave as a low-pass filter.

Purpose of Pulse Width Modulation

7 - 20 F2833x - PWM and Capture Units

7 - 13

Why use PWM with Power Switching
Devices?

 Desired output currents or voltages are known
 Power switching devices are transistors

 Difficult to control in proportional region
 Easy to control in saturated region

 PWM is a digital signal  easy for DSP to output

PWM approx.
of desired
signal

DC Supply

Desired
signal to
system

?
DC Supply

Unknown Base Signal Base Signal known with PWM

PWM

One of the most used applications of PWM is (A) Digital Motor Control (DMC) and (B)
Digital Power Supply (DPS) - sometimes also called “Switched Power Supply”.

Why is that? Answer: The overall goal is to control electrical drives by inducing harmonic
voltages and currents into the windings of the motor. This is done to avoid electromagnetic
distortions of the environment and to achieve a high power factor. To induce a sine wave
shaped signal into the windings of a motor we would have to use an amplifier to achieve
high currents. The simplest amplifier is a standard NPN or PNP transistor that proportionally
amplifies the base current into the collector current. The problem is, for high currents we
cannot force the transistor into its linear region; this would generate a lot of thermal losses
and likely to exceed its maximum power dissipation.

The solution is to use this transistor in its static switch states only (On: Ice = Icesat, Off: Ice =
0). In these states, a transistor has its minimum power dissipation. AND: by adapting the
switch pattern of a PWM (recall: amplitude is 1 or 0 only) we can induce a sine wave shaped
current!

Environmentally friendly power supply units use switching technologies to increase the
efficiency factor of traditional power supply units. Instead of converting a lot of primary
energy just in pure thermal energy, these techniques, known as “Buck”- or “Boost” -
converters, allow customers to build reduce the package of their goods and more important
to help save our environment.

 ePWM Compare Unit

F2833x - PWM and Capture Units 7 - 21

ePWM Compare Unit
The module to control the active phase of a pulse pattern and the position of the switching
points in a PWM is called the “Compare Unit”, highlighted in the next slide:

7 7 -- 1414

ePWM Compare ModuleePWM Compare Module

1616--BitBit
TimeTime--BaseBase

CounterCounter

CompareCompare
LogicLogic

ActionAction
QualifierQualifier

DeadDead
BandBand

PWMPWM
ChopperChopper

Shadowed

CompareCompare
RegisterRegister

Shadowed

PeriodPeriod
RegisterRegister

ClockClock
PrescalerPrescaler

Shadowed

CompareCompare
RegisterRegister

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0
AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUTSYSCLKOUT

EPWMxSYNCIEPWMxSYNCI EPWMxSYNCIEPWMxSYNCI

TBCLKTBCLK

TripTrip
ZoneZone

TZSEL . 15 - 0

EPWMxAEPWMxA

EPWMxBEPWMxB

TZyTZy

Its functionality is based on a pair of registers, called “Compare Register A and B” (CMPA
and CMPB). Note that there is no relationship between the letters A and B in these registers
and the naming of the two output signals in the lower right corner, EPWMxA and EPWMxB.
This naming convention is a little bit misleading, it would have been better to use different
names such as CMP1 and CMP2, but the decision was made by Texas Instruments.

Depending on the pre-selected operating mode of the ePWM unit, it is possible to define 2 or
4 events within a period of the PWM - frequency, by choosing the appropriate values in
CMPA and/or CMPB.

Have you kept in mind these operating modes? If not, please review Slide 7-5. Here is a
summary:

• count up mode
• count down mode
• count up and down mode

In Lab7_1 and Lab7_2 we used the up/down mode to generate the 1 kHz signal. We have
used two events to change the voltage level on the output line:

• counter register is zero (TBCNT = 0)
• counter register is equal to period register (TBCNT = TBPRD)

Now we can use 2 or 4 more events:

ePWM Compare Unit

7 - 22 F2833x - PWM and Capture Units

7 7 -- 1515

ePWM Compare Event WaveformsePWM Compare Event Waveforms
TBCTRTBCTR

TBCTRTBCTR

TBCTRTBCTR

TBPRDTBPRD

TBPRDTBPRD

TBPRDTBPRD

Count Up ModeCount Up Mode

Count Down ModeCount Down Mode

Count Up and Down ModeCount Up and Down Mode

AsymmetricalAsymmetrical
WaveformWaveform

AsymmetricalAsymmetrical
WaveformWaveform

SymmetricalSymmetrical
WaveformWaveform

CMPACMPA

CMPACMPA

CMPACMPA

CMPBCMPB

CMPBCMPB

CMPBCMPB

..

..

....

.. = compare events are fed to the Action Qualifier Module= compare events are fed to the Action Qualifier Module

Instead of using 0 or TBPRD we now can use up to 4 more points per period to trigger an
action. What action? Well, the type of action will be defined in another module, coming
next. For now let us summarize the Compare Unit registers:

7 7 -- 1616

ePWM Compare Module RegistersePWM Compare Module Registers

NameName DescriptionDescription StructureStructure
CMPCTLCMPCTL Compare ControlCompare Control EPwmEPwmxRegs.CMPCTL.allRegs.CMPCTL.all ==
CMPACMPA Compare ACompare A EPwmEPwmxRegs.CMPARegs.CMPA ==
CMPBCMPB Compare BCompare B EPwmEPwmxRegs.CMPBRegs.CMPB ==

While CMPA and CMPB are just number registers to specify the point of action relatively to
the counter register, CMPCTL controls the operation of the shadow registers behind CMPA
and CMPB. Do you recall the purpose of “Shadow” registers? Shadows or Background

 ePWM Compare Unit

F2833x - PWM and Capture Units 7 - 23

registers can be used to prepare a new value for the next coming period while the current
period is still running an may still rely on the value in the foreground.

7 7 -- 1717

ePWM Compare Control RegisterePWM Compare Control Register
EPwmEPwmxRegs.CMPCTLRegs.CMPCTL

66 55 44 1 1 -- 00

LOADBMODELOADBMODE LOADAMODELOADAMODEreserved

3 3 -- 22

SHDWBMODESHDWBMODE SHDWAMODESHDWAMODE

CMPA and CMPB Operating ModeCMPA and CMPB Operating Mode
0 = shadow mode;0 = shadow mode;

double buffer w/ shadow registerdouble buffer w/ shadow register
1 = immediate mode;1 = immediate mode;

shadow register not usedshadow register not used

CMPA and CMPB Shadow Load ModeCMPA and CMPB Shadow Load Mode
00 = load on CTR = 000 = load on CTR = 0
01 = load on CTR = PRD01 = load on CTR = PRD
10 = load on CTR = 0 or PRD10 = load on CTR = 0 or PRD
11 = freeze (no load possible)11 = freeze (no load possible)

SHDWBFULLSHDWBFULL

15 15 -- 1010 99 88

SHDWAFULLSHDWAFULL

77

reservedreserved

CMPA and CMPB Shadow Full FlagCMPA and CMPB Shadow Full Flag
(bit automatically clears on load)
0 = shadow not full0 = shadow not full
1 = shadow full1 = shadow full

LOADxMODE:

• define the hardware event, which will copy a value from background into
the active foreground register

SHDWxMODE:

• enable (0) or disable (1) the background update mode. If disabled, all write
instructions will immediately change the value in register CMPA or CMPB

SHDWxFULL:

• read only status field. If shadow is full (1) and the hardware copies the value
into foreground, the bit is cleared automatically

For most applications it is highly recommended to use this shadow feature, since it eases the
urgency of accesses to the CMP registers, when we change these values on a cycle-by-cycle
base, sometimes called “on the fly”.

After a hardware reset, or by default, shadow mode is enabled and LOADxMODE is set to
“load on CTR=0”; If we don’t initialize CMPCTL at all, the default mode will be active.

ePWM Action Qualifier Unit

7 - 24 F2833x - PWM and Capture Units

ePWM Action Qualifier Unit
Now let us inspect another unit, which we need to generate a series of pulses at EPWMxA
and EPWMxB - the Action Qualifier Module.

7 7 -- 1818

ePWM Action Qualifier ModuleePWM Action Qualifier Module

1616--BitBit
TimeTime--BaseBase

CounterCounter

CompareCompare
LogicLogic

ActionAction
QualifierQualifier

DeadDead
BandBand

PWMPWM
ChopperChopper

Shadowed

CompareCompare
RegisterRegister

Shadowed

PeriodPeriod
RegisterRegister

ClockClock
PrescalerPrescaler

Shadowed

CompareCompare
RegisterRegister

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0
AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUTSYSCLKOUT

EPWMxSYNCIEPWMxSYNCI EPWMxSYNCOEPWMxSYNCO

TBCLKTBCLK

TripTrip
ZoneZone

TZSEL . 15 - 0

EPWMxAEPWMxA

EPWMxBEPWMxB

TZyTZy

We can initialize this unit by a set of two control registers, AQCTLA for output line A and
AQCTLB for line B. For each of the 6 events on a timescale (Zero-match; CMPA-up, CMPB
- up, Period, CMPA - down and CMPB - down) we can specify a certain action at the
corresponding signal line:

• set line to high (rising edge)

• clear line to low (falling edge)

• toggle the line (low to high OR high to low)

• do nothing (ignore this event)

Furthermore we can also force the corresponding line to a certain level by executing a
software instruction in one of two software force registers. In most cases, the latter option is
not used, because it cannot be synchronized with other hardware activities of the PWM unit.
Sometimes however, especially for emergency routines, it is welcome to have such a force
option.

The next slide summarizes the available options for the Action Qualifier Unit. The icons
used in this slide will also be used in the following slides to highlight some popular control
patterns for PWM systems.

 ePWM Action Qualifier Unit

F2833x - PWM and Capture Units 7 - 25

7 7 -- 1919

ePWM Action Qualifier ActionsePWM Action Qualifier Actions

ZZ
↓↓

ZZ
↑↑

ZZ
XX

ZZ
TT

CACA
↓↓

CACA
↑↑

CACA
XX

CACA
TT

CBCB
↓↓

CBCB
↑↑

CBCB
XX

CBCB
TT

PP
↓↓

PP
↑↑

PP
XX

PP
TT

SWSW
↓↓

SWSW
↑↑

SWSW
XX

SWSW
TT

Do NothingDo Nothing

Clear LowClear Low

Set HighSet High

ToggleToggle

S/WS/W
ForceForce

EPWMEPWM
OutputOutput
ActionsActions

TimeTime--Base Counter equals:Base Counter equals:

ZeroZero CMPACMPA CMPBCMPB TBPRDTBPRD

Independent Duty Cycle on line A and B
The first example uses the lines A and B in count-up mode. The duty cycles are
independently controlled by CMPA for line A and CMPB for line B.

7 7 -- 2020

Independent Modulation on EPWMA / BIndependent Modulation on EPWMA / B

ZZ
↑↑

PP
XX

CBCB
XX

CACA
↓↓

ZZ
↑↑

PP
XX

CBCB
XX

CACA
↓↓

ZZ
↑↑

PP
XX

ZZ
↑↑

PP
XX

CBCB
↓↓

CACA
XX

ZZ
↑↑

PP
XX

CBCB
↓↓

CACA
XX

ZZ
↑↑

PP
XX

TBCTRTBCTR

TBPRDTBPRD

..

EPWMAEPWMA

EPWMBEPWMB

ePWM Action Qualifier Unit

7 - 26 F2833x - PWM and Capture Units

Moving Pulse on EPWMA
This example uses EPWMB just to indicate half of the period of the PWM - frequency.
CMPA and CMPB are both used to control

(1) the position and

(2) the size of the pulse on line EPWMxA

7 7 -- 2121

Moving Pulse on EPWMAMoving Pulse on EPWMA

CACA
↑↑

CBCB
↓↓

CACA
↑↑

CBCB
↓↓

ZZ
TT

ZZ
TT

ZZ
TT

TBCTRTBCTR

TBPRDTBPRD

..

EPWMAEPWMA

EPWMBEPWMB

 ePWM Action Qualifier Unit

F2833x - PWM and Capture Units 7 - 27

Independent modulation of two pulses
Here both lines EPWMA and EPWMB carry a control signal. EPWMA is solely controlled
by CMPA and is always centered on the period match event. By reducing the difference
between CMPA and TBPRD we can reduce the size of the pulse, by extending the difference
the pulse will grow towards 100%.

Register CMPB is used to control the pulse size of EPWMB independently of EPWMA. In
this example output pulse EPWMB is also center aligned on the period match event.

7 7 -- 2222

Independent Modulation on EPWMA / BIndependent Modulation on EPWMA / B

TBCTRTBCTR

TBPRDTBPRD

CACA
↑↑

CACA
↓↓

CACA
↑↑

CACA
↓↓

CBCB
↑↑

CBCB
↓↓

CBCB
↑↑

CBCB
↓↓

EPWMAEPWMA

EPWMBEPWMB

There are many more application examples and operating modes than those, which we
discussed in the previous slides, especially when you recall typical 3-phase systems with
their well known complementary switching patterns.

Let us postpone these industrial applications for now and focus on what we have learned so
far. To perform an exercise with the basic pulse sequences shown above, we will have to
include the Action Qualifier Unit (AQU) into our exercises.

We have not discussed the layout of the control registers for the AQU. The group of registers
is shown on the next slide.

ePWM Action Qualifier Unit

7 - 28 F2833x - PWM and Capture Units

Action Qualifier Registers

7 7 -- 2323

ePWM Action Qualifier Module RegistersePWM Action Qualifier Module Registers

NameName DescriptionDescription StructureStructure
AQCTLAAQCTLA AQ Control Output AAQ Control Output A EPwmEPwmxRegs.AQCTLA.allRegs.AQCTLA.all ==
AQCTLBAQCTLB AQ Control Output BAQ Control Output B EPwmEPwmxRegs.AQCTLB.allRegs.AQCTLB.all ==
AQSFRCAQSFRC AQ S/W ForceAQ S/W Force EPwmEPwmxRegs.AQSFRC.allRegs.AQSFRC.all ==
AQCSFRCAQCSFRC AQ Cont. S/W ForceAQ Cont. S/W Force EPwmEPwmxRegs.AQCSFRC.allRegs.AQCSFRC.all ==

Action Control Register A and B

7 7 -- 2424

Action Qualifier Control RegisterAction Qualifier Control Register
EPwmEPwmxRegs.AQCTLRegs.AQCTLy (y = A or B)

ZROZROCBUCBU CADCAD CAUCAU PRDPRD
1 1 -- 00

CBDCBD
15 15 -- 1212

reserved

3 3 -- 225 5 -- 447 7 -- 669 9 -- 8811 11 -- 1010

00 = do nothing (action disabled)00 = do nothing (action disabled)
01 = clear (low)01 = clear (low)
10 = set (high)10 = set (high)
11 = toggle (low 11 = toggle (low →→ high; high high; high →→ low)low)

Action whenAction when
CTR = CMPBCTR = CMPB

on DOWN Counton DOWN Count

Action whenAction when
CTR = CMPBCTR = CMPB
on UP Counton UP Count

Action whenAction when
CTR = CMPACTR = CMPA

on DOWN Counton DOWN Count

Action whenAction when
CTR = CMPACTR = CMPA
on UP Counton UP Count

Action whenAction when
CTR = 0CTR = 0

Action whenAction when
CTR = PRDCTR = PRD

 ePWM Action Qualifier Unit

F2833x - PWM and Capture Units 7 - 29

Software Forcing Registers
This register allows forcing an output line into a defined state. “One-Time” stands for the
duration of the current period of the PWM - frequency.

7 7 -- 2525

Action Qualifier SW Force RegisterAction Qualifier SW Force Register
EPwmEPwmxRegs.AQSFRCRegs.AQSFRC

ACTSFAACTSFARLDCSFRLDCSF OTSFBOTSFB ACTSFBACTSFB OTSFAOTSFA
1 1 -- 0015 15 -- 88

reserved

224 4 -- 33557 7 -- 66

AQSFRC Shadow Reload OptionsAQSFRC Shadow Reload Options
00 = load on event CTR = 000 = load on event CTR = 0
01 = load on event CTR = PRD01 = load on event CTR = PRD
10 = load on event CTR = 0 or CTR = PRD10 = load on event CTR = 0 or CTR = PRD
11 = load immediately (from active reg.)11 = load immediately (from active reg.)

OneOne--Time S/W Force on Output B / ATime S/W Force on Output B / A
0 = no action0 = no action
1 = single 1 = single s/ws/w force eventforce event

Action on OneAction on One--Time S/W Force B / ATime S/W Force B / A
00 = do nothing (action disabled)00 = do nothing (action disabled)
01 = clear (low)01 = clear (low)
10 = set (high)10 = set (high)
11 = toggle (low 11 = toggle (low →→ high; high high; high →→ low)low)

“Continuous Force” will hold the line permanently in the selected state.

7 7 -- 2626

Continuous SW Force RegisterContinuous SW Force Register
EPwmxRegs.AQCSFRCEPwmxRegs.AQCSFRC

CSFACSFACSFBCSFB
1 1 -- 0015 15 -- 44

reserved

3 3 -- 22

Continuous S/W Force on Output B / AContinuous S/W Force on Output B / A
00 = forcing disabled00 = forcing disabled
01 = force continuous low on output01 = force continuous low on output
10 = force continuous high on output10 = force continuous high on output
11 = forcing disabled11 = forcing disabled

Lab 7_3: A 1 kHz with variable pulse width

7 - 30 F2833x - PWM and Capture Units

Lab 7_3: A 1 kHz with variable pulse width
Now let us experiment with a variable pulse width signal. The starting point is again Lab7_1.
We will now use CpuTimer0 as a time-base to change the pulse width of the 1 kHz signal
once every 100 milliseconds between 0 and 100 %.

7 7 -- 2727

Lab 7_3: 1 KHz Signal with variable pulse Lab 7_3: 1 KHz Signal with variable pulse
width at ePWM1Awidth at ePWM1A

• Generate a 1 KHz square wave signal at ePWM1A with a
variable duty cycle between 0 and 100%

• Measure the pulse with an oscilloscope

• Registers involved:
• TBPRD: define signal frequency
• TBCTL: setup operating mode and time prescale
• CMPA: setup the pulse width for ePWM1A
• AQCTLA: define signal shape for ePWM1A

Objective:Objective:

HSPCLKDIVCLKDIVT
TTBPRD

SYSCLKOUT

PWM

∗∗
∗=

2
1

Objective
The objective of this lab is to generate a square wave signal of 1 kHz at line ePWM1A. With
the help of an oscilloscope connected to header J6-1 of the Peripheral Explorer Board, we
can monitor the signal. Using CPU - Timer 0, we will change CMPA between 0 and TBPRD
to generate a pulse width between 100 and 0%.

Procedure

Open Project File
1. In the “C/C++” perspective of CCS open or re-open project Lab7.pjt.

2. Open file “Lab7_1.c” and save it as “Lab7_3.c”

3. Exclude file “Lab7_2.c” from build. Use a right mouse click at file “Lab7_2.c”, and
enable “Exclude File(s) from Build”.

 Lab 7_3: A 1 kHz with variable pulse width

F2833x - PWM and Capture Units 7 - 31

4. In file “Lab7_3.c”, edit the function “Setup_ePWM1A()”. We will again use count
up/down mode, so we can keep the existing setup for bit field TBCTL.CTRMODE.
However, now we would like to set ePWM1A to 1 on “CMPA - up match” and to
clear ePWM1A on event “CMPA - down match”. Change the setup for register
AQCTLA accordingly!

5. In the function “Setup_ePWM1A()” add a line to initialize CMPA to 0, which will
define a pulse width of 100%:

EPwm1Regs.CMPA.half.CMPA = 0;

6. In “main()”, change the function call “ConfigCpuTimer()” to define a period of 100
microseconds for timer 0:

ConfigCpuTimer(&CpuTimer0, 150, 100);

7. CpuTimer0 is still active from Lab exercise Lab6. It has been initialized to request
an interrupt service once every 100 microseconds. Now we can use its interrupt
service routine “cpu_timer0_isr()” to increment the value in register CMPA until it
reaches the value in TBPRD - thus we will change the pulse width gradually from
100% to 0%. If you like, you can add a second sequence to increase the pulse width
of ePWM1A again back to 100%.

Note: All registers of ePWM1 are read- and writable. To compare the current value
of CMPA against TBPRD you can use:

if (EPwm1Regs.CMPA.half.CMPA < EPwm1Regs.TBPRD) …

Build, Load and Test
8. Now build, load and test the modified project. A screenshot of signal ePWM1A

could look like this:

Result: The pulse width of your signal should change gradually between 100% and 0 %.

END of LAB 7_3

Lab 7_4: a pair of complementary 1 kHz-Signals

7 - 32 F2833x - PWM and Capture Units

Lab 7_4: a pair of complementary 1 kHz-Signals
Most power electronic systems require pairs of PWM pulse series to control two power
switches in such a way, that if one switch is on (conducting), the other switch is off (open-
circuit). In the following exercise you will modify Lab7_3 to generate such a pair of output
pulses at ePWM1A and ePWM1B. Again we will use CpuTimer0 as a time-base to change
the pulse width of the 1 kHz signal every 100 milliseconds between 0 and 100 %.

7 7 -- 2828

Lab 7_4: a pair of complementary 1 KHz Lab 7_4: a pair of complementary 1 KHz
signals at ePWM1A and ePWM1Bsignals at ePWM1A and ePWM1B

• Generate a 1 KHz square wave signal at ePWM1A with a
variable duty cycle between 0 and 100%

• Generate a complementary signal at ePWM1B
• Measure the pulses with an oscilloscope

• Registers involved:

• TBPRD: define signal frequency
• TBCTL: setup operating mode and time prescale
• CMPA: setup the pulse width for ePWM1A / 1B
• AQCTLB: define signal shape for ePWM1B
• AQCTLA: define signal shape for ePWM1A

Objective:Objective:

Objective
The objective of this lab is to generate a square wave signal of 1 kHz at line ePWM1A and a
second signal at ePWM1B with opposite voltage levels. With the help of an oscilloscope
connected to header J6-1 of the Peripheral Explorer Board, we can monitor the signal. Based
on CPU - Timer 0, we will change CMPA between 0 and TBPRD to generate a pulse width
between 100 and 0%.

Procedure

Open Project File
1. If not still open from Lab7_3, re-open project Lab7.pjt in the “C/C++” perspective

of Code Composer Studio.

2. Open file “Lab7_3.c” and save it as “Lab7_4.c”

3. Exclude file “Lab7_3.c” from build. Use a right mouse click at file “Lab7_3.c”, and
enable “Exclude File(s) from Build”.

 Lab 7_4: a pair of complementary 1 kHz-Signals

F2833x - PWM and Capture Units 7 - 33

4. In file “Lab7_4.c” edit function “Gpio_select()”. In the multiplex block enable line
GPIO1 to drive ePWM1B.

5. Rename function “Setup_ePWM1A()” to “Setup_ePWM1()”, because we will now
initialize both line A and B with this function. Also, rename the function prototype at
the beginning of “Lab7_4.c” and the function call in “main()”.

6. In “Setup_ePWM1()”, add a line to initialize register EPwm1Regs.AQCTLB. Recall
that we initialized EPwm1Regs.AQCTLA to set ePWM1A on CMPA - up and to
clear ePWM1A on CMPA - down match. For register EPwm1Regs.AQCTLB we
will have to modify that setup to generate a complementary signal at ePWM1B.

Build, Load and Test
7. Now build, load and test the modified project. A oscilloscope screenshot of signal

ePWM1A and ePWM1B should look like the following graph:

Result: The pulse width of your pair of signals should change gradually between 100%
and 0 %.

END of LAB 7_4

Lab 7_5: Independent Modulation on ePWM1A / 1B

7 - 34 F2833x - PWM and Capture Units

Lab 7_5: Independent Modulation on ePWM1A / 1B
Before we continue to discuss other modules of the ePWM - units we will perform an
exercise to produce the exact pulse pattern, as shown in Slide 7-29:

7 7 -- 2929

Lab 7_5: Independent Modulation ofLab 7_5: Independent Modulation of
ePWM1A and ePWM1BePWM1A and ePWM1B

TBCTRTBCTR

TBPRDTBPRD

CACA
↑↑

CACA
↓↓

CACA
↑↑

CACA
↓↓

CBCB
↑↑

CBCB
↓↓

CBCB
↑↑

CBCB
↓↓

EPWMAEPWMA

EPWMBEPWMB

Objective
The objective of this lab is to generate a square wave signal of 1 kHz at line ePWM1A and a
second signal at ePWM1B with independent modulation of the pulse widths. Signal
ePWM1A will be controlled by register CMPA and ePWM1B by register CMPB. This time
we will also use a real-time operating mode to change the values of CMPA and CMPB in a
variable watch window while the program is running.

Procedure

Open Project File
1. If not still open from Lab7_3, re-open project Lab7.pjt in the “C/C++” perspective

of Code Composer Studio.

2. Open file “Lab7_4.c” and save it as “Lab7_5.c”

3. Exclude file “Lab7_4.c” from build. Use a right mouse click at file “Lab7_4.c”, and
enable “Exclude File(s) from Build”.

4. In the function “Setup_ePWM1()”, change the line to initialize register
EPwm1Regs.AQCTLB. The new setup for AQCTLB should be to set ePWM1B on
CMPB - up and to clear ePWM1B on CMPB - down match.

 Lab 7_5: Independent Modulation on ePWM1A / 1B

F2833x - PWM and Capture Units 7 - 35

5. After the line to initialize register TBPRD, add two lines to set register CMPA and
CMPB to initially generate a pulse width of 50%.

EPwm1Regs.CMPA.half.CMPA = EPwm1Regs.TBPRD / 2;

EPwm1Regs.CMPB = EPwm1Regs.TBPRD / 2;

Note the difference between the structure data types of the two registers. This
difference is caused by a second operating mode, called “High Resolution PWM”
(HRPWM), which is available only for the signal line(s) ePWMxA. To support this
mode, TI has enhanced the structure type for register CMPA.

6. In the function “cpu_timer0_isr()”, remove all instructions to change the pulse width
by register CMPA. We will use a fixed pulse width for this exercise, initially 50%
for both ePWM1A and ePWM1B.

Build, Load and Test
7. Now build, load and test the modified project. A oscilloscope screenshot of signal

ePWM1A and ePWM1B should look like the following graph:

8. Stop the code execution:

Target  Halt, followed by

Target  Reset  Reset CPU

9. Now open a Watch Window:

View  Watch

In window “Watch 1” add the two variables:

EPwm1Regs.CMPA.half.CMPA and

EPwm1Regs.CMPB

Lab 7_5: Independent Modulation on ePWM1A / 1B

7 - 36 F2833x - PWM and Capture Units

10. Enable Real Time Debug Mode:

 Target  Advanced  Enable Silicon Realtime Mode

A warning might pop up on your screen to inform you, that you will enter a real time
data exchange debug mode now. Answer this window with “Yes”:

In the Watch window, enable the icon “Continuous Refresh”:

11. Restart your Test, this time with a new sequence:

Scripts  Realtime Emulation Control  Run_Realtime_with_Restart

Your Watch window should display the current values for CMPA and CMPB:

 Lab 7_5: Independent Modulation on ePWM1A / 1B

F2833x - PWM and Capture Units 7 - 37

Now, while the code is still running, change the values in CMPA and CMPB to 9375
and 28125 respectively.

 The result should look like this:

Try other combinations of CMPA and CMPB and verify the changes with your
scope!

12. If you are done with this exercise, it is important to fully halt the DSC. Since we are
currently running in real time mode, we have to apply a different command
sequence:

Scripts  Realtime Emulation Control  Full_Halt_with_Reset

END of LAB 7_5

ePWM Dead Band Module

7 - 38 F2833x - PWM and Capture Units

ePWM Dead Band Module

Motivation for Dead - Band
In switched mode power electronics, a typical configuration to drive a 3-phase system is
shown in the next slide (Slide 7-30). A typical system consists of a 3-phase current or
voltage injection circuit, in which a pair of power switches per phase is controlled by a
sequence of PWM - pulses. A phase current flows either from a DC bus voltage through a
top switch into the winding of a motor or via a bottom switch from the motor winding back
to ground. Of course, we have to prevent both switches from conducting at the same time.

7 7 -- 3030

Power
Switching
Devices

Three phase
outputs to drive
the motor
terminals

+

−

Upper & lower
devices can not
be turned on
simultaneously
(dead band)

PWM signal is
applied between
gate and source

DC bus
capacitor

Voltage source inverter componentsVoltage source inverter components

++

− −

A minor problem arises from the fact that power switches usually turn on faster than they
turn off. If we would apply an identical but complementary pulse pattern to the top and
bottom switch of a phase, we would end up in a short period in time with a shoot-through
situation.

Dead-band control provides a convenient means of combating current “shoot-through”
problems in a power converter. “Shoot-through” occurs when both the upper and lower
transistors in the same phase of a power converter are on simultaneously. This condition
shorts the power supply and results in a large current draw. Shoot-through problems occur
because transistors (especially FET’s) turn on faster than they turn off and also because high-
side and low-side power converter transistors are typically switched in a complimentary
fashion. Although the duration of the shoot-through current path is finite during PWM
cycling, (i.e. the transistor will eventually turn off), even brief periods of a short circuit
condition can produce excessive heating and stress the power converter and power supply.

 ePWM Dead Band Module

F2833x - PWM and Capture Units 7 - 39

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify
the PWM gate signals controlling the transistors. In the first case, the switch-on time of the
transistor gate must be increased so that it (slightly) exceeds the switch-off time.

The hard way to accomplish this is by adding a cluster of passive components such as
resistors and diodes in series with the transistor gate to act as low-pass filter to implement the
delay.

The second approach to shoot-through control separates transitions on complimentary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the F2833x offers on-chip hardware for this purpose
that requires no additional CPU overhead. Compared to the passive approach, dead-band
offers more precise control of gate timing requirements.

7 7 -- 3131

Motivation for DeadMotivation for Dead--BandBand

to power
switching
device

supply rail

gate signals are
complementary PWM

♦ Transistor gates turn on faster than they shut off
♦ Short circuit if both gates are on at same time!

ePWM Dead Band Module

7 - 40 F2833x - PWM and Capture Units

Hardware Dead Band Unit
All ePWM modules of the F2833x feature a hardware dead band unit.

7 7 -- 3232

ePWM DeadePWM Dead--Band ModuleBand Module

1616--BitBit
TimeTime--BaseBase

CounterCounter

CompareCompare
LogicLogic

ActionAction
QualifierQualifier

DeadDead
BandBand

PWMPWM
ChopperChopper

Shadowed

CompareCompare
RegisterRegister

Shadowed

PeriodPeriod
RegisterRegister

ClockClock
PrescalerPrescaler

Shadowed

CompareCompare
RegisterRegister

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0
AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUTSYSCLKOUT

EPWMxSYNCIEPWMxSYNCI EPWMxSYNCOEPWMxSYNCO

TBCLKTBCLK

TripTrip
ZoneZone

TZSEL . 15 - 0

EPWMxAEPWMxA

EPWMxBEPWMxB

TZyTZy

The block diagram shows the different options available for this module:

7 7 -- 3333

ePWM DeadePWM Dead--Band Module Block DiagramBand Module Block Diagram

Rising Rising
Edge Edge
DelayDelay

In Out

(10(10--bit bit
counter)counter)

Falling Falling
Edge Edge
DelayDelay

In Out

(10(10--bit bit
counter)counter)

°°
°° °°
0

1

°°
°° °°
0

1

°°
°° °°
0

1

°°
°° °°
1

0
°°

°°

.

.

.

.

PWMxAPWMxA -- ININ

PWMxBPWMxB -- ININ

PWMxBPWMxB

PWMxAPWMxAS1

S0

S2

S3 FED

RED

OUTOUT--MODEMODEPOLSELPOLSEL

°°
°° °°
0

1

°°
°° °°
0

1

S4

S5

ININ--MODEMODE

 ePWM Dead Band Module

F2833x - PWM and Capture Units 7 - 41

The setup of the dead-band unit is based on six switches, S0 to S5.

Although all combinations are supported, not all modes would be used in practice. The more
classical modes assume that S4=0 and S5=0 [IN_MODE] is configured such that
“EPWMxA-IN” is the source for both the falling-edge and rising-edge delay. Enhanced or
non-traditional modes can be achieved by changing the input signal source.

The corresponding pulse sequences are:

Operating mode “Active High Complementary” (AHC) is the desired one for a pair of power
switches in one phase of a 3-phase motor control system.

ePWM Dead Band Module

7 - 42 F2833x - PWM and Capture Units

Dead Band Unit Registers

7 7 -- 3434

ePWM DeadePWM Dead--Band Module RegistersBand Module Registers

Rising Edge Delay = TRising Edge Delay = TTBCLKTBCLK x DBRED x DBRED

Falling Edge Delay = TFalling Edge Delay = TTBCLKTBCLK x DBFEDx DBFED

NameName DescriptionDescription StructureStructure
DBCTLDBCTL DeadDead--Band ControlBand Control EPwmEPwmxRegs.DBCTL.allRegs.DBCTL.all ==
DBREDDBRED 1010--bit Rising Edge Delaybit Rising Edge Delay EPwmEPwmxRegs.DBREDRegs.DBRED ==
DBFEDDBFED 1010--bit Falling Edge Delaybit Falling Edge Delay EPwmEPwmxRegs.DBFEDRegs.DBFED ==

The Dead Band Control Register combines the bit fields for switches S0 to S5:

7 7 -- 3535

ePWM Dead Band Control RegisterePWM Dead Band Control Register

Polarity SelectPolarity Select
00 = active high00 = active high
01 = active low complementary (RED)01 = active low complementary (RED)
10 = active high complementary (FED)10 = active high complementary (FED)
11 = active low11 = active low

OutOut--Mode ControlMode Control
00 = disabled (DBM bypass)00 = disabled (DBM bypass)
01 = 01 = PWMxAPWMxA = no delay= no delay

PWMxBPWMxB = FED= FED
10 = 10 = PWMxAPWMxA = RED= RED

PWMxBPWMxB = no delay= no delay
11 = RED & FED (DBM fully enabled)11 = RED & FED (DBM fully enabled)

OUT_MODEOUT_MODEPOLSELPOLSEL
1 1 -- 0015 15 -- 66

reserved

3 3 -- 22

IN_MODEIN_MODE
5 5 -- 44

InIn--Mode ControlMode Control
00 = 00 = PWMxAPWMxA is source for RED and FEDis source for RED and FED
01 = 01 = PWMxAPWMxA is source for FEDis source for FED

PWMxBPWMxB is source for REDis source for RED
10 = 10 = PWMxAPWMxA is source for REDis source for RED

PWMxBPWMxB is source for FEDis source for FED
11 = 11 = PWMxBPWMxB is source for RED and FEDis source for RED and FED

 Lab 7_6: Dead Band Unit on ePWM1A / 1B

F2833x - PWM and Capture Units 7 - 43

Lab 7_6: Dead Band Unit on ePWM1A / 1B

Objective
The objective of this lab is to introduce a delay time for rising edges in a pair of
complementary PWM signals at ePWM1A and ePWM1B. The desired operating mode is
“Active High Complementary” (AHC) and the two output signals are generated from input
signal ePWM1A - in from the action qualifier unit.

7 7 -- 3636

Lab 7_6: Dead Band Unit for Lab 7_6: Dead Band Unit for
ePWM1A and ePWM1BePWM1A and ePWM1B

• Add a delay time for rising edges on a pair of
complementary signals ePWM1A and ePWM1B

• Active High Complementary (AHC) Mode
• Input signal to Dead-Band Unit is ePWM1A
• Dead Band Unit will generate ePWM1A and ePWM1B
• Use Lab7_4 as starting point

• New Registers involved:

• DBRED: Dead Band Unit Rising Edge Delay
• DBFED: Dead Band Unit Falling Edge Delay
• DBCTL: Dead Band Unit Control Register

Objective:Objective:

Procedure

Open Project File
1. If not still open from Lab7_5, re-open project Lab7.pjt in the “C/C++” perspective

of Code Composer Studio.

2. Open file “Lab7_4.c” and save it as “Lab7_6.c”

3. Exclude file “Lab7_5.c” from build. Use a right mouse click at file “Lab7_5.c”, and
enable “Exclude File(s) from Build”.

4. In file “Lab7_6.c” edit the function “cpu_timer0_isr()”. Remove all instructions to
change the pulse width by register CMPA. We will use a fixed pulse width of 50% for
this exercise, both for ePWM1A and ePWM1B.

5. In the function “Setup_ePWM1()”, initialize the pulse width to 50% of TBPRD:

Lab 7_6: Dead Band Unit on ePWM1A / 1B

7 - 44 F2833x - PWM and Capture Units

EPwm1Regs.CMPA.half.CMPA = EPwm1Regs.TBPRD / 2;

6. Next, in the function “Setup_ePWM1()”, remove the instruction to initialize register
AQCTLB. When using the dead band unit, both output pulse sequences ePWM1A and
ePWM1B are normally derived from a single input signal, usually from internal signal
ePWM1A of the action qualifier module.

7. In the function “Setup_ePWM1()”, add lines to initialize the dead band unit. Delay
times are calculated in multiples of TBCLK, which we calculated at the beginning of
Lab7_1 directly from SYSCLKOUT with CLKDIV set to 1 and HSPCLKDIV set to
2. In case of the F28335ControlCard running at 150MHz, TBCLK equals to 13.33334
ns. In our example we will setup a delay time of 10 microseconds, just as an example.

EPwm1Regs.DBRED = 750;

EPwm1Regs.DBFED = 750;

To initialize register DBCTL, we have to take into account switches S0 to S5 in Slide 7-
33:

• Set S4 and S5 to 0: this way we will solely use input signal ePWM1A from
unit AQCTL to generate the two output signals ePWM1A and ePWM1B.

• Set S2 = 0 and S3=1 to invert the polarity of signal ePWM1B against input
ePWM1A.

• Set S0 = 1 and S1 = 1 to include a time delay for both switching points.

Build, Load and Test
8. Now build, load and test the modified project. A oscilloscope screenshot of signal

ePWM1A and ePWM1B should look like this, when you trigger at the rising edge of
channel 1 (ePWM1A):

If you trigger at the falling edge of channel 1 (ePWM1A, yellow), again you should
see a delayed rising edge, now at signal ePWM1B (blue):

 Lab 7_6: Dead Band Unit on ePWM1A / 1B

F2833x - PWM and Capture Units 7 - 45

END of LAB 7_6

ePWM Chopper Module

7 - 46 F2833x - PWM and Capture Units

ePWM Chopper Module
The PWM-chopper sub module allows a high-frequency carrier signal to modulate the PWM
waveform generated by the action-qualifier and dead-band sub modules. This capability is
important if you need pulse transformer-based gate drivers to control the power switching
elements.

7 7 -- 3737

ePWMePWM Chopper ModuleChopper Module

1616--BitBit
TimeTime--BaseBase

CounterCounter

CompareCompare
LogicLogic

ActionAction
QualifierQualifier

DeadDead
BandBand

PWMPWM
ChopperChopper

Shadowed

CompareCompare
RegisterRegister

Shadowed

PeriodPeriod
RegisterRegister

ClockClock
PrescalerPrescaler

Shadowed

CompareCompare
RegisterRegister

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0
AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUTSYSCLKOUT

EPWMxSYNCIEPWMxSYNCI EPWMxSYNCOEPWMxSYNCO

TBCLKTBCLK

TripTrip
ZoneZone

TZSEL . 15 - 0

EPWMxAEPWMxA

EPWMxBEPWMxB

TZyTZy

The key functions of the PWM-chopper sub module are:

• Programmable chopping (carrier) frequency

• Programmable pulse width of first pulse

• Programmable duty cycle of second and subsequent pulses

• Can be fully bypassed if not required

 ePWM Chopper Module

F2833x - PWM and Capture Units 7 - 47

Purpose of Chopping

7 7 -- 3838

Purpose of the PWM Chopper ModulePurpose of the PWM Chopper Module

 Allows a high frequency carrier Allows a high frequency carrier
signal to modulate the PWM signal to modulate the PWM
waveform generated by the Action waveform generated by the Action
Qualifier and DeadQualifier and Dead--Band modulesBand modules

 Used with pulse transformerUsed with pulse transformer--based based
gate drivers to control power gate drivers to control power
switching elementsswitching elements

The carrier clock of the ePWM Chopper Module is derived from SYSCLKOUT. The
frequency and duty cycle of the chopper unit are controlled via the CHPFREQ and
CHPDUTY bits in the PCCTL register.

The one-shot block is a feature that provides a high-energy first pulse to ensure hard and fast
power switch turn on, while the subsequent pulses sustain pulses, ensuring the power switch
remains on. The one-shot width is programmed via the OSHTWTH bits.

The PWM-chopper sub module can be fully disabled (bypassed) via the CHPEN bit.

ePWM Chopper Module

7 - 48 F2833x - PWM and Capture Units

Waveform Diagram of Chopped Signals
The top half of the following slide (Slide 7-39) shows the simplified waveforms of the
chopping module action.

The bottom part of this slide shows a diagram of the special "one shot" mode, in which the
duration of the first pulse can be programmed independently of all sustaining pulses of the
chopper sequence.

Note: The duty-cycle control mode of the chopper module is not shown in the slide. This
additional mode allows the setup of a different pulse width other than 50%.

7 7 -- 3939

ePWMePWM Chopper WaveformChopper Waveform
EPWMxAEPWMxA

EPWMxBEPWMxB

CHPFREQCHPFREQ

EPWMxAEPWMxA

EPWMxBEPWMxB

OSHTOSHT

EPWMxAEPWMxA

Programmable
Pulse Width
(OSHTWTH)

Sustaining
Pulses

With One-Shot Pulse on EPWMxA and/or EPWMxB

The width of the first pulse can be programmed to any of 16 possible pulse width values. The
width or period of the first pulse is given by:

OSHTWTHTT SYSCLKOUTstPULSE ∗∗= 81

Where TSYSCLKOUT is the period of the system clock (SYSCLKOUT) and OSHTWTH is set
by four control bits to a value between 1 and 16.

 ePWM Chopper Module

F2833x - PWM and Capture Units 7 - 49

Chopper Mode Control Registers

7 7 -- 4040

ePWMePWM Chopper Module RegistersChopper Module Registers

NameName DescriptionDescription StructureStructure
PCCTLPCCTL PWMPWM--Chopper ControlChopper Control EPwmEPwmxRegs.PCCTL.allRegs.PCCTL.all ==

7 7 -- 4141

ePWMePWM Chopper Control RegisterChopper Control Register
EPwmEPwmxRegs.PCCTLRegs.PCCTL

CHPENCHPENCHPDUTYCHPDUTY CHPFREQCHPFREQ OSHTWTHOSHTWTH
0015 15 -- 1111

reserved

4 4 -- 117 7 -- 5510 10 -- 88

Chopper EnableChopper Enable
0 = disable (bypass)0 = disable (bypass)
1 = enable1 = enable

OneOne--Shot Pulse WidthShot Pulse Width
0000 = 8 / SYSCLKOUT0000 = 8 / SYSCLKOUT 1000 = 72 / SYSCLKOUT1000 = 72 / SYSCLKOUT
0001 = 16 / SYSCLKOUT0001 = 16 / SYSCLKOUT 1001 = 80 / SYSCLKOUT1001 = 80 / SYSCLKOUT
0010 = 24 / SYSCLKOUT0010 = 24 / SYSCLKOUT 1010 = 88 / SYSCLKOUT1010 = 88 / SYSCLKOUT
0011 = 32 / SYSCLKOUT0011 = 32 / SYSCLKOUT 1011 = 96 / SYSCLKOUT1011 = 96 / SYSCLKOUT
0100 = 40 / SYSCLKOUT0100 = 40 / SYSCLKOUT 1100 = 104 / SYSCLKOUT1100 = 104 / SYSCLKOUT
0101 = 48 / SYSCLKOUT0101 = 48 / SYSCLKOUT 1101 = 112 / SYSCLKOUT1101 = 112 / SYSCLKOUT
0110 = 56 / SYSCLKOUT0110 = 56 / SYSCLKOUT 1110 = 120 / SYSCLKOUT1110 = 120 / SYSCLKOUT
0111 = 64 / SYSCLKOUT0111 = 64 / SYSCLKOUT 1111 = 128 / SYSCLKOUT1111 = 128 / SYSCLKOUT

Chopper Chopper ClkClk Freq.Freq.
000 = SYSCLKOUT/8 000 = SYSCLKOUT/8 ÷÷ 11
001 = SYSCLKOUT/8 001 = SYSCLKOUT/8 ÷÷ 22
010 = SYSCLKOUT/8 010 = SYSCLKOUT/8 ÷÷ 33
011 = SYSCLKOUT/8 011 = SYSCLKOUT/8 ÷÷ 44
100 = SYSCLKOUT/8 100 = SYSCLKOUT/8 ÷÷ 55
101 = SYSCLKOUT/8 101 = SYSCLKOUT/8 ÷÷ 66
110 = SYSCLKOUT/8 110 = SYSCLKOUT/8 ÷÷ 77
111 = SYSCLKOUT/8 111 = SYSCLKOUT/8 ÷÷ 88

Chopper Chopper ClkClk Duty CycleDuty Cycle
000 = 1/8 (12.5%)000 = 1/8 (12.5%)
001 = 2/8 (25.0%)001 = 2/8 (25.0%)
010 = 3/8 (37.5%)010 = 3/8 (37.5%)
011 = 4/8 (50.0%)011 = 4/8 (50.0%)
100 = 5/8 (62.5%)100 = 5/8 (62.5%)
101 = 6/8 (75.0%)101 = 6/8 (75.0%)
110 = 7/8 (87.5%)110 = 7/8 (87.5%)
111 = reserved111 = reserved

Lab 7_7: Chopped Signals at ePWM1A / 1B

7 - 50 F2833x - PWM and Capture Units

Lab 7_7: Chopped Signals at ePWM1A / 1B

Objective
We will add a chopper frequency modulation to the software developed in Chapter 7. In
Lab7_5 we controlled the pulse width of ePWM1A by register CMPA independently of
ePWM1B, which was controlled by CMPB. The objective now is to chop the active phase of
the pulses at ePWM1A and ePWM1B with a higher frequency.

7 - 42

Lab 7_7: Chopper Mode Signals
add ePWM1A and ePWM1B

• The pair of complementary signals ePWM1A and ePWM1B
will be modulated by a chopper frequency of 2.344 MHz

• Chopper Mode Duty Cycle = 50%
• One shot pulse width = 800 ns
• Use Lab7_5 as starting point

Objective:

Procedure

Open Project File
1. In project "Lab7" open file “Lab7_5.c” and save it as “Lab7_7.c”

2. Exclude “Lab7_6.c” from build.

3. In the function “Setup_ePWM1()”, initialize the chopper module. Remember that
SYSCLKOUT has been set to 150 MHz (assuming an external clock of 30 MHz at the
F28335ControlCard). In register "EPwm1Regs.PCCTL":
• Set chopper frequency to 2.34375 MHz (SYSCLKOUT / 64).
• Set chopper duty cycle to 50%
• Set one shot pulse to 800 ns
• Enable the chopper unit.

 Lab 7_7: Chopped Signals at ePWM1A / 1B

F2833x - PWM and Capture Units 7 - 51

Build, Load and Test

4. Build, load and test the modified project. A oscilloscope screenshot of signal
ePWM1A and ePWM1B should look like the following graph, when you trigger at the
rising edge of channel 1 (ePWM1A):

ePWM Over Current Protection

7 - 52 F2833x - PWM and Capture Units

ePWM Over Current Protection
Each ePWM module is connected to six Trip - Zone signals (TZ1 to TZ6) that are sourced
from the GPIO MUX. These signals indicate external fault or trip conditions, and the ePWM
outputs can be programmed to respond accordingly when faults occur.

7 7 -- 4343

ePWMePWM TripTrip--Zone ModuleZone Module

1616--BitBit
TimeTime--BaseBase

CounterCounter

CompareCompare
LogicLogic

ActionAction
QualifierQualifier

DeadDead
BandBand

PWMPWM
ChopperChopper

Shadowed

CompareCompare
RegisterRegister

Shadowed

PeriodPeriod
RegisterRegister

ClockClock
PrescalerPrescaler

Shadowed

CompareCompare
RegisterRegister

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0
AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUTSYSCLKOUT

EPWMxSYNCIEPWMxSYNCI EPWMxSYNCOEPWMxSYNCO

TBCLKTBCLK

TripTrip
ZoneZone

TZSEL . 15 - 0

EPWMxAEPWMxA

EPWMxBEPWMxB

TZyTZy

Purpose of the Trip-Zone Submodule

Trip Zone signals are usually generated by over-current sensors, which set a signal if a
threshold is passed. The key functions of the Trip-Zone sub module are:

• Trip inputs TZ1 to TZ6 can be flexibly mapped to any ePWM module.
• Upon a fault condition, outputs EPWMxA and EPWMxB can be forced to one

of the following:
 High
 Low
 High-impedance
 No action taken

• One-shot trip (OSHT) mode to support major short circuits or over-current
conditions.

• Support for cycle-by-cycle tripping (CBC) for current limiting operation.
• Each trip-zone input pin can be allocated to either one-shot or cycle-by-cycle

operation.
• Interrupt generation is possible on any trip-zone pin.
• Software-forced tripping is also supported.

 ePWM Over Current Protection

F2833x - PWM and Capture Units 7 - 53

• The trip-zone sub module can be fully bypassed if it is not required.

7 7 -- 4444

TripTrip--Zone Module FeaturesZone Module Features
♦♦ TripTrip--Zone has a fast, clock independent logic path to highZone has a fast, clock independent logic path to high--impedance impedance

the the EPWMxAEPWMxA/B output pins/B output pins
♦♦ Interrupt latency may not protect hardware when responding to ovInterrupt latency may not protect hardware when responding to over er

current conditions or shortcurrent conditions or short--circuits through ISR softwarecircuits through ISR software
♦♦ Supports: #1) oneSupports: #1) one--shot trip for major short circuits or over shot trip for major short circuits or over

current conditionscurrent conditions
#2) cycle#2) cycle--byby--cycle trip for current limiting operationcycle trip for current limiting operation

DSPDSP
corecore P

W
M

O
U
T
P
U
T
S

EPWMxTZINTEPWMxTZINT

EPWM1AEPWM1A

TZ6TZ6
TZ5TZ5
TZ4TZ4
TZ3TZ3
TZ2TZ2
TZ1TZ1

OverOver
CurrentCurrent
SensorsSensors

Cycle-by-Cycle
Mode

One-Shot
Mode

EPWM1BEPWM1B
EPWM2AEPWM2A
EPWM2BEPWM2B
EPWM3AEPWM3A
EPWM3BEPWM3B
EPWM4AEPWM4A
EPWM4BEPWM4B
EPWM5AEPWM5A
EPWM5BEPWM5B
EPWM6AEPWM6A
EPWM6BEPWM6B

ePWM Trip - Zone Registers

7 7 -- 4545

ePWMePWM TripTrip--Zone Module RegistersZone Module Registers

NameName DescriptionDescription StructureStructure
TZCTLTZCTL TripTrip--Zone ControlZone Control EPwmEPwmxRegs.TZCTL.allRegs.TZCTL.all ==
TZSELTZSEL TripTrip--Zone SelectZone Select EPwmEPwmxRegs.TZSEL.allRegs.TZSEL.all ==
TZEINT Enable InterruptTZEINT Enable Interrupt EPwmEPwmxRegs.TZEINT.allRegs.TZEINT.all ==
TZFLGTZFLG TripTrip--Zone FlagZone Flag EPwmEPwmxRegs.TZFLG.allRegs.TZFLG.all ==
TZCLRTZCLR TripTrip--Zone ClearZone Clear EPwmEPwmxRegs.TZCLR.allRegs.TZCLR.all ==
TZFRCTZFRC TripTrip--Zone ForceZone Force EPwmEPwmxRegs.TZFRC.allRegs.TZFRC.all ==

ePWM Over Current Protection

7 - 54 F2833x - PWM and Capture Units

Note: Trip Zone Registers are protected! When you initialize these registers, you must
EALLOW the access, before you can change the values. After you are done, close the
protection again with an EDIS instruction!

7 7 -- 4646

ePWMePWM TripTrip--Zone Control RegisterZone Control Register
EPwmEPwmxRegs.TZCTLRegs.TZCTL

TZATZATZBTZB
1 1 -- 0015 15 -- 44

reserved

3 3 -- 22

TZ1 to TZ6 Action on TZ1 to TZ6 Action on EPWMxBEPWMxB / / EPWMxAEPWMxA
00 = high impedance00 = high impedance
01 = force high01 = force high
10 = force low10 = force low
11 = do nothing (disable)11 = do nothing (disable)

Register TZCTL is used to define the state of line ePWMxA and ePWMxB in case of an
over current signal.

7 7 -- 4747

ePWMePWM TripTrip--Zone Select RegisterZone Select Register
EPwmEPwmxRegs.TZSELRegs.TZSEL

OSHT1OSHT1OSHT5OSHT5 OSHT4OSHT4 OSHT3OSHT3 OSHT2OSHT2
88

OSHT6OSHT6
15 15 -- 1414

reserved

991010111112121313

CBC1CBC1CBC5CBC5 CBC4CBC4 CBC3CBC3 CBC2CBC2
00

CBC6CBC6
7 7 -- 66

reserved

1122334455

CycleCycle--byby--Cycle Trip ZoneCycle Trip Zone
(event cleared when CTR = 0;
i.e. cleared every PWM cycle)
0 = disable as trip source0 = disable as trip source
1 = enable as trip source1 = enable as trip source

OneOne--Shot Trip ZoneShot Trip Zone
(event only cleared under S/W
control; remains latched)
0 = disable as trip source0 = disable as trip source
1 = enable as trip source1 = enable as trip source

 ePWM Over Current Protection

F2833x - PWM and Capture Units 7 - 55

With register TZSEL, we can specify which input signal TZx should be used as a cycle-by-
cycle or as a permanent (one shot) switch off signal.

7 7 -- 4848

ePWMePWM TripTrip--Zone Enable Interrupt RegisterZone Enable Interrupt Register
EPwmEPwmxRegs.TZEINTRegs.TZEINT

OSTOST CBCCBCreserved
15 15 -- 33 0022 11

reserved

CycleCycle--byby--CycleCycle
Interrupt EnableInterrupt Enable
0 = disable0 = disable
1 = enable1 = enable

OneOne--ShotShot
Interrupt EnableInterrupt Enable
0 = disable0 = disable
1 = enable1 = enable

Register TZEINT can be used to request an interrupt service request in case of an over
current situation in a closed loop control system. We can use either a cycle - by-cycle or a
one-shot over current interrupt request, depending on the selection in register TZSEL.

What should be done in such an interrupt event? Well, this depends on the application and on
the seriousness of the fault.

Lab 7_8: Trip Zone protection with TZ6

7 - 56 F2833x - PWM and Capture Units

Lab 7_8: Trip Zone protection with TZ6

Objective
Again we will start with file "lab7_5.c". Trip Zone signal “/TZ6” is multiplexed with input
signal GPIO17, which on the Peripheral Explorer Board is connected to push button PB1. So
a very simple setup is to use this button to "simulate" an over current signal. When we push
this button, we can produce an active signal TZ6. The objective is to force both ePWM1A
and ePWM1B permanently to low in case of this button is pushed.

7 7 -- 4949

Lab 7_8: Over Current ProtectionLab 7_8: Over Current Protection
with Trip Zone Signals with Trip Zone Signals TZxTZx

• Trip Zone Signal TZ6 is connected to GPIO17, push –
button PB1at Peripheral Explorer Board

• Active Signal PB1 will force ePWM1A and ePWM1B to low
• Use Lab7_5 as starting point

• New registers in this lab:
• TZCTL: Trip Zone Control
• TZSEL: Trip Zone Select
• TZEINT: Trip Zone Enable Interrupt
• TZCLR: Trip Zone Clear Interrupt Flags

Objective:Objective:

Procedure

Open Project File
1. In project "Lab7", open file “Lab7_5.c” and save it as “Lab7_8.c”

2. Exclude the file “Lab7_7.c” from build.

3. In the function "Gpio_select()", set multiplex register GPAMUX2 to use /TZ6 for
GPIO17.

4. The in the function “Setup_ePWM1()”, initialize the trip zone registers.

 Lab 7_8: Trip Zone protection with TZ6

F2833x - PWM and Capture Units 7 - 57

• In the register "EPwm1Regs.TZCTL", set TZA and TZB to force ePWM1A and
ePWM1B to zero in case of an active TZ6.

• In the register "EPwm1Regs.TZSEL", select TZ6 as source for a one shot over
current signal. In the event of an active TZ6 (when we push button PB1), both lines
ePWM1A and ePWM1B will be switched off permanently.

• Remember that both registers are EALLOW - protected, so please do not forget to
open / close the access to these registers.

Build, Load and Test
5. Build, load and test the modified project. A oscilloscope screenshot of signal

ePWM1A and ePWM1B should show the desired pattern at ePWM1A an ePWM1B:

6. Now push button PB1. Both ePWM1A and ePWM1B should be switched off (0V)

permanently.

One Shot Mode
7. Now let us modify the code in such a way, that an active button PB1 (our trip zone

TZ6) will request a cycle-by-cycle switch off of the two signals ePWM1A and
ePWM1B.

• In the function "Setup_ePWM1()", change register "EPwm1Regs.TZSEL" so that
TZ6 will now be the source for a cycle-by-cycle over current signal, and no longer
for a one-shot procedure.

Re-Build, Load and Test
8. Build, load and test the modified project. Please do not forget to reset the DSC before

you perform a new test. This is always a good practice, since the chip will always start
from a known state! Here once more is the required sequence:

• Debug  Reset CPU

• Debug  Restart

• Debug  Go Main

Lab 7_8: Trip Zone protection with TZ6

7 - 58 F2833x - PWM and Capture Units

• Debug  Run

The scope should again show the pulse sequences at ePWM1A and ePWM1B.

When you push PB1, the signals should fade out to ground and keep this ground
voltage, as long as you keep your finger on PB1 to hold it down. But, when you
release PB1, the pulse pattern at ePWM1A and ePWM1B should reappear again.
That's why we this time initialized the F2833x to resume the PWM operation on a
cycle-by-cycle basis!

Add an Interrupt Service
Although we do not have a real power stage system and just the Peripheral Explorer Board, it
still allows us also to perform an exercise with an interrupt service in the event of an over
current situation.

9. At the beginning of "Lab7_8.c", add a prototype for an interrupt service routine:

interrupt void ePWM1_TZ_isr(void);

10. In “main()”, look for the line, in which we change the entry in PieVectTable for
TINT0. After this line, add a new line to replace the entry for EPWM1_TZINT:

PieVectTable.EPWM1_TZINT = &ePWM1_TZ_isr;

11. Interrupt EPWM1_TZINT is wired to PIE - interrupt line INT2 bit 1. We have to
enable this line. In “main()”, search for the line, where we enabled
PIEIER1.bit.INTx7. Add a new line to also enable interrupt 2.1:

PieCtrlRegs.PIEIER2.bit.INTx1 = 1;

12. Change the line "IER |= 1;" so that the two lines INT1 and INT2 are enabled:

IER |= 3;

13. In the function "Setup_ePWM1()", add a line to enable cycle-by-cycle interrupts in
register EPwm1Regs.TZEINT. Include this new instruction in the EALLOW - EDIS
block!

14. At the end of "Lab7_8.c", add the definition for function "ePWM1_TZ_isr()". In this
function include the following actions:
• Clear the two flags "CBC" and "INT" in register "EPwm1Regs.TZCLR" to re-

enable TZ6 for the next interrupt service:
 EPwm1Regs.TZCLR.bit.CBC = 1;
 EPwm1Regs.TZCLR.bit.INT = 1;

Recall that this register is EALLOW - protected!
• Now, because we "simulate" our over current signal TZ6 using a push button, the

duration of the "over-current" signal depends on how fast we can take our finger
off the button. So what happens, if we push it too long? Answer: TZ6 will trigger
a next interrupt immediately after we return from interrupt function
"ePWM1_TZ_isr()".

 Lab 7_8: Trip Zone protection with TZ6

F2833x - PWM and Capture Units 7 - 59

Remember that we have three different software activities in Lab7_8:
• “main()” - loop, where we execute the watchdog service #1;
• interrupt service "cpu_timer0_isr()", where we execute the watchdog service

#2;
• new interrupt service "ePWM1_TZ_isr()".

Because the interrupt service "cpu_timer0_isr()" has a higher priority than
"ePWM1_TZ_isr()", it will interleave with our finger triggered series of interrupt
requests. The problem is, that the “main()”-loop, and consequently our watchdog
service #1, will be locked out - as long as we keep pushing button PB1.
Solution: push quickly! Or, if you like to push slowly, include the watchdog service
#1 into the new interrupt service function "ePWM1_TZ_isr()":

SysCtrlRegs.WDKEY = 0x55;

Remember that this register is also EALLOW - protected!

• To indicate, that we are executing code from the new interrupt service routine
"ePWM1_TZ_isr", add a line to toggle LED GPIO9:

GpioDataRegs.GPATOGGLE.bit.GPIO9 = 1;

• To acknowledge that we are done with the interrupt service, in PIE group 2, add:

PieCtrlRegs.PIEACK.all = 2;

15. In the while(1) - loop of “main()”, remove the code for the binary counter at GPIO9,
GPIO11, GPIO34 and GPIO49. Because we will use GPIO9 as an indicator for the
new interrupt service function "ePWM1_TZ_isr()", we cannot use that old block of
code any more. Optionally, you can add a toggle instruction for GPIO11 to the second
interrupt service function "cpu_timer0_isr()".

16. In “main()”, change the line to setup CPU - Timer 0 back to a period of 100
milliseconds:

ConfigCpuTimer(&CpuTimer0,100,100000);

Re-Build, Load and Test
17. Build, load and test the modified project. Please do not forget to reset the device

before you perform a new test. This is always a good practice, since the chip will
always start from a known state! Here's ones more the sequence:
• Debug  Reset CPU
• Debug  Restart
• Debug  Go Main
• Debug  Run

The scope should again show the pulse sequences at ePWM1A and ePWM1B.

Lab 7_8: Trip Zone protection with TZ6

7 - 60 F2833x - PWM and Capture Units

When you push PB1 the signals should fade out to ground and keep this ground
voltage, as long as you keep your finger on PB1 to hold it down. When you release
PB1, the pulse pattern at ePWM1A and ePWM1B should reappear again.

LED LD2 (GPIO11) should toggle with a period of 100 milliseconds.

Each time you push PB1, LED LD1 (GPIO9) should toggle, as an indication of the
execution of the over current interrupt service routine "ePWM1_TZ_isr()". Please note
that button PB1 is a switch with bouncing contacts, so it might request more than one
interrupt, when you press it down.

Of course, in a real-world application, an over-current signal will never be generated
by a push button; we would use a real sensor unit to measure the current in a power
stage! Nevertheless, this exercise with the limited features of the Peripheral Explorer
Board includes all the software features of such a real-world application.

END of Lab7_8

 ePWM Interrupt Sources

F2833x - PWM and Capture Units 7 - 61

ePWM Interrupt Sources

7 7 -- 5050

ePWMePWM EventEvent--Trigger ModuleTrigger Module

1616--BitBit
TimeTime--BaseBase

CounterCounter

CompareCompare
LogicLogic

ActionAction
QualifierQualifier

DeadDead
BandBand

PWMPWM
ChopperChopper

Shadowed

CompareCompare
RegisterRegister

Shadowed

PeriodPeriod
RegisterRegister

ClockClock
PrescalerPrescaler

Shadowed

CompareCompare
RegisterRegister

CMPA . 15 - 0 CMPB . 15 - 0

TBCTR . 15 - 0

TBPRD . 15 - 0

TBCTL . 12 - 7

AQCTLB . 11 - 0
AQCTLA . 11 - 0

DBCTL . 4 - 0

PCCTL . 10 - 0
SYSCLKOUTSYSCLKOUT

EPWMxSYNCIEPWMxSYNCI EPWMxSYNCOEPWMxSYNCO

TBCLKTBCLK

TripTrip
ZoneZone

TZSEL . 15 - 0

EPWMxAEPWMxA

EPWMxBEPWMxB

TZyTZy

We still have left one module of the ePWM unit: the event trigger sub module. It
monitors various event conditions, such as

 Counter value TBCTR = zero

 Counter value TBCTR = TBPRD

 Counter value TBCTR = CMPA

 Counter value TBCTR = CMPB

and can be configured to prescale these events before issuing an Interrupt request or an ADC
start of conversion. The event-trigger prescaling logic can issue Interrupt requests and ADC
start of conversion at:

 Every event

 Every second event

 Every third event

The next slide is an example for symmetrical PWM operation mode and shows available
point of actions for interrupt service requests or to start an analogue to digital conversion:

ePWM Interrupt Sources

7 - 62 F2833x - PWM and Capture Units

7 7 -- 5151

ePWMePWM EventEvent--Trigger Interrupts and SOCTrigger Interrupts and SOC
TBCTRTBCTR

TBPRDTBPRD

EPWMAEPWMA

EPWMBEPWMB

CMPBCMPB
CMPACMPA

CTR = 0CTR = 0

CTR = PRDCTR = PRD

CTRU = CMPACTRU = CMPA

CTRD = CMPACTRD = CMPA

CTRU = CMPBCTRU = CMPB

CTRD = CMPBCTRD = CMPB

The Event-Trigger- Sub module is initialized by a set of registers:

 ETSEL - This register selects which of the possible events will trigger
 an interrupt or start an ADC conversion

 ETPS - This register programs the event prescaling options
 mentioned above.

 ETFLG - Register with flag bits to indicate the status of the selected
 and prescaled events.

 ETCLR - These bits allow you to clear the flag bits in the ETFLG
 register via software.

 ETFRC - These bits allow software forcing of an event. Useful for
 debugging or s/w intervention.

We will use one of the interrupts of the event trigger module in the next lab exercise Lab7_9
to request a change of the pulse width on a cycle by cycle base (or "on the fly") to generate a
sine wave modulated signal at ePWM1A.

 ePWM Interrupt Sources

F2833x - PWM and Capture Units 7 - 63

7 7 -- 5252

ePWMePWM EventEvent--Trigger Module RegistersTrigger Module Registers

NameName DescriptionDescription StructureStructure
ETSELETSEL EventEvent--Trigger SelectionTrigger Selection EPwmEPwmxRegs.ETSEL.allRegs.ETSEL.all ==
ETPSETPS EventEvent--Trigger PreTrigger Pre--ScaleScale EPwmEPwmxRegs.ETPS.allRegs.ETPS.all ==
ETFLGETFLG EventEvent--Trigger FlagTrigger Flag EPwmEPwmxRegs.ETFLG.allRegs.ETFLG.all ==
ETCLRETCLR EventEvent--Trigger ClearTrigger Clear EPwmEPwmxRegs.ETCLR.allRegs.ETCLR.all ==
ETFRCETFRC EventEvent--Trigger ForceTrigger Force EPwmEPwmxRegs.ETFRC.allRegs.ETFRC.all ==

7 7 -- 5353

ePWMePWM EventEvent--Trigger Selection RegisterTrigger Selection Register
EPwmEPwmxRegs.ETSELRegs.ETSEL

1515 1111 7 7 -- 44 2 2 -- 00

INTENINTEN INTSELINTSELreserved
33

SOCBSELSOCBSEL SOCASELSOCASELSOCAENSOCAENSOCBENSOCBEN

10 10 -- 8814 14 -- 1212

Enable SOCB / AEnable SOCB / A
0 = disable0 = disable
1 = enable1 = enable

EPWMxSOCBEPWMxSOCB / A Select/ A Select
000 = reserved000 = reserved
001 = CTR = 0001 = CTR = 0
010 = CTR = PRD010 = CTR = PRD
011 = reserved011 = reserved
100 = CTRU = CMPA100 = CTRU = CMPA
101 = CTRD = CMPA101 = CTRD = CMPA
110 = CTRU = CMPB110 = CTRU = CMPB
111 = CTRD = CMPB111 = CTRD = CMPB

Enable Enable EPWMxINTEPWMxINT
0 = disable0 = disable
1 = enable1 = enable

EPWMxINTEPWMxINT SelectSelect
000 = reserved000 = reserved
001 = CTR = 0001 = CTR = 0
010 = CTR = PRD010 = CTR = PRD
011 = reserved011 = reserved
100 = CTRU = CMPA100 = CTRU = CMPA
101 = CTRD = CMPA101 = CTRD = CMPA
110 = CTRU = CMPB110 = CTRU = CMPB
111 = CTRD = CMPB111 = CTRD = CMPB

ePWM Interrupt Sources

7 - 64 F2833x - PWM and Capture Units

7 7 -- 5454

ePWMePWM EventEvent--Trigger Trigger PrescalePrescale RegisterRegister
EPwmEPwmxRegs.ETPSRegs.ETPS

15 15 -- 1414 11 11 -- 1010 7 7 -- 44 1 1 -- 00

INTCNTINTCNT INTPRDINTPRDreserved
2 2 -- 33

SOCBPRDSOCBPRD SOCAPRDSOCAPRDSOCACNTSOCACNTSOCBCNTSOCBCNT

9 9 -- 8813 13 -- 1212

EPWMxSOCBEPWMxSOCB / A Counter/ A Counter
(number of events have occurred)
00 = no events00 = no events
01 = 1 event01 = 1 event
10 = 2 events10 = 2 events
11 = 3 events11 = 3 events

EPWMxSOCBEPWMxSOCB / A Period/ A Period
(number of events before SOC)
00 = disabled00 = disabled
01 = SOC on first event01 = SOC on first event
10 = SOC on second event10 = SOC on second event
11 = SOC on third event11 = SOC on third event

EPWMxINTEPWMxINT CounterCounter
(number of events have occurred)
00 = no events00 = no events
01 = 1 event01 = 1 event
10 = 2 events10 = 2 events
11 = 3 events11 = 3 events

EPWMxINTEPWMxINT PeriodPeriod
(number of events before INT)
00 = disabled00 = disabled
01 = INT on first event01 = INT on first event
10 = INT on second event10 = INT on second event
11 = INT on third event11 = INT on third event

 Lab7_9: ePWM Sine Wave Modulation

F2833x - PWM and Capture Units 7 - 65

Lab7_9: ePWM Sine Wave Modulation

Objective
The F28335ControlCARD is used in combination with the Peripheral Explorer Board to
output a sine wave signal at ePWM1A. Channel ePWM1A is set up in standard 16-bit
resolution. The generated signal is connected to a second order low pass filter with a cut-off
frequency of 105 kHz. The filter output signal can be monitored at header J11-1 (“DAC-1”)
of the Peripheral Explorer Board.

7 7 -- 5555

Lab 7_9: Sine Wave PWM signal at ePWM1ALab 7_9: Sine Wave PWM signal at ePWM1A

• Generate a sine wave modulated pulse sequence at
ePWM1A

• ePWM1A carrier frequency is 500 KHz
• Sine wave frequency is 976 Hz

Objective:Objective:

Channel ePWM1A is set up for a 500 kHz PWM frequency, ePWM1 compare down event
triggers an interrupt service routine (ISR), according to the frequency the trigger appears
every 2000 ns.

Lab7_9: ePWM Sine Wave Modulation

7 - 66 F2833x - PWM and Capture Units

The ISR with a code execution time of 630ns takes advantage of the Boot-ROM sine wave
lookup-table to calculate the next compare value for the next ePWM1A period. The lookup-
table consists of 512 values in I2Q30-format and is located at address 0x3FE000. Every ISR
call is used to read the next entry of this table, thus a full period of the resulting sine wave
takes 512 * 2000 ns = 1024 µs. The synthesized sine wave signal has a frequency of
1/1024µs = 976 Hz. Due to the type of look-up values in I2Q30-format, functions of a
library called “IQmath” are used to calculate the next value for the duty cycle.

Although we have not discussed the background of fixed-point binary mathematics and
especially of Texas Instruments IQMath yet, we will use this library in a 'black box' method.
We will resume the discussion of this mathematical approach in a later chapter of this
teaching course.

Procedure

Install IQMath
If not already installed on your PC, you will have to install the IQMath library now. The
standard installation path is "C:\tidcs\c28\IQmath":

If this library isn't available on your PC, you will have to install it first. If you are in a
classroom and you do not have administrator installation rights, ask your teacher for
assistance. You can find the installation file under number "sprc087.zip" in the utility part of
this CD-ROM or at the Texas Instruments Website (www.ti.com).

 Lab7_9: ePWM Sine Wave Modulation

F2833x - PWM and Capture Units 7 - 67

Open Project File
1. In project "Lab7" open the file “Lab7_8.c” and save it as “Lab7_9.c”

2. Exclude the file “Lab7_8.c” from build.

3. Change the Build options.

 We have to extend the preprocessors include search path. In the “C/C++” perspective,
in the project window right click at project “Lab7” and open “Properties”. In the
“C/C++ Build” category, open “Include Options:” and add a new entry:

 C:\tidcs\c28\IQmath\v15a\include

Close the “C/C++ Build” options menu with <OK>

4. Link the IQmath library to your project. Right click at project “Lab7” and select
function “Link Files to Project. Link:

C:\tidcs\c28\IQmath\v15a\lib\IQmath_fpu32.lib

5. At the beginning of "Lab7_9.c" include the header file for IQmath:

#include "IQmathLib.h"

Also at the beginning of "Lab7_9.c", add a new global variable "sine_table[512]" of
data type "_iq30" to "Lab7_9.c":

#pragma DATA_SECTION(sine_table, "IQmathTables");
_iq30 sine_table[512];

The pragma statement is a directive for the compiler to generate a new data section for
"sine_table". The linker command file "28335_RAM_lnk.cmd", which is already part
of our project, will connect the section "IQmathTables" to physical address 0x3FE000,
which is where our lookup table is stored in ROM.

6. In "Lab7_9.c" remove everything that is related to CpuTimer0, including external
function prototypes, the call to functions "InitCpuTimers()", "ConfigCpuTimer()" and
Interrupt Service Routine "cpu_timer0_isr()", including its prototype and definition. In
the while(1) loop of main, also remove all instruction related to variable
"CpuTimer0.InterruptCount".

 Also remove everything that is related to variable "counter". We do not need this
variable any more.

7. Also at the beginning of "Lab7_9.c", replace the function prototype of ISR
"ePWM1_TZ_isr()" by a new interrupt service function prototype:

interrupt void ePWM1A_compare_isr(void);

Lab7_9: ePWM Sine Wave Modulation

7 - 68 F2833x - PWM and Capture Units

8. In “main()”, remove the entry instruction to write into
"PieVectTable.EPWM1_TZINT" and add a new instruction:

 PieVectTable.EPWM1_INT = &ePWM1A_compare_isr;

PWM1 interrupts are connected to PIE group 3, bit 1. Therefore change the line to
enable PIE interrupts into:

 PieCtrlRegs.PIEIER3.bit.INTx1 = 1;

Change register IER to allow interrupts at line 3:

 IER |= 4;

9. In the while(1) - loop of main keep just the instruction to service the watchdog
instruction #1 (value 0x55) to register WDKEY. Remember that the register WDKEY
is EALLOW protected!

10. Next, in the function "Gpio_select()", just keep ePWM1A as PWM output signal.
Remove the instructions to enable lines ePWM1B and TZ6.

11. In the function "Setup_ePWM1()", change the period of ePWM1 to 500 kHz. In
up/down mode the value for TBPRD is calculated by:

HSPCLKDIVCLKDIVf
fTBPRD

PWM

SYSCLKOUT

**2
1
∗=

with CLKDIV and HSPCLKDIV both set to "divide by 1" and fSYSCLKOUT = 150MHz,
TBPRD should be initialized to 150.

12. Then in the function "Setup_ePWM1()", remove the initialization lines for registers
CMPB an AQCTLB, since we will not generate a signal at ePWM1B.

13. At the end of the function "Setup_ePWM1()", remove the code to initialize the trip
zone unit, including all instructions for registers TZCTL, TZSEL and TZEINT.

14. At the end of the function "Setup_ePWM1()", add code to initialize the Event Trigger
module. In the register "ETSEL", enable bit "INTEN" and set the bit field "INTSEL"
to select an interrupt request, if CTRD = CMPA (counter down matches CMPA). In
the register "ETPS", set bit field "INTPRD" to request an interrupt on first event.

15. At the end of "Lab7_9.c" add the definition of function "ePWM1A_compare_isr()":
interrupt void ePWM1A_compare_isr(void)
{

First define a static variable "index" and initialize it to zero. This variable will be used
as an index into lookup-table "sine_table[512]:

static unsigned int index = 0;

Next we have to service the second half of the watchdog - key sequence to register
WDKEY (value 0xAA). Remember that this register is EALLOW protected!

Now we have to calculate a new value for register CMPA. Here is the line:

 Lab7_9: ePWM Sine Wave Modulation

F2833x - PWM and Capture Units 7 - 69

EPwm1Regs.CMPA.half.CMPA =
EPwm1Regs.TBPRD -_IQsat(
_IQ30mpy((sine_table[index]+_IQ30(0.9999))/2, EPwm1Regs.TBPRD),
EPwm1Regs.TBPRD,0);

Confusing, isn't it?

Here is an attempt to explain it, should you be interested in the details:

 Recall, the difference between TBPRD and CMPA defines the pulse width of the
PWM signal. The bigger the difference, the bigger the pulse. It means that we
have to subtract a percentage value from TBPRD to define the next pulse width
and store this percent value in CMPA.

 To find that next value to be subtracted from TBPRD we have to access the sine
table. Variable "index" points to this table, which consists of 512 entries for a
unit circle of 360 degrees. The value taken from this table is in I2Q30-Format
and between 0 for sin(0), 1 for sin(90°), 0 for sin(180°), -1 for sin(270°) and
again 0 for sin(360°).

 So, we read a number between +1 and -1, which corresponds to the current
amplitude of the sine. However, we cannot use a negative number for the
calculation of a result between 0 and 100% of TBPRD. What we do is we add an
offset of +1 in the form of an IQ-number (_IQ30(0.9999)) to obtain numbers
between 0 and +2. Next we divide the result by 2 to scale it into a range between
0 and 1 (or 0% and 100%).

 Now we multiply this relative number (0 to 1) by TBPRD with a call of function
"_IQ30mpy()" . If TBPRD has been set to 100, the result will be a number
between 0 and 100.

 The function "_IQsat()" is a saturation function that will limit the first parameter
(our result) between maximum (parameter 2, TBPRD) and minimum (parameter
3, zero). To call this function is just a precaution to avoid any calculation
overflows, which could result in catastrophic output signals, where a large
positive number suddenly becomes a large negative number.

After this calculation, still inside "ePWM1A_compare_isr()", we have to increment
variable "index" and to reset it, if we are at the end of the sine_table:

index +=1;
if(index > 511) index = 0;

Finally, we have to clear the interrupt flags of the event trigger module and the PIE-
unit:

EPwm1Regs.ETCLR.bit.INT = 1;
PieCtrlRegs.PIEACK.all = 4;

Close function "ePWM1A_compare_isr()" with a closing curly brace (}).

7 - 70 F2833x - PWM and Capture Units

Build, Load and Test
16. Build, load and test the modified project. Please do not forget to reset the DSC before

you perform a new test. This is always a good practice, since the chip will always start
from a known state! Here's the sequence:
• Trace  Reset  Reset CPU
• Trace  Restart
• Trace  Run

17. A scope should show the 500 kHz-pulse sequence at ePWM1A (Peripheral Explorer
Board Jumper J6-1) and a sine wave signal of 976 Hz at DAC1 (Peripheral Explorer
Board Jumper J11-1).

End of Lab7_9

 eCAP Capture Module

F2833x - PWM and Capture Units 7 - 71

eCAP Capture Module
The enhanced Capture (eCAP) module provides measurement units, which are useful for
accurate time stamps of external events, such as rising or falling edges of digital signals.

Capture Operating Mode

7 7 -- 5656

eCAPeCAP Block Diagram Block Diagram –– Capture ModeCapture Mode

3232--BitBit
TimeTime--StampStamp

CounterCounter

Capture 1Capture 1
RegisterRegister

EventEvent
PrescalePrescale

PolarityPolarity
Select 1Select 1

PolarityPolarity
Select 2Select 2

PolarityPolarity
Select 3Select 3

PolarityPolarity
Select 4Select 4

Capture 2Capture 2
RegisterRegister

Capture 3Capture 3
RegisterRegister

Capture 4Capture 4
RegisterRegister

Ev
en

t L
og

ic
Ev

en
t L

og
ic

ECAPxECAPx
pinpin

SYSCLKOUTSYSCLKOUT

TSCTR . 31 - 0

CAP1 . 31 - 0

CAP2 . 31 - 0

CAP3 . 31 - 0

CAP4 . 31 - 0

ECCTL . 13 - 9

ECCTL . 0

ECCTL . 2

ECCTL . 4

ECCTL . 6

CAP1POLCAP1POL

CAP2POLCAP2POL

CAP3POLCAP3POL

CAP4POLCAP4POL

PRESCALEPRESCALE

The capture units allow time-based logging of external logic level signal transitions on the
capture input pins.

Devices in the F2833x family have four independent capture units; one of them is shown in
Slide 7-56 above. Each capture unit is associated with a capture input pin. An event prescaler
can be initialized to reduce the input frequency. Four polarity select bit fields define rising or
falling edges as the trigger events for capture events 1 to 4. The measurement time-base is
derived from the frequency SYSCLKOUT, in the case of the F28335ControlCard, this is 100
MHz. This signal will increment a 32-bit Time-Stamp Counter. In the event of a capture
trigger signal the current value of this counter is captured and stored in the corresponding
capture register.

Multiple identical eCAP modules can be contained in a 2833x system as shown in Slide 7-
56. The number of modules is device-dependent and is based on target application needs.

eCAP Capture Module

7 - 72 F2833x - PWM and Capture Units

7 7 -- 5757

Capture Units (Capture Units (eCAPeCAP))

 The The eCAPeCAP module timestamps transitions on a module timestamps transitions on a
capture input pincapture input pin

Timer

Timestamp
Values

Trigger

pin

Typical uses for the Capture Units are:

• Period and duty cycle measurements of pulse train signals

• Low speed measurement of a rotating machinery (e.g., toothed sprockets sensed via
Hall sensors). A potential advantage for low speed estimation is given when we use
“time capture” (32-bit resolution) instead of position pulse counting, which has a
poor resolution at slow operating speeds.

• Elapsed time measurements between position sensor pulses.

• Decoding current or voltage amplitude derived from duty cycle encoded
current/voltage sensors

Additionally, if the capture operation is not used in an application, an ePWM channel can be
used as another single ended ePWM - output channel, with 32-bit resolution for frequency
and duty cycle register setup. Since this operation mode is not the primary purpose of this
unit, it is called "Auxiliary PWM" mode.

 eCAP Capture Module

F2833x - PWM and Capture Units 7 - 73

7 7 -- 5858

Some Uses for the Capture UnitsSome Uses for the Capture Units

Problem: At low speeds, calculation of speed
based on a measured position change at
fixed time intervals produces large estimate
errors

Alternative: Estimate the speed using a measured time interval
at fixed position intervals

Signal from one
quadrature
encoder channel

 Low speed velocity estimation from incr. encoder:
 Measure the time width of a pulse

vk ≈
∆x

tk - tk-1

vk ≈ ∆t
xk - xk-1

∆x

 Auxiliary PWM generation

Auxilliary PWM Operating Mode
As a second operating mode of a capture unit, auxiliary PWM mode can be used. In this case
a single ended output PWM signal can be generated. Register CAP1 features as period
register and register CAP2 as compare register.

7 7 -- 5959

eCAPeCAP Block Diagram Block Diagram –– APWM ModeAPWM Mode

3232--BitBit
TimeTime--StampStamp

CounterCounter

PeriodPeriod
RegisterRegister

(CAP3)(CAP3)
PeriodPeriod

RegisterRegister
(CAP1)(CAP1)

CompareCompare
RegisterRegister

(CAP4)(CAP4)

CompareCompare
RegisterRegister
(CAP2)(CAP2)

PWMPWM
CompareCompare

LogicLogic ECAPECAP
pinpin

Shadowed

Shadowed

SYSCLKOUTSYSCLKOUT

TSCTR . 31 - 0

CAP1 . 31 - 0

CAP2 . 31 - 0

CAP3 . 31 - 0

CAP4 . 31 - 0

immediateimmediate
modemode

shadowshadow
modemode

shadowshadow
modemode

immediateimmediate
modemode

Capture Units Registers

7 - 74 F2833x - PWM and Capture Units

Capture Units Registers
Each of the four capture units is controlled by a set of individual registers.

7 7 -- 6060

eCAPeCAP Module RegistersModule Registers
NameName DescriptionDescription StructureStructure
ECCTL1 Capture Control 1ECCTL1 Capture Control 1 ECapECapxRegs.ECCTL1.all =Regs.ECCTL1.all =
ECCTL2 Capture Control 2ECCTL2 Capture Control 2 ECapECapxRegs.ECCTL2.all =Regs.ECCTL2.all =
TSCTRTSCTR TimeTime--Stamp CounterStamp Counter ECapECapxRegs.TSCTRRegs.TSCTR ==
CTRPHS Counter Phase OffsetCTRPHS Counter Phase Offset ECapECapxRegs.CTRPHSRegs.CTRPHS ==
CAP1CAP1 Capture 1Capture 1 ECapECapxRegs.CAP1 =Regs.CAP1 =
CAP2CAP2 Capture 2Capture 2 ECapECapxRegs.CAP2 =Regs.CAP2 =
CAP3CAP3 Capture 3Capture 3 ECapECapxRegs.CAP3 =Regs.CAP3 =
CAP4CAP4 Capture 4Capture 4 ECapECapxRegs.CAP4 =Regs.CAP4 =
ECEINT Enable InterruptECEINT Enable Interrupt ECapECapxRegs.ECEINT.allRegs.ECEINT.all ==
ECFLGECFLG Interrupt FlagInterrupt Flag ECapECapxRegs.ECFLG.allRegs.ECFLG.all ==
ECCLRECCLR Interrupt ClearInterrupt Clear ECapECapxRegs.ECCLR.allRegs.ECCLR.all ==
ECFRCECFRC Interrupt ForceInterrupt Force ECapECapxRegs.ECFRC.allRegs.ECFRC.all ==

eCAP Control Register 1

7 7 -- 6161

eCAPeCAP Control Register 1Control Register 1
ECapECapxRegs.ECCTL1Regs.ECCTL1

CAPLDENCAPLDENFREE_SOFTFREE_SOFT PRESCALEPRESCALE
15 15 -- 1414 13 13 -- 99 88

Upper Register:Upper Register:

Emulation ControlEmulation Control
00 = TSCTR stops immediately00 = TSCTR stops immediately
01 = TSCTR runs until equals 001 = TSCTR runs until equals 0
1X = free run (do not stop)1X = free run (do not stop)

Event Filter Event Filter PrescalePrescale CounterCounter
00000 = divide by 1 (bypass)00000 = divide by 1 (bypass)
00001 = divide by 200001 = divide by 2
00010 = divide by 400010 = divide by 4
00011 = divide by 600011 = divide by 6
00100 = divide by 800100 = divide by 8

11110 = divide by 6011110 = divide by 60
11111 = divide by 6211111 = divide by 62

CAP1 CAP1 –– 4 Load4 Load
on Capture Eventon Capture Event
0 = disable0 = disable
1 = enable1 = enable

 Capture Units Registers

F2833x - PWM and Capture Units 7 - 75

ECCTL1 [15-14] specify the interaction between the DSC and the JTAG emulation unit. If a
running code hits a breakpoint, these two bits define how the capture unit behaves in this
situation.

The prescaler counter in ECCTL1 [13-9] is used as an input filter of the capture signal. If set
to "00001", every other edge is used to trigger the capture unit.

ECCTL [8] is the global enable switch for the particular capture unit.

ECCTL1 [6, 4, 2, 0] define rising (0) or falling (1) edge as trigger signal for capture event 1
to 4

ECCTL1 [7, 5, 3, 1] specify absolute (0) or relative (1) time stamp mode. Absolute mode
will never clear the timestamp - counter, after the capture unit has been started. Relative
mode will clear the timestamp - counter simultaneously with the trigger event. For example,
if bits 0 and 1 are initialized to 1, the first falling edge after enabling the capture unit will
zero the timestamp-counter.

7 7 -- 6262

eCAPeCAP Control Register 1Control Register 1
ECapECapxRegs.ECCTL1Regs.ECCTL1

Lower Register:Lower Register:

CTRRST4CTRRST4 CAP4POLCAP4POL
77 33 0022

CTRRST3CTRRST3 CAP3POLCAP3POL CTRRST2CTRRST2 CAP2POLCAP2POL CTRRST1CTRRST1 CAP1POLCAP1POL
11445566

Counter Reset on Capture EventCounter Reset on Capture Event
0 = no reset 0 = no reset (absolute time stamp mode)
1 = reset after capture 1 = reset after capture (difference mode)

Capture Event PolarityCapture Event Polarity
0 = trigger on rising edge0 = trigger on rising edge
1 = trigger on falling edge1 = trigger on falling edge

Capture Units Registers

7 - 76 F2833x - PWM and Capture Units

eCAP Control Register 2

ECCTL2 [10] defines the shape of an ePWM - output signal in auxiliary PWM operation
mode to be active high (0) or active low (1). In capture operating mode, this bit is don't care.

ECTTL2 [9] selects either capture operating mode (0) or auxiliary PWM mode (1).

7 7 -- 6363

eCAPeCAP Control Register 2Control Register 2
ECapECapxRegs.ECCTL2Regs.ECCTL2

Upper Register:Upper Register:

SWSYNCSWSYNCAPWMPOLAPWMPOL CAP_APWMCAP_APWM

1010 8815 15 -- 1111

reserved

99

APWM Output PolarityAPWM Output Polarity
(valid only in APWM mode)
0 = active high output0 = active high output
1 = active low output1 = active low output

Capture / APWM modeCapture / APWM mode
0 = capture mode0 = capture mode
1 = APWM mode1 = APWM mode

Software ForceSoftware Force
Counter SynchronizationCounter Synchronization
0 = no effect0 = no effect
1 = TSCTR load of current1 = TSCTR load of current

module module and other modulesand other modules
if SYNCO_SEL bits = 00if SYNCO_SEL bits = 00

ECTTL2 [8] can be used in APWM-Mode to synchronize different capture units with each
other. In case of an active sync input signal, register TSCTR is loaded with a start value.

 Capture Units Registers

F2833x - PWM and Capture Units 7 - 77

7 7 -- 6464

eCAPeCAP Control Register 2Control Register 2
ECapECapxRegs.ECCTL2Regs.ECCTL2

Lower Register:Lower Register:

SYNCO_SELSYNCO_SEL SYNCI_ENSYNCI_EN

7 7 -- 66 33 002 2 -- 11

TSCTRSTOPTSCTRSTOP REARMREARM STOP_WRAPSTOP_WRAP CONT_ONESHTCONT_ONESHT

4455

SyncSync--Out SelectOut Select
00 = sync00 = sync--in to syncin to sync--outout
01 = CTR = PRD event01 = CTR = PRD event

generates syncgenerates sync--outout
1X = disable1X = disable

Counter SyncCounter Sync--InIn
0 = disable0 = disable
1 = enable1 = enable

Time StampTime Stamp
Counter StopCounter Stop
0 = stop0 = stop
1 = run1 = run

ReRe--armarm
(capture mode only)
0 = no effect0 = no effect
1 = arm sequence1 = arm sequence

Stop Value for OneStop Value for One--Shot Mode/Shot Mode/
Wrap Value for Continuous ModeWrap Value for Continuous Mode
(capture mode only)
00 = stop/wrap after capture event 100 = stop/wrap after capture event 1
01 = stop/wrap after capture event 201 = stop/wrap after capture event 2
10 = stop/wrap after capture event 310 = stop/wrap after capture event 3
11 = stop/wrap after capture event 411 = stop/wrap after capture event 4

Continuous/OneContinuous/One--ShotShot
(capture mode only)
0 = continuous mode0 = continuous mode
1 = one1 = one--shot modeshot mode

ECTTL2 [7-6] are used to specify the source of the sync output signal (to achieve
synchronized APWM channels). The code 00 will directly drive a sync input signal to the
sync output. Code 01 will sent a sync output signal to other capture channels, if TBCTR =
TBPRD.

ECTTL2 [5] allows the APWM sync input feature.

ECTTL2 [4] is the master switch to enable the capture counter unit.

ECTTL2 [3-0]: The continuous/one-shot block controls the start/stop and reset (zero)
functions of a Modulo 4 event counter via a mono-shot type of action that can be triggered
by the stop-value comparator and re-armed via software control.

One shot mode:

Once armed, the eCAP module waits for 1 to 4 (defined by the stop-value) capture
events before freezing both the Modulo 4 event counter and the contents of registers
CAP1 to 4 (i.e. time-stamps). Re-arming prepares the eCAP module for another
capture sequence. Also re-arming clears the Modulo 4 counter to zero and permits
loading of CAP1-4 registers again, providing that the CAPLDEN bit is set.

Continuous Mode:

In continuous mode, the Modulo 4 event counter continues to run (0->1->2->3->0,
the one-shot action is ignored, and capture values continue to be written to capture
result registers CAP1 - x in a circular buffer sequence. The wrap around value will
limit number x to the pre-selected result register.

Capture Units Registers

7 - 78 F2833x - PWM and Capture Units

eCAP Interrupt Enable Register
Interrupts can be requested based on internal events of the capture or APWM module.

ECEINT [4-1] will enable an interrupt request with capture event 1 to 4.

ECEINT [5] can be used to request an ISR in case of an overflow of the 32-bit register
TBCTR. It is important to note such an overflow when results will be subtracted in a later
calculation.

7 7 -- 6565

eCAPeCAP Interrupt Enable RegisterInterrupt Enable Register
ECapECapxRegs.ECEINTRegs.ECEINT

CTR=CMPCTR=CMP CTR=PRDCTR=PRD
77 33 0022

CTROVFCTROVF CEVT4CEVT4 CEVT3CEVT3 CEVT2CEVT2 CEVT1CEVT1
11445566

reserved

15 15 -- 88

reserved

0 = disable as interrupt source0 = disable as interrupt source
1 = enable as interrupt source1 = enable as interrupt source

CTR = CMPCTR = CMP
Interrupt EnableInterrupt Enable

CTR = PRDCTR = PRD
Interrupt EnableInterrupt Enable

CTR = OverflowCTR = Overflow
Interrupt EnableInterrupt Enable

Capture Event 3Capture Event 3
Interrupt EnableInterrupt Enable

Capture Event 1Capture Event 1
Interrupt EnableInterrupt Enable

Capture Event 4Capture Event 4
Interrupt EnableInterrupt Enable

Capture Event 2Capture Event 2
Interrupt EnableInterrupt Enable

ECEINT [7, 6] are interrupt enable bits used in APWM mode. If TBCTR matches either
register CMP or PRD, a corresponding interrupt service routine can be requested.

 Lab7_10: ePWM1A 1 kHz captured by eCAP1

F2833x - PWM and Capture Units 7 - 79

Lab7_10: ePWM1A 1 kHz captured by eCAP1

Objective
The F28335ControlCARD is used in combination with the Peripheral Explorer Board to
output a 1 kHz square wave signal with a duty cycle of 50% at ePWM1A. We will use unit
eCAP1 to measure period and duty cycle of this signal.

Note: for this exercise you will have to connect header J6-1 (ePWM1A) to header J10-1
(eCAP1) on the Peripheral Explorer Board.

Procedure

Open Project File
1. In project "Lab7" open the file “Lab7_1.c” and save it as “Lab7_10.c”

2. Exclude the file “Lab7_9.c” from build.

Edit Source File
3. In the function "Gpio_select()", switch the eCAP1 to pin GPIO24. On the Peripheral

Explorer Board we can access eCAP1 via header J10-1, which is wired to pin
GPIO24. Adjust register GPAMUX2 accordingly.

4. At the beginning of "Lab7_10.c", add a function prototype for a new local function
"Setup_eCAP1()":

void Setup_eCAP1(void);

We will also need a new interrupt service routine for eCAP1. Add a new prototype:

interrupt void eCAP1_isr(void);

5. At the end of "Lab7_10.c" add the definition of the new function "Setup_eCAP1()".
The objective is to initialize eCAP1 to capture 3 edges of signal ePWM1A:

• 1st capture: rising edge
• 2nd capture: falling edge
• 3rd capture: rising edge

For register ECCTL2:
• use continuous mode
• set wrap counter to "wrap after 4 captures"
• do not re-arm
• enable counter
• disable the sync features
• select capture mode

For register ECCTL1:

• stop TSCTR immediately on Emulation Suspend

Lab7_10: ePWM1A 1 kHz captured by eCAP1

7 - 80 F2833x - PWM and Capture Units

• prescaler : divide by 1
• enable capture load results
• edge select: CAP1 - falling ; CAP2 - rising; CAP3 - falling; CAP4 - rising
• reset TSCTR on CAP4 - event

For register ECEINT:

• enable event CAP3 interrupt request

6. In the function "main()", add a line to call function "Setup_eCAP1". The best position
is directly after the function call to "Setup_ePWM1A()".

7. Next, in the function "main()", add a line to enable eCAP1 interrupt. Recall that
eCAP1 is connected to bit 0 in PIE group 4. Also, change the code line to enable core
interrupts in register IER. For the new exercise we have to enable INT1 (CPU Timer
0) and INT4 (eCAP1).

8. In the function "main()", search for the line in which we changed the PieVectTable
entry for the CPU Timer 0 interrupt service (TINT0) and add a new line to load a new
interrupt service routine address into PieVectTable for eCAP1:

 PieVectTable.ECAP1_INT = & eCAP1_isr;

9. At the beginning of "Lab7_10.c", add two global variables:
Uint32 PWM_Period;
Uint32 PWM_Duty;

We will use the two variables to calculate the difference between CAP2 and CAP1
(duty) and CAP3 and CAP1 (period).

10. At the end of "Lab7_10.c", add the definition of the interrupt service function
"eCAP1_isr()". Add the following commands to this function:
• Clear flag "INT" in register ECCLR.
• Clear flag "CEVT3" in register ECCLR. This will re-enable the CAP3 interrupt.
• Calculate the differences:

 PWM_Duty = (int32) ECap1Regs.CAP2 - (int32) ECap1Regs.CAP1;
 PWM_Period = (int32) ECap1Regs.CAP3 - (int32) ECap1Regs.CAP1;

• Acknowledge the PIE - group interrupt 4:

PieCtrlRegs.PIEACK.all = 8;

Build, Load and Test
11. Build the modified project.

Project  Rebuild Active Project

12. Use a wire and connect header J6-1 (ePWM1A) to header J10-1 (eCAP1).

13. Load the modified code:

Target  Debug Active Project

 Lab7_10: ePWM1A 1 kHz captured by eCAP1

F2833x - PWM and Capture Units 7 - 81

14. Test the code:

Scripts  Realtime Emulation Control  Run_Realtime_with_Restart

15. Open the Watch Window and add the variables "PWM_Duty", "PWM_Period" and
"ECap1Regs.TSCTR" to it. Also click right mouse in the Watch Window and enable
"Continuous Refresh".

What do the values in "PWM_Duty" and "PWM_Period" mean? Remember that
ePWM1A is a signal of 1 kHz with a period of 1 millisecond and a pulse width of 0.5
milliseconds. Our measurement unit has a resolution of 1/150MHz = 6.667 ns.
Therefore the value of 150,000 for "PWM_Period" translates into 150,000 * 6.667 ns
= 1 millisecond.

16. Finally halt the DSC:

 Scripts  Realtime Emulation Control  Full_Halt_with_Reset

END of LAB 7_10

Enhanced QEP module

7 - 82 F2833x - PWM and Capture Units

Enhanced QEP module
The F28335 device contains to two enhanced Quadrature Encoder Positioning (eQEP)
modules. These modules are usually used as hardware support units for incremental encoder
devices.

7 7 -- 6666

What is an Incremental What is an Incremental QuadratureQuadrature
Encoder?Encoder?

A digital (angular) position sensorA digital (angular) position sensor

slots spaced θ deg. apart

photo sensors spaced θ/4 deg. apart

light source (LED)

shaft rotation

Ch. A

Ch. B

Quadrature Output from Photo Sensors

θ

θ/4

Incremental Optical Encoder

7 7 -- 6767

How is Position Determined from How is Position Determined from
QuadratureQuadrature Signals?Signals?

Ch. A

Ch. B

(00) (11)
(10) (01)(A,B) =

00

01

11

10

Quadrature Decoder
State Machine

increment
counter

decrement
counter

Position resolution is θ/4 degrees

Illegal
Transitions;

generate
phase error

interrupt

 Enhanced QEP module

F2833x - PWM and Capture Units 7 - 83

7 7 -- 6868

eQEPeQEP Block DiagramBlock Diagram

QuadratureQuadrature
DecoderDecoder

EQEPxAEQEPxA/XCLK/XCLK

EQEPxBEQEPxB/XDIR/XDIR

EQEPxIEQEPxI

EQEPxSEQEPxS

Position/CounterPosition/Counter
CompareCompare

QuadratureQuadrature
CaptureCapture

3232--Bit UnitBit Unit
TimeTime--BaseBase

QEPQEP
WatchdogWatchdog

SYSCLKOUTSYSCLKOUT

Generate the direction and
clock for the position counter
in quadrature count modeGenerate a sync output

and/or interrupt on a
position compare match

Measure the elapsed time
between the unit position events;
used for low speed measurement

Generate periodic
interrupts for velocity
calculations

Monitors the quadrature
clock to indicate proper
operation of the motion
control system

Quadrature -
clock mode

Direction -
count mode

The QEP is used (a) to estimate the speed and direction of a rotation or (b) to perform a
positioning movement.

7 7 -- 6969

eQEPeQEP ConnectionsConnections

Ch. A

Ch. B

Index
Quadrature

Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

SYSCLKOUTSYSCLKOUT

Strobe
from homing sensor

Infrared Remote Control

7 - 84 F2833x - PWM and Capture Units

Infrared Remote Control
An interesting example for the capture unit is an infrared (IR) remote receiver. IR-signals are
widely used for all kinds of handheld remote control devices, such as TV, radio tuners and
amplifiers, DVD players, satellite receivers and many others. On the Peripheral Explorer
Board an IR - sensor (TSOP32238 - http://www.vishay.com) is connected to capture unit
ECAP4 (GPIO27). This unit will be used to measure the pulse widths of each pulse in a
series sent to the IR-receiver.

IR - Protocols
Although IR-remote is widely used in consumer electronics, there are different and
incompatible protocols. In a typical living room, you will usually find a collection of
different remote control units:

Typical IR protocols are:
• RC5 code:

• designed by Philips and also used by Loewe, Bang & Olufsen, Bose,
Grundig, Marantz, Hauppauge, in model making and other areas

• 14 - Bit code to address up to 32 devices with 64 instructions each
• SIRCS/ CNTRL - S Code:

• designed by Sony
• up to 21 data bits

• DENON code:
• 16 bit transmission

• MOTOROLA - Code:
• Similar to RC5
• 11 bit transmission
•

For our exercise we will focus on RC5 code.

RC5 protocol
A RC5 protocol consists of 14 bits per transmission:

• 2 Start Bits (always '1'). Used to synchronize the transmission and to adjust the
amplification of the receiver.

• 1 Toggle Bit (alternate '1' or '0'). Level is changed each time a button is pressed. Used to
distinguish between a long duration (permanent pressing of a button) and a repetitive use
of a button.

• 5 address bits. Allow the control of up to 32 devices by the same control unit.

00
TV1

01
TV2

02
Videotext

03
Video VD

04
Video LV1

05
VCR1

06
VCR2

07
experimental

08
Sat-Receiver

09
Camera

10
Sat-Receiver 2 11

 Infrared Remote Control

F2833x - PWM and Capture Units 7 - 85

12
Video-CD

13
Camcorder 14 15

16
Audio-

Amplifier 1

17
Receiver /

Tuner

18
Audio Tape

Recorder

19
Audio-Amplifier 2 /

experimental

20
CD-Player

21
record player 22

23
DAT-Tape, MD-

Recorder

24 25 26
CDR 27

28 29
lighting

30
lighting 2

31
Telephone

00
"0"

01
"1"

02
"2"

03
"3"

04
"4"

05
"5"

06
"6"

07
"7"

08
"8"

09
"9" 10 11

12
Standby

13
Mute

14
Default Setup 15

16
Volume +

17
Volume -

18
Brightness +

19
Brightness -

20
Color +

21
Color -

22
Bass +

23
Bass -

24
Highs +

25
Highs -

26
Balance right

27
Balance left

28 29 30 31
32 33 34 35
36 37 38 39
40 41 42 43
44 45 46 47
48

Pause 49 50
<< 51

52
>>

53
Play

54
Stop

55
Record

56 57 58 59

60 61 62 63
System select

Infrared Remote Control

7 - 86 F2833x - PWM and Capture Units

The figure above shows the pattern for the "POWER" - Button of the PHILIPS universal
remote control, as supplied with the Peripheral Explorer Board. RC5 is a bi-phase code with
duration of 1778µs for a single bit. The following figure will explains the details:

 1 1 0 0 0 0 0 0 0 0 1 1 0 0

 Start -C6 T A4 A3 A2 A1 A0 C5 C4 C3 C2 C1 C0

The diagram above translates into address = 0 (TV) and command = 12
(ON/OFF/STANDBY). We will use this command in Lab7_11 to toggle LED LD2 of the
Peripheral Explorer Board each time the POWER button of the remote control is pushed.

The space between the signal edges is either 889µs or 1778µs.

The RC5 idle separator between transmissions sequences is defined as 113ms.

We will use eCAP4 unit to capture four consecutive edges, in the sequence "falling - rising-
falling - rising" and repeat this four edges capture until the end of the pulse series. After the
capture of a full command, Lab7_11 must then decode the code and in case of address = 0
and code = 12 toggle led LD2.

 Lab7_11: eCAP4 to receive a RC5 IR-signal

F2833x - PWM and Capture Units 7 - 87

Lab7_11: eCAP4 to receive a RC5 IR-signal

Objective
The F28335ControlCARD is used in combination with the Peripheral Explorer Board to
receive a RC5 sequence (Phillips-Specification) from an IR remote control unit.

Procedure

Open Project File
1. In the project "Lab7", open the file “Lab7_1.c” and save it as “Lab7_11.c”

2. Exclude the file “Lab7_10.c” from build.

3. Add the provided source code file "Lab7_11_IR.c" to your project. This file is located
in directory \Labs\Lab7.

Edit Source File
4. In file “Lab7_11.c” search the for function "Gpio_select()" and select eCAP4 function

for pin GPIO27, which is connected to the IR-receiver TSOP32238.

5. At the beginning of "Lab7_11.c", add two new function prototypes for external
functions:

extern void Calculate_IR_code(void);
extern interrupt void eCAP4_isr(void);

6. Also add a new function prototype for local function:
void Setup_eCAP4(void);

7. Add the following global variables:
Uint16 result[100]; // distances between edges
Uint16 signal_IR_ready=0; // decode switch
Uint16 IR_address; // IR device address
Uint16 IR_command; // IR command
Uint16 IR_Toggle; // status of IR - Toggle bit

8. In “main()”, after the basic initialization of the PIE vector table, add a line to load the
address of our local interrupt function "eCAP4_isr" into the PIE vector table:

PieVectTable.ECAP4_INT = &eCAP4_isr;

Remember that this memory location is EALLOW protected!

9. In “main()”, after the initialization of CPU Timer 0, add a for-loop to clear all
elements of array "result[100]".

10. Next, add a line to enable the PIE - interrupt line for eCAP4:

PieCtrlRegs.PIEIER4.bit.INTx4 = 1;

Lab7_11: eCAP4 to receive a RC5 IR-signal

7 - 88 F2833x - PWM and Capture Units

11. Modify the line to initialize register IER accordingly! Recall that eCAP4 is controlled
by line INT4!

12. In the endless while(1) loop of “main()”, after the wait construction to wait for 100
milliseconds, add the following code:

if (signal_IR_ready == 1)
{

 Calculate_IR_code();
 if(IR_command == 12) GpioDataRegs.GPATOGGLE.bit.GPIO11 = 1;
 for (i=0;i<100;i++) result[i] = 0;
 signal_IR_ready = 0;

}

13. At the beginning of “main()”, add a local integer variable "i".

14. In “main()”, after the function call to "Gpio_select()", add a function call to a new
function "Setup_eCAP4(). We will define this function shortly.

15. At the end of "Lab7_11.c", add the definition of function "Setup_eCAP4()". Take into
account:

• In register ECCTL1:
• Set Polarity for CAP1 to 4 to: falling - rising - falling - rising
• Select difference mode or "delta" mode for all 4 capture events
• Enable loading of CAP registers
• Do not use the prescale feature

• For register ECCTL2 initialize:
• Enable Capture mode
• Disable all synchronization signals
• For TSCTRSTOP select free running mode
• Select continuous mode
• Set Stop_Wrap to wrap after capture event 4

• For register ECEINT:

• Enable Interrupt after the 4th event.

Build, Load and Test
16. Build and Load the modified project.

• Project  Rebuild Active Project
• Target  Debug Active Project

17. In the “Debug” perspective, test the code:

• Scripts  Realtime Emulation Control  Run_Realtime_with_Restart

Now Use an IR-Remote control Unit with RC5 - code (Philips, Loewe) and press the
"ON/OFF" - key in front of the IR-Receiver at the Peripheral Explorer Board.

Each time you press the "POWER" - button of the remote control, LED LD2
(GPIO11) at the Peripheral Explorer Board should toggle.

	F2833x PWM, Capture and QEP
	Introduction
	Module Topics
	ePWM Block Diagram
	ePWM Time Base Unit
	ePWM Phase Synchronisation
	Timer Operating Modes
	Time Base Registers
	Time Base Control Register TBCTL
	Time Base Status Register TBSTS

	Lab 7_1: Generate an ePWM signal
	Objective
	Procedure
	Create a new Project File
	Project Build Options
	Build, Load and Test
	Modify Source Code
	Re-Build, Load and Test

	Lab 7_2: Generate a 3 - phase signal system
	Objective
	Procedure
	Open Project File
	Modify Source Code
	Build, Load and Test

	Purpose of Pulse Width Modulation
	ePWM Compare Unit
	ePWM Action Qualifier Unit
	Independent Duty Cycle on line A and B
	Moving Pulse on EPWMA
	Independent modulation of two pulses
	Action Qualifier Registers
	Action Control Register A and B
	Software Forcing Registers

	Lab 7_3: A 1 kHz with variable pulse width
	Objective
	Procedure
	Open Project File
	Build, Load and Test

	Lab 7_4: a pair of complementary 1 kHz-Signals
	Objective
	Procedure
	Open Project File
	Build, Load and Test

	Lab 7_5: Independent Modulation on ePWM1A / 1B
	Objective
	Procedure
	Open Project File
	Build, Load and Test

	ePWM Dead Band Module
	Motivation for Dead - Band
	Hardware Dead Band Unit
	Dead Band Unit Registers

	Lab 7_6: Dead Band Unit on ePWM1A / 1B
	Objective
	Procedure
	Open Project File
	Build, Load and Test

	ePWM Chopper Module
	Purpose of Chopping
	Waveform Diagram of Chopped Signals
	Chopper Mode Control Registers

	Lab 7_7: Chopped Signals at ePWM1A / 1B
	Objective
	Procedure
	Open Project File
	Build, Load and Test

	ePWM Over Current Protection
	Purpose of the Trip-Zone Submodule
	ePWM Trip - Zone Registers

	Lab 7_8: Trip Zone protection with TZ6
	Objective
	Procedure
	Open Project File
	Build, Load and Test
	One Shot Mode
	Re-Build, Load and Test
	Add an Interrupt Service
	Re-Build, Load and Test

	ePWM Interrupt Sources
	Lab7_9: ePWM Sine Wave Modulation
	Objective
	Procedure
	Install IQMath
	Open Project File
	Build, Load and Test

	eCAP Capture Module
	Capture Operating Mode
	Auxilliary PWM Operating Mode

	Capture Units Registers
	eCAP Control Register 1
	eCAP Control Register 2
	eCAP Interrupt Enable Register

	Lab7_10: ePWM1A 1 kHz captured by eCAP1
	Objective
	Procedure
	Open Project File
	Edit Source File
	Build, Load and Test

	Enhanced QEP module
	Infrared Remote Control
	IR - Protocols
	RC5 protocol

	Lab7_11: eCAP4 to receive a RC5 IR-signal
	Objective
	Procedure
	Open Project File
	Edit Source File
	Build, Load and Test

