
F2833x - Serial Communication Interface 9 - 1

Introduction
The Serial Communication Interface (SCI) module is a serial I/O port that permits
asynchronous communication between the F2833x and other peripheral devices. It is usually
known as a UART (Universal Asynchronous Receiver Transmitter) and is often used
according to the RS232 standard.
The SCI receiver and transmitter each have a 16-deep FIFO for reducing servicing overhead,
each with its own separate enable and interrupt bits. Both can be operated independently for
half-duplex communication, or simultaneously for full-duplex communication. To maintain
data integrity, the SCI checks received data for break detection, parity, overrun, and framing
errors. The bit rate is programmable for different communication speeds through a 16-bit
baud-select register.

Parity checking and data formatting can also be done by the SCI port hardware, further re-
ducing the software overhead.

9 - 2

SCI Pin Connections

Transmitter-data
buffer register

Transmitter
shift register

SCI Device #1

SCIRXD

SCITXD SCITXD

SCIRXD

SCI Device #2

8

Receiver-data
buffer register

Receiver
shift register

8

Transmitter-data
buffer register

Transmitter
shift register

8

Receiver-data
buffer register

Receiver
shift register

8

(Full Duplex Shown)

RX FIFO_0

RX FIFO_15

RX FIFO_0

RX FIFO_15

TX FIFO_0

TX FIFO_15

TX FIFO_0

TX FIFO_15

 F2833x Serial Communication Interface

Module Topics

9 - 2 F2833x - Serial Communication Interface

Module Topics
F2833x Serial Communication Interface ... 9-1

Introduction ... 9-1

Module Topics ... 9-2

SCI Data Format ... 9-3

SCI Data Timing ... 9-4

SCI Multi Processor Wake Up Modes ... 9-5

SCI Register Set ... 9-7
SCI Communications Control Register (SCICCR) ... 9-8
SCI Control Register 1(SCICTL1) ... 9-8
SCI Baud Rate Register .. 9-9
SCI Control Register 2 – SCICTL2 .. 9-10
SCI Receiver Status Register – SCIRXST .. 9-11
SCI FIFO Mode Register .. 9-12

Lab 9_1: Basic SCI – Transmission .. 9-14
Objective ... 9-14
Procedure .. 9-15
Open Project “Lab9.pjt” .. 9-15
Modify Source Code ... 9-15
Finish the main loop ... 9-15
Build, Load and Run ... 9-16

Lab 9_2: Interrupt SCI – Transmission... 9-17
Procedure .. 9-17
Open Files, Modify Project ... 9-17
Modify Source Code ... 9-17
Build, Load and Run ... 9-18
Optional Exercise .. 9-19

Lab 9_3: SCI – FIFO Transmission .. 9-20
Procedure .. 9-20
Open Files, Modify Project File .. 9-20
Modify Source Code ... 9-20
Build, Load and Test ... 9-21

Lab 9_4: SCI – Receive & Transmit ... 9-22
Procedure .. 9-22
Open Files, Modify Project File .. 9-22
Modify Source Code ... 9-22
Build, Load and Test ... 9-24

Optional Exercise 9_5 ... 9-25

 SCI Data Format

F2833x - Serial Communication Interface 9 - 3

SCI Data Format
The basic unit of data is called a character and is 1 bit to 8 bits in length. Each character of
data is formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional
address/data bit. A character of data along with its formatting bits is called a frame. Frames
are organized into groups called blocks. If more than two serial ports exist on the SCI bus, a
block of data will usually begin with an address frame, which specifies the destination port
of the data as determined by the user’s protocol.

The start bit is a low bit at the beginning of each frame, which marks the start of a frame.
The SCI uses a NRZ (Non-Return-to-Zero) format, which means that in an inactive state the
SCIRX and SCITX lines will be held high. Peripherals are expected to pull the SCIRX and
SCITX lines to a high level when they are not receiving or transmitting on their respective
lines.

9 - 3

SCI Data Format

This bit present only in Address-bit mode

NRZ (non-return to zero) format

Start LSB 2 3 4 5 6 7 MSB Addr/
Data Parity Stop 1 Stop 2

Communications Control Register (ScixRegs.SCICCR)

0 = 1 Stop bit
1 = 2 Stop bits

0 = Odd
1 = Even

0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

0 = Idle-line mode
1 = Addr-bit mode

of data bits = (binary + 1)
e.g. 110b gives 7 data bits

Stop
Bits

Even/Odd
Parity

Parity
Enable

Loopback
Enable

Addr/Idle
Mode

SCI
Char2

SCI
Char1

SCI
Char0

7 6 5 4 3 2 1 0

Note: If you are working on a RS232 – Interface, then all voltage-levels at the serial lines are
driven by external interface circuits, such as Texas Instruments MAX3221. A logical ‘0’ is
transmitted as a voltage between +5 and +15V, a logical ‘1’ as a negative Voltage between -
5 and -15V. On the receiver side, a voltage above +3V will be recognized as a valid ‘0’, a
voltage below -3V as a logical ‘1’.

SCI Data Timing

9 - 4 F2833x - Serial Communication Interface

SCI Data Timing
The SCI asynchronous communication format uses either single line (one way) or two line
(two ways) communications. In this mode, the frame consists of a start bit, one to eight data
bits, an optional even/odd parity bit, and one or two stop bits (shown in Slide 9-3). There are
eight SCICLK periods per data bit.

9 - 4

SCI Data Timing

Start Bit LSB of Data

Majority
Vote

Falling Edge Detected

• Start bit valid if 4 consecutive SCICLK periods of zero bits after falling edge
• Majority vote taken on 4th, 5th, and 6th SCICLK cycles

SCIRXD

SCICLK
(Internal)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2

Note: 8 SCICLK periods per data bit

The receiver begins operation on receipt of a valid start bit. A valid start bit is identified by
four consecutive internal SCICLK periods of zero bits as shown in Slide 9-4. If any bit is not
zero, then the processor starts over and begins looking for another start bit.

For the bits following the start bit, the processor determines the bit value by making three
samples in the middle of the bits. These samples occur on the fourth, fifth, and sixth
SCICLK periods, and bit-value determination is on a majority (two out of three) basis. Slide
9-4 illustrates the asynchronous communication format for this with a start bit showing
where a majority vote is taken. Since the receiver synchronizes itself to frames, the external
transmitting and receiving devices do not have to use a synchronized serial clock. The clock
can be generated locally.

 SCI Multi Processor Wake Up Modes

F2833x - Serial Communication Interface 9 - 5

SCI Multi Processor Wake Up Modes

9 - 5

Multiprocessor Wake-Up Modes

 Allows numerous processors to be hooked
up to the bus, but transmission occurs
between only two of them

 Idle-line or Address-bit modes
 Sequence of Operation

1. Potential receivers set SLEEP = 1, which disables RXINT
except when an address frame is received

2. All transmissions begin with an address frame
3. Incoming address frame temporarily wakes up all SCIs on bus
4. CPUs compare incoming SCI address to their SCI address
5. Process following data frames only if address matches

Although a SCI data transfer is usually a point-to-point communication, the F2833x SCI
interface allows two operation modes to communicate between a master and more than one
slave.

9 - 6

Idle-Line Wake-Up Mode

 Idle time separates blocks of frames
 Receiver wakes up with falling edge after SCIRXD

was high for 10 or more bit periods
 Two transmit address methods

 deliberate software delay of 10 or more bits
 set TXWAKE bit to automatically leave exactly

11 idle bits

Last Data ST SPST DataSCIRXD/
SCITXD

Block of Frames

SP SP Last DataST AddrSP

Idle
Period
10 bits

or greater

Idle
Period
10 bits

or greater

Address frame
follows 10 bit
or greater idle

1st data frame

SPST Addr

Idle periods
of less than

10 bits

SCI Multi Processor Wake Up Modes

9 - 6 F2833x - Serial Communication Interface

9 - 7

Address-Bit Wake-Up Mode

 All frames contain an extra address bit
 Receiver wakes up when address bit detected
 Automatic setting of Addr/Data bit in frame by setting

TXWAKE = 1 prior to writing address to SCITXBUF

Last Data STST DataSCIRXD/
SCITXD

Block of Frames

SP SP Last DataST AddrSP

Idle Period
length of no
significance

First frame within
block is Address.

ADDR/DATA
bit set to 1

1st data frame

0 1 0 0 SPST Addr 1SP

no additional
idle bits needed
beyond stop bits

9 - 8

SCI Summary
 Asynchronous communications format
 65,000+ different programmable baud rates
 Two wake-up multiprocessor modes

 Idle-line wake-up & Address-bit wake-up

 Programmable data word format
 1 to 8 bit data word length
 1 or 2 stop bits
 even/odd/no parity

 Error Detection Flags
 Parity error; Framing error; Overrun error; Break detection

 FIFO-buffered transmit and receive
 Individual interrupts for transmit and receive
 28335 include channel SCI-A and SCI-B

 SCI Register Set

F2833x - Serial Communication Interface 9 - 7

SCI Register Set
The next slide summarizes all SCI control registers for SCI channel A. Note that there is a
second SCI channel B available in the F2833x.

9 - 9

SCI – A Register Set
Address Register Name

0x007050 SCICCR SCI-A communication control register
0x007051 SCICTL1 SCI-A control register 1
0x007052 SCIHBAUD SCI-A baud register, high byte
0x007053 SCILBAUD SCI-A baud register, low byte
0x007054 SCICTL2 SCI-A control register 2 register
0x007055 SCIRXST SCI-A receive status register
0x007056 SCIRXEMU SCI-A receive emulation data buffer
0x007057 SCIRXBUF SCI-A receive data buffer register
0x007059 SCITXBUF SCI-A transmit data buffer register
0x00705A SCIFFTX SCI-A FIFO transmit register
0x00705B SCIFFRX SCI-A FIFO receive register
0x00705C SCIFFCT SCI-A FIFO control register
0x00705F SCIPRI SCI-A priority control register

Note: Interface SCI – B Register Address space is 0x007750…0x00775F

9 - 10

SCI-A Communication Control Register

ADDR/IDLE
MODE

STOP
BITS

EVEN/ODD
PARITY

PARITY
ENABLE

LOOP BACK
ENABLE

SCI
CHAR2

SCI
CHAR1

SCI
CHAR0

Communications Control Register (SCICCR) – 0x007050

0 = 1 Stop bit
1 = 2 Stop bits

0 = Odd
1 = Even

0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

0 = Idle-line mode
1 = Addr-bit mode

7 6 5 4 3 2 1 0

of data bits = (binary + 1)
e.g. 110b gives 7 data bits

SCI Register Set

9 - 8 F2833x - Serial Communication Interface

SCI Communications Control Register (SCICCR)
The previous slide explains the setup for the SCI data frame structure. If Multi Processor
Wakeup Mode is not used, bit 3 should be cleared. This avoids the generation of an
additional address/data selection bit at the end of the data frame (see Slide 9-3). Some hosts
or other devices are not able to handle this additional bit.

The other bit fields of SCICCR can be initialized, as you like. For our lab exercises in this
chapter we will use:

• 8 data bit per character

• odd parity

• 1 Stop bit

• loop back disabled

SCI Control Register 1(SCICTL1)

9 - 11

SCI-A Control Register 1

TXWAKEreserved RX ERR
INT ENA

SW
RESET

reserved SLEEP TXENA RXENA

Control Register 1 (SCICTL1) – 0x007051

0 = Receive Error Interrupt disabled
1 = Receive Error Interrupt enabled

Write 0 = Reset SCI
Write 1 = release from Reset

Transmitter wakeup method select
1 = wakeup mode depends on SCICCR.3
0 = no wakeup mode

7 6 5 4 3 2 1 0

0 = sleep mode disabled
1 = sleep mode enabled

0 = transmitter disabled
1 = transmitter enabled

0 = receiver disabled
1 = receiver enabled

When configuring the SCICCR register, the SCI port should first be held in an inactive
state. This is done using the SW RESET bit of the SCI Control Register 1 (SCICTL1.5).
Writing a 0 to this bit initializes and holds the SCI state machines and operating flags at their
reset condition. The SCICCR can then be configured. Afterwards, re-enable the SCI port by
writing a 1 to the SW RESET bit. At system reset, the SW RESET bit equals 0.

For our Lab exercises we will not use wakeup or sleep features (SCICTL1.3 = 0 and
SCICTL1.2 = 0).

 SCI Register Set

F2833x - Serial Communication Interface 9 - 9

Depending on the direction of the communication we will have to enable the transmitter
(SCICTL1.1 = 1) or the receiver (SCICTL1.0 = 1) or both.

For a real project, we would need to take precautions to handle possible communication
errors. The receiver error could then be allowed to generate a receiver error interrupt request
(SCICTL1.6 = 1). To simplify our first labs, we will not use this feature. However, for a real-
world project, do NOT skip this part!

SCI Baud Rate Register

9 - 12

SCI-A Baud Rate

BAUD15
(MSB)

BAUD14

Baud-Select MSbyte Register (SCIHBAUD) – 0x007052
7 6 5 4 3 2 1 0

BAUD13 BAUD12 BAUD11 BAUD10 BAUD9 BAUD8

BAUD6

Baud-Select LSbyte Register (SCILBAUD) – 0x007053
7 6 5 4 3 2 1 0

BAUD5 BAUD4 BAUD3 BAUD2 BAUD1BAUD7 BAUD0
(LSB)

SCI baud rate =

LSPCLK
(BRR + 1) x 8

LSPCLK
16

, BRR = 1 to 65535

, BRR = 0

The baud rate for the SCI is derived from the low speed pre-scaler (LSPCLK).

Assuming a SYSCLK frequency of 150MHz and a low speed pre-scaler initialized to “divide
by 4”, we can calculate the value for the BRR, let us say for a data rate of 9600 baud:

8)1(
5.37600.9

∗+
=

BRR
MHzHz

28.4871
8600.9

5.37
=−

∗
=

Hz
MHzBRR

BRR must be an integer, so we have to round the result to 487. The reverse calculation with
BRR = 487 leads to the real data rate of 9605 bits/second (error = 0.05 %).

SCI Register Set

9 - 10 F2833x - Serial Communication Interface

SCI Control Register 2 – SCICTL2

9 - 13

TXRDY TX
EMPTY

RX/BK
INT ENA

SCI-A Control Register 2
SCICTL2 @ 0x007054

0
TX

INT ENA

17 6 5 - 2
reserved

SCI TX READY
0 = SCITXBUF is full
1 = SCITXBUF is empty

SCI TX EMPTY
0 = TXBUF or shift register are loaded with data
1 = Transmit buffer and shift register both empty

reserved

15 - 8

SCI TX INT ENA
0 = Disable TXRDY interrupt
1 = Enable TXRDY interrupt

SCI RX/BK INT ENA
0 = Disable RXRDY/BRKDT interrupt
1 = Enable RXRDY/BRKDT interrupt

Bit 1 and bit 0 enable or disable the SCI- transmit and receive interrupts. If interrupts are not
used, this feature can be disabled by clearing bit 1 and bit 0. In this case, we need to apply a
polling method to the transmitter status flags (SCICTL2.7 and SCICTL2.6). The flag
SCITXEMPTY waits until the whole data frame has left the SCI output, whereas flag
SCITXREADY indicates the situation that we can reload the next character into SCITXBUF,
before the previous character was physically sent.

The status flags for the receiver part can be found in the SCI receiver status register (see next
slide).

For the first basic lab exercise we will not use SCI interrupts. This means we have to rely on
the polling method described above. Later of course, we will include SCI interrupts in our
experiments.

 SCI Register Set

F2833x - Serial Communication Interface 9 - 11

SCI Receiver Status Register – SCIRXST

9 - 14

SCI-A Receiver Status Register
SCIRXST @ 0x007055

OE
RX

ERROR
RXRDY BRKDT FE PE RXWAKE reserved

0 = No error flags set
1 = Error flag(s) set

0 = no new character in SCIRXBUF
1 = new character in SCIRXBUF

1 = Break condition occurred
0 = no break condition

7 6 5 4 3 2 1 0

1 = Framing Error detected

1 = Overrun Error detected

1 = Parity Error detected

1 = Receiver wakeup
condition detected

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character, as determined by the SCI character length. This provides a convenient and
efficient way of timing and controlling the operation of the SCI transmitter and receiver. The
interrupt flag for the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY
(SCIRXST.6). TXRDY is set when a character is transferred to TXSHF and SCITXBUF is
ready to receive the next character. In addition, when both the SCIBUF and TXSHF registers
are empty, the TX EMPTY flag (SCICTL2.6) is set.

When a new character has been received and shifted into SCIRXBUF, the RXRDY flag is
set. In addition, the BRKDT flag is set if a break condition occurs. A break condition is
where the SCIRXD line remains continuously low for at least ten bits after a stop bit has
been missed. The CPU to control SCI operations can poll each of the above flags, or
interrupts associated with the flags can be enabled by setting the RX/BK INT ENA
(SCICTL2.1) and/or the TX INT ENA (SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag
is the logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE),
and parity error (PE) bits. RX ERROR high indicates that at least one of these four errors has
occurred during transmission. This will also send an interrupt request to the CPU if the RX
ERR INT ENA (SCICTL1.6) bit is set.

SCI Register Set

9 - 12 F2833x - Serial Communication Interface

SCI FIFO Mode Register

9 - 15

SCI-A FIFO Transmit Register
SCIFFTX @ 0x00705A

0

TXFFIL2

SCIFFENA TXFFST0TXFFST3

TXFFIENA

1234567

89101112131415

TXFFIL0TXFFIL1TXFFIL4 TXFFIL3

TXFFST1

TXFFINT
CLR

TXFFST2

TXFFINT

TXFFST4TXFIFO
RESETSCIRST

TX FIFO Status (read-only)
00000 TX FIFO empty
00001 TX FIFO has 1 word
00010 TX FIFO has 2 words
00011 TX FIFO has 3 words

10000 TX FIFO has 16 words
...

TX FIFO Interrupt Level
Interrupt when TXFFST4-0
and TXFFIL4-0 match

SCI FIFO
Enhancements

0 = disable
1 = enable

TX FIFO Reset
0 = reset (pointer to 0)
1 = enable operation

TX FIFO
Interrupt

(on match)
Enable

0 = disable
1 = enable

TX FIFO
Interrupt

Flag (read-only)
0 = not occurred
1 = occurred

TX FIFO
Interrupt
Flag Clear
0 = no effect
1 = clear

SCI Reset
0 = reset
1 = enable operation

The F2833x SCI is equipped with an enhanced buffer mode with 16 levels of FIFO for the
transmitter and receiver. We will use this enhanced mode at the end of the lab exercise series
of this chapter.

9 - 16

SCI-A FIFO Receive Register
SCIFFRX @ 0x00705B

0

RXFFIL2

RXFF-
OVF CLR RXFFST0RXFFST3

RXFFIEN

1234567

89101112131415

RXFFIL0RXFFIL1RXFFIL4 RXFFIL3

RXFFST1

RXFFINT
CLR

RXFFST2

RXFFINT

RXFFST4RXFIFO
RESET

RXFF-
OVF

RX FIFO Status (read-only)
00000 RX FIFO empty
00001 RX FIFO has 1 word
00010 RX FIFO has 2 words
00011 RX FIFO has 3 words

10000 RX FIFO has 16 words
...

RX FIFO Interrupt Level
Interrupt when RXFFST4-0
and RXFFIL4-0 match

RX FIFO Reset
0 = reset (pointer to 0)
1 = enable operation

RX FIFO
Interrupt

(on match)
Enable

0 = disable
1 = enable

RX FIFO
Interrupt

Flag (read-only)
0 = not occurred
1 = occurred

RX FIFO
Interrupt
Flag Clear
0 = no effect
1 = clear

RX FIFO
Overflow

Flag (read-only)
0 = no overflow
1 = overflow

RX FIFO
Overflow
Flag Clear
0 = no effect
1 = clear

 SCI Register Set

F2833x - Serial Communication Interface 9 - 13

9 - 17

SCI-A FIFO Control Register
SCIFFCT @ 0x00705C

0

ABD
CLR

1234567

89101112131415

CDCABD

FFTXDLY
Time delay between every transfer from FIFO
to transmit shift register
in number of SCI baud clock cycles
(0 to 255)

CDC calibrate ‘A’
0 = disabled auto-baud alignment
1 = enables auto-baud alignment

Auto Baud
detection

Flag (read-only)
0 = not complete
1 = complete

Auto Baud
detection
Flag Clear
0 = no effect
1 = clear

reserved

In the enhanced feature set, the SCI module supports auto baud-detect logic in hardware. The
following section explains the enabling sequence for auto baud-detect feature. Auto Baud is
a feature, which can be used to adjust the data rate of the F2833x to the transmission speed
of a host device. If the host sends character ‘A’ or ‘a’ the auto baud unit will lock this cha-
racter and set the internal baud rate registers accordingly.

To use this feature, the following sequence needs to be followed:

1. Enable auto baud-detect mode for the SCI by setting the CDC bit (bit 13) in
SCIFFCT and clearing the ABD bit (Bit 15) by writing a 1 to ABDCLR bit (bit 14).

2. Initialize the baud register to be 1 or less than a baud rate limit of 500 Kbps.
3. Allow SCI to receive either character ‘A’ or ‘a’ from a host at the desired baud rate.

If the first character is either 'A' or 'a', the auto baud- detect hardware will detect the
incoming baud rate and set the ABD bit.

4. The auto-detect hardware will update the baud rate register with the equivalent baud
value in hex. The logic will also generate an interrupt to the CPU.

5. Respond to the interrupt clear ADB bit by writing a 1 to ABD CLR (bit 14) of
SCIFFCT register and disable further auto baud locking by clearing CDC bit by
writing a 0.

6. Read the receive buffer for character ‘A’ or ‘a’ to empty the buffer and buffer status.
7. If ABD is set while CDC is 1, which indicates auto baud alignment, the SCI transmit

FIFO interrupt will occur (TXINT). After the interrupt service CDC bit must be
cleared by software.

In the first lab exercises we will not use the auto baud feature. However, if you laboratory
time permits, you can add the auto baud unit into your experiments.

Lab 9_1: Basic SCI – Transmission

9 - 14 F2833x - Serial Communication Interface

Lab 9_1: Basic SCI – Transmission

9 - 18

SCI Example 9_1: transmit a text - message

 Lab 9_1: Basic SCI Communication

 Send a single line text message from F28335 to a PC’s COM-port.
 Connect the RS232 - Connector (J12) of the Peripheral Explorer

Board with a standard DB9 - cable (1:1) to a serial COM –port of
the PC.

 Periodic transmission of the message every 2 seconds.
 No SCI interrupt services in this lab.
 After transmission of the first character we just poll the

transmission ready flag (TXEMPTY) before loading the next
character into the transmit buffer - and wait again.

 A Windows Terminal program is used as the counterpart from the
PC’s-side and must be initialized properly for correct
function(9,600 bit/s, odd Parity, no protocol).

Objective
The objective of this lab is to establish an SCI transmission between the F28338x and a serial
port of a PC.

The SCI-A communication channel is used to send data from F28335 to a host, using RS232
voltage levels. The F28335 controlCARD has an onboard RS232-transceiver and the signals
Tx and Rx are available at header J12 of the Peripheral Explorer Board. Plug in the serial
cable provided to header J12 making sure the red wire aligns with the Rx pin on the
Peripheral Explorer Board.

A standard DB9 cable (1:1) with male and female connectors can be used to connect to the
host, for example to a COMx – interface of a PC. On the host side you need a terminal
program (e.g. Windows XP Hyper Terminal Program or a freeware tool for XP and Vista,
such as “Hercules” (www.HW-group.com). The setup for the communication is as follows:

• 9600 bit/second
• 8 characters
• odd parity
• 1 stop bit
• no protocol

The task for the F2833x is to transmit a text message, e.g. “The F28335 – UART is fine!\n\r”
periodically. No interrupt services are used for this first and basic test.

http://www.hw-group.com/�

 Lab 9_1: Basic SCI – Transmission

F2833x - Serial Communication Interface 9 - 15

Procedure

Open Project “Lab9.pjt”
1. Unzip the provided file “labs_09.zip” and expand the files in

C:\DSP2833x_V4\Labs\Lab9. Next, open the project “Lab9_1.pjt”

Modify Source Code
2. Open the file “Lab9_1.c” to edit: double click on “Lab9_1.c” inside the project

window.

3. Inside function “Gpio_select()”modify multiplex register GPAMUX2 to use the two
SCI-signals “SCIRXDA” and “SCITXDA” for GPIO28 and GPIO29:

GpioCtrlRegs.GPAMUX2.bit.GPIO28 = ?; // SCIRXDA
GpioCtrlRegs.GPAMUX2.bit.GPIO29 = ?; // SCITXDA

4. At the beginning of “main()”, define a string variable with the following message:

char message[] = {"The F28335 - UART is fine !\n\r"};

5. Also at the beginning of “main()”, add an integer variable “index”. We will use this
variable to address the next character of the text message:

 unsigned int index = 0;

6. In “main()”, right after the function call of “Gpio_select()”, add a function call of
“SCIA_Init()”. Also add a function prototype at the beginning of your code file
“Lab9_1.c”.

7. At the end of your code, add the definition of function “SCIA_Init()”.

Inside this function, initialize the following registers:

• SCICCR:

o 1 stop bit, no loop back, odd parity, 8 bits per character

• SCICTL1:
o Enable TX- and RX - output
o Disable RXERR INT, SLEEP and TXWAKE

• SCIHBAUD / SCILBAUD:
o BRR = (LSPCLK/(SCI_Baudrate *8)) – 1
o Example: assuming LSPCLK = 37.5MHz and SCI_Baudrate =

9600 the SCIBRR must be set to 487. Split this number into a lower
8-bit part and a higher 8-bit part and load the registers.

Finish the main loop
8. Now we can finalize the while(1)-loop of “main()”. Recall, we have to add the

following actions:

Lab 9_1: Basic SCI – Transmission

9 - 16 F2833x - Serial Communication Interface

• Load the next character out of the string variable “message[]” into
SciaRegs.SCITXBUF.

• Wait (poll) bit “TXEMPTY” of register SCICTL2. It will be set to 1 when the
character has been sent. The bit will be cleared automatically when the next
character is written into SCITXBUF.

• Increment variable “index” to address the next character of the string.

• Add a test if the whole text message has been sent (Hint: Recall that the end of
a string variable is always the hidden end of string character ‘\0’). In case your
program has reached the end of the message:

o Reset variable “index” to 0 in preparation of the next transmission
sequence.

o Use CPU Timer 0 and install a wait – loop of 2 seconds (Hint: CPU
Timer 0 has been initialized to 50 milliseconds. Each Interrupt Service
Routine increments variable “CpuTimer0.InterruptCount”; therefore you
can wait until this variable equals 40. While you wait, service the
watchdog with 0xAA).

o At the end of your wait – code, reset variable
“CpuTimer0.InterruptCount” to zero in preparation of the next 2
seconds waiting loop.

Build, Load and Run
9. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

and watch the tools run in the build window. If you get errors or warnings debug as
necessary.

10. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

11. The PC terminal program should display an incoming text message every 2 seconds.
If not  Debug!

End of Lab 9_1

 Lab 9_2: Interrupt SCI – Transmission

F2833x - Serial Communication Interface 9 - 17

Lab 9_2: Interrupt SCI – Transmission

9 - 19

More SCI Examples

 Lab 9_2: SCI Transmit
 SCI – TX interrupt service
 CPU Timer 0 interrupt service

 Lab 9_3: SCI FIFO Transmit Interrupt
 TX FIFO Interrupt Service to send 16 characters

 Lab 9_4: SCI Transmit and Receive
 TX and RX FIFO Interrupt services
 F28335 to wait for “Texas” and answer with

“Instruments”

The objective of the next lab exercise is to improve Lab 9_1 by including both the
SCI – Transmit interrupt to service an empty transmit buffer. Use your code from
Lab9_1 as a starting point.

Procedure

Open Files, Modify Project
1. In project “Lab9” open file “Lab9_1.c” and save it as “Lab9_2.c”

2. Exclude file “Lab9_1.c” from build. Use a right mouse click at file “Lab9_1.c”, and
enable “Exclude File(s) from Build”.

Modify Source Code
3. We have to modify the SCI initialization function “SCIA_Init()”. It is not a big

change, the only modification is that for this test we have to enable the SCI-Transmit
Interrupt:

SciaRegs.SCICTL2.bit.TXINTENA = 1;

4. The SCI Transmit Interrupt must be also enabled inside the PIE unit and the address of
the interrupt service routine must be written into the PIE vector table. We already have
some code lines to change such entries for CpuTimer0 (TINT0). Please add the two
following lines into your code:

Lab 9_2: Interrupt SCI – Transmission

9 - 18 F2833x - Serial Communication Interface

 PieVectTable.SCITXINTA = &SCIA_TX_isr;

 PieCtrlRegs.PIEIER9.bit.INTx2 = 1;

5. Also change the setup for register “IER”. For this exercise we have to enable lines 1
and 9!

6. If the SCI-TX interrupt is enabled we have to provide an interrupt service routine
“SCIA_TX_isr()”. At the top of your code add a function prototype and at the very
end of the code add the definition of this function. What should be done inside this
function? Answer:

• Load the next character of the message into SCITXBUF, if index has not already
reached the last character of the text message; increment variable “index”.

• If variable “index” points beyond the last character of the message, do NOT load
anything into SCITXBUF. Transmission of the message is finished.

• In every single call of this function acknowledge it’s call by resetting the
PIEACK-register:

PieCtrlRegs.PIEACK.all = 0x0100;

7. Because the string variable and the variable “index” are now used both in main and
“SCIA_TX_isr” they must be defined as global variables. To make the two variables
global, move the definition of the variables from main to the beginning of your code:

char message[]= {" The F28335 - UART ISR is fine !\n\r"};

int index =0;

8. Now it is time change the while(1) – loop of “main()”. We do not need the while –
wait line to wait for TXEMPTY == 1 from lab 9_1 – because we now will use
interrupt services to reload TXBUF as soon as the previous character has been
transmitted.

We can also remove the test code, which we used in lab 9_1 to test for the end of
message character (‘\0\’) – because this will be also done by the interrupt service
routine.

We have to keep the wait construction for a time interval of 2 seconds in the while(1)-
loop of “main()”.

After the wait – loop reset variables “CpuTimer0.InterruptCount” and “index” both to
0.

Now the code is prepared for the next repetition of the while(1)-loop.

Build, Load and Run
9. Rebuild the project (Project  Rebuild All), debug the project (Target  Debug

Active Project) and switch to the “Debug” – perspective.

 Lab 9_2: Interrupt SCI – Transmission

F2833x - Serial Communication Interface 9 - 19

10. As we have done in Lab9_1, open a Terminal Program. Use 9600 bit/s, odd parity, 1
stop bit and no protocol (or no handshake) as parameters. Every 2 seconds you should
receive the text message from the DSP.

If your code does not work try to debug systematically.
• Does the CPU core timer work?
• Is the CPU core timer interrupt service called periodically?
• Is the SCITX interrupt service called?

Try to watch important variables and set breakpoints as needed.

Optional Exercise
11. Instead of transmitting the text message to the PC your task is now to transmit the

current status of the Hexadecimal Encoder input (GPIO12- GPIO15), which is an
integer value, to the PC. Recall, to use a PC-Terminal program to display data, you
must transmit ASCII-code characters. To convert a long integer into an ASCII-string
we can use function a standard C-function “ltoa” (see help menu of CCS).

End of Lab 9_2

Lab 9_3: SCI – FIFO Transmission

9 - 20 F2833x - Serial Communication Interface

Lab 9_3: SCI – FIFO Transmission
The objective of this lab is to improve Lab 9_2 by using the transmit FIFO capabilities of the
F2833x. Instead of generating a lot of SCI – transmit interrupts to send the whole text
message we now will use a type of ‘burst transmit’ technique to fill up to 16 characters into
the SCI transmit FIFO. This will reduce the number of SCI-interrupt services from 16 to 1
per message!

Use your code from file “Lab9_2.c” as the starting point.

Procedure

Open Files, Modify Project File
1. In project “Lab9” open file “Lab9_2.c” and save it as “Lab9_3.c”

2. Exclude file “Lab9_2.c” from build. Use a right mouse click at file “Lab9_2.c”, and
enable “Exclude File(s) from Build”.

Modify Source Code
3. Open Lab9_3.c to edit: double click on “Lab9_3.c” inside the project window.

Modify the SCI Initialization in function “SCIA_Init()”. Add the Initialization for
register “SCIFFTX”. Include the following:
• Relinquish FIFO unit from reset
• Enable FIFO- Enhancements
• Enable TX FIFO Operation
• Clear TXFFINT-Flag
• Enable TX FIFO match
• Set FIFO interrupt level to interrupt, if FIFO is empty (0)

4. Change the contents of the variable “message[]” from “The F28335 - UART ISR is
fine !\n\r” to “BURST-Transmit\n\r”. The length of the string is now limited to 16
characters and using the TX-FIFO, we can transmit the whole string in one single SCI
interrupt service routine.

5. Search for function “SCIA_TX_isr()” and modify it. Recall that this service will be
called when the FIFO interrupt level was hit. Because we have set this level to 0 we
can load 16 characters into the TX-FIFO:

for(i=0;i<16;i++) SciaRegs.SCITXBUF = message[i];

Note: Variable i should be a local variable inside “SCIA_TX_isr()”. Also, do NOT
remove the PIEACK- reset instruction at the end of this function!

6. Modify the while(1)-loop of “main()”. We still will use the CPU Core Timer 0 as our
time base. It is still initialized to increment the variable “CpuTimer0.InterruptCount”
once every 50ms. There is no need to change our wait construction to wait for 40
increments (equals to 2 seconds).

 Lab 9_3: SCI – FIFO Transmission

F2833x - Serial Communication Interface 9 - 21

Delete the next two lines of the old code:
 index = 0;
 SciaRegs.SCITXBUF = message[index++];

The difference between Lab9_2.c and Lab9_3.c is the initialization of the SCI-unit. In
this lab, we have enabled the TX-FIFO interrupt to request a service when the FIFO-
level is zero. This will be true immediately after the initialization of the SCI-unit and
will cause the first TX-interrupt! The next TX-interrupt will be called only after
setting the TX FIFO INT CLR – bit to 1, clears the TX FIFO INT FLAG. If we
execute this clear instruction every 2 seconds we will allow the next TX FIFO
transmission to take place immediately. To do so, add the following instruction:

SciaRegs.SCIFFTX.bit.TXINTCLR = 1;

That’s it.

Build, Load and Test
7. Apply all the commands needed to translate and debug your project. Meanwhile you

should be familiar with the individual steps to do so; therefore we skip a detailed
procedure. If you are successful, you should receive the string every 2 seconds at the
hyper terminal window. If not – debug!

8. Summary: The big improvement of this Lab9_3 is that we reduced the number of
interrupt services to transmit a 16-character string from 16 services to 1 service. This
adds up to a considerable amount of time that can be saved! The exercise has shown
the advantage of the F2833x SCI-transmit FIFO enhancement compared to a standard
UART interface.

END of LAB 9_3

Lab 9_4: SCI – Receive & Transmit

9 - 22 F2833x - Serial Communication Interface

Lab 9_4: SCI – Receive & Transmit
The objective of this final exercise is to add the SCI receiver. Lab9_4 should
wait until the message “Texas” has been received and answer transmitting
“Instruments” back to the PC.

Use your code from Lab9_3 as a starting point.

Procedure

Open Files, Modify Project File
1. In project “Lab9” open file “Lab9_3.c” and save it as “Lab9_4.c”

2. Exclude file “Lab9_3.c” from build. Use a right mouse click at file “Lab9_3.c”, and
enable “Exclude File(s) from Build”.

Modify Source Code
3. Open file “Lab9_4.c” to edit.

First we have to remove everything that deals with CPU Core Timer0 – we do not
need a timer for this exercise.

• Remove prototype and definition of function “cpu_timer0_isr”.

• In main, remove the interrupt vector table load instruction:
EALLOW;

 PieVectTable.TINT0 = &cpu_timer0_isr;
EDIS;

• Remove the function calls:
InitCpuTimers();
ConfigCpuTimer(&CpuTimer0, 150, 50000);

and the interrupt enable lines:

PieCtrlRegs.PIEIER1.bit.INTx7 = 1;

• Remove the start instruction for CpuTimer0:

CpuTimer0Regs.TCR.bit.TSS = 0;

• Change the interrupt enable register to:

IER = 0x100;

• In the while(1)-loop of “main()” remove everything. Replace it by new code:
while(1)
{

 Lab 9_4: SCI – Receive & Transmit

F2833x - Serial Communication Interface 9 - 23

EALLOW;
SysCtrlRegs.WDKEY = 0x55; // service watchdog #1
SysCtrlRegs.WDKEY = 0xAA; // service watchdog #2
EDIS;

 }

All activities will be done by interrupt service routines, nothing to do in the main loop
but to service the watchdog!

4. Change the contents of the variable “message[]” to “ Instruments! \n\r”. Note: Make
sure to have 16 characters in this text message; ‘\n’ and ‘\r’ count as single characters!

5. Now we have to introduce a new interrupt service routine for the SCI receiver, called
“SCIA_RX_isr()”. Declare its prototype at the beginning of your code:

interrupt void SCIA_RX_isr(void);

6. Replace the entry for this function inside the PIE vector table. Add this line directly
after the entry-instruction for TXAINT:

PieVectTable.RXAINT = &SCIA_RX_isr;

7. Enable the PIE interrupt for RXAINT:

PieCtrlRegs.PIEIER9.bit.INTx1 = 1;

8. Modify the initialization function for the SCI: “SCIA_Init()”.

• Inside register “SCICTL2” set bit “RXBKINTENA” to 1 to enable the receiver
interrupt.

• For register “SCIFFTX”, do NOT enable the TX FIFO operation (bit 13) yet. It
will be enabled later, when we have something to transmit.

• Add the initialization for register “SCIFFRX”. Recall, we wait for 5 characters
“Texas”, so why not initialize the FIFO receive interrupt level to 5? This setup
will cause the RX interrupt when at least 5 characters have been received.

9. At the end of your source code add interrupt function “SCIA_RX_isr()”.

• What should be done inside? Well, this interrupt service will be requested if 5
characters have been received. First we need to verify that the 5 characters
match the string “Texas”.

• With five consecutive read instructions of register
“SciaRegs.SCIRXBUF.bit.RXDT” you can empty the FIFO into a local variable
“buffer[16]”.

• The C standard string compare function “strncmp()” can be used to compare
two strings of a fixed length. The lines:

if(strncmp(buffer, “Texas” , 5) == 0)
{
 SciaRegs.SCIFFTX.bit.TXFIFORESET = 1;
 SciaRegs.SCIFFTX.bit.TXINTCLR = 1;

Lab 9_4: SCI – Receive & Transmit

9 - 24 F2833x - Serial Communication Interface

}

will compare the first 5 characters of “buffer” with “Texas”. If they match the
two next instructions will start the SCI Transmission of “ Instruments\n\r” with
the help of the TX-interrupt service.

• At the end of interrupt service routine we need to reset the RX FIFO, clear the
RX FIFO Interrupt flag and acknowledge the PIE interrupt:

SciaRegs.SCIFFRX.bit.RXFIFORESET = 0; // reset pointer
SciaRegs.SCIFFRX.bit.RXFIFORESET = 1; // enable op.
SciaRegs.SCIFFRX.bit.RXFFINTCLR = 1; // reset RX int
PieCtrlRegs.PIEACK.all = 0x0100; // acknowledge PIE

10. Delete global variable “index”.

11. At the beginning of “Lab9_4.c”, add an include instruction for header file “string.h”:

#include <string.h>

That’s it.

Build, Load and Test
12. Apply all the commands needed to translate and debug your project.

13. Start your Terminal program and type in the text “Texas”. The F2833x will respond
with the string “ Instruments\n\r”. If not  debug!

 Optional Exercise 9_5

F2833x - Serial Communication Interface 9 - 25

Optional Exercise 9_5
DSC – Junkies only!  Remote Control of the F2833x by a PC!

Try to combine the “binary counter” exercise “Lab6.c” with the SCI-lab “Lab9_4.c”. Let the
PC send a string with a numerical value and use this value to control the speed of the “binary
counter”!

If a new value was received by the DSP it should answer back to the PC with a text like
“control value xxx received”.

Note: The C standard function “atoi” can be used to convert an ASCII-string into a
numerical value (see Code Composer Studio Help for details).

Optional Exercise 9_5

9 - 26 F2833x - Serial Communication Interface

This page has been left blank intentionally.

	F2833x Serial Communication Interface
	Introduction
	Module Topics
	SCI Data Format
	SCI Data Timing
	SCI Multi Processor Wake Up Modes
	SCI Register Set
	SCI Communications Control Register (SCICCR)
	SCI Control Register 1(SCICTL1)
	SCI Baud Rate Register
	SCI Control Register 2 – SCICTL2
	SCI Receiver Status Register – SCIRXST
	SCI FIFO Mode Register

	Lab 9_1: Basic SCI – Transmission
	Objective
	Procedure
	Open Project “Lab9.pjt”
	Modify Source Code
	Finish the main loop
	Build, Load and Run

	Lab 9_2: Interrupt SCI – Transmission
	Procedure
	Open Files, Modify Project
	Modify Source Code
	Build, Load and Run
	Optional Exercise
	End of Lab 9_2

	Lab 9_3: SCI – FIFO Transmission
	Procedure
	Open Files, Modify Project File
	Modify Source Code
	Build, Load and Test
	END of LAB 9_3

	Lab 9_4: SCI – Receive & Transmit
	Procedure
	Open Files, Modify Project File
	Modify Source Code
	Build, Load and Test

	Optional Exercise 9_5

