

F2833x - Inter Integrated Circuit 12 - 1

Introduction
This module discusses the features and operation of the inter-integrated circuit (I2C) module
that is available on the F2833x digital signal controller (DSC). The I2C module provides an
interface between DSCs and devices compliant with Philips Semiconductors Inter-IC bus
(I2C-bus) specification version 2.1 and connected by way of an I2C-bus. External compo-
nents attached to this 2-wire serial bus can transmit and/or receive data between 1-bit and 8-
bits to/from the F2833x through the I2C module. This student guide assumes the reader is
somewhat familiar with the I2C-bus specification.

Each device connected to an I2C-bus is identified by a unique address. It can operate as ei-
ther a transmitter or a receiver, depending on the function of the device. A device connected
to the I2C - bus can also be considered as the master or the slave when performing data
transfers. A master device is the device that initiates a data transfer on the bus and generates
the clock signals to permit that transfer. During this transfer, any device addressed by this
master is considered to be a slave.

The I2C module supports the multi-master mode, in which one or more devices are capable
of controlling an I2C-bus and can be connected to the same I2C-bus.

For data communication, the I2C module has a serial data pin (SDA) and a serial clock pin
(SCL). The SDA and SCL pins both are bidirectional. They must each be connected to a
positive 3.3 V supply voltage using pull-up resistors. When the bus is free, both pins are
high. The driver of these two pins has an open-drain configuration to perform the required
wired-AND function. The F2833x includes internal pull-up resistors for SDA and SCL,
which can be enabled during the setup of the GPIO - pins.

 F2833x Inter Integrated Circuit

Module Topics

12 - 2 F2833x - Inter Integrated Circuit

Module Topics
F2833x Inter Integrated Circuit ... 12-1

Introduction ... 12-1

Module Topics ... 12-2

Basic I2C Features .. 12-4

F2833x I2C Block Diagram .. 12-5

I2C Clock Generation ... 12-6

I2C Operating Modes .. 12-8
Master / Slave modes .. 12-8
Input and Output Voltage Levels .. 12-8
Data Validity ... 12-9
Serial Data Formats .. 12-10

Arbitration ... 12-11

I2C Interrupts .. 12-12

I2C Module Registers .. 12-13
I2C Mode Register .. 12-13
I2C Interrupt Enable Register ... 12-17
I2C Status Register ... 12-17
I2C Interrupt Source Register ... 12-18
I2C Clock Register .. 12-18
I2C Slave Address Register .. 12-19
I2C Own Address Register ... 12-20
I2C Data Count Register ... 12-20
I2C Data Registers .. 12-21

I2C FIFO Buffers .. 12-21
I2C TX-FIFO Register .. 12-22
I2C RX-FIFO Register .. 12-22

Temperature Sensor TMP100 ... 12-23
TMP100 Register Structure .. 12-25
Temperature Register .. 12-26
Configuration Register .. 12-26
TMP100 Timing Diagrams ... 12-27

Lab Exercise 12_1 ... 12-30
Preface .. 12-30
Objective ... 12-30
Procedure .. 12-30
Open Files, Create Project File ... 12-30
Project Build Options .. 12-31
Preliminary Test .. 12-32
Add TMP100 and I2C Initialization Code .. 12-32
Build, Load and Run ... 12-34

Lab Exercise 12_2 ... 12-35
Objective ... 12-35
Procedure .. 12-35
Open Project, Modify Source File .. 12-35
Build, Load and Run ... 12-36
Troubleshooting .. 12-38

 Module Topics

F2833x - Inter Integrated Circuit 12 - 3

Lab Exercise 12_3 .. 12-40
Objective .. 12-40
Procedure .. 12-40
Open Project, Modify Source File .. 12-40
Build, Load and Run .. 12-41

Lab Exercise 12_4 .. 12-42
Objective .. 12-42
Procedure .. 12-42
Open Project, Modify Source File .. 12-42
Build, Load and Run .. 12-44

Basic I2C Features

12 - 4 F2833x - Inter Integrated Circuit

Basic I2C Features
The I2C module supports any slave or master I2C-compatible device.

12 - 2

Inter Integrated Circuit(I2C, IIC)
• Philips I2C-bus specification compliant, version 2.1
• Data transfer rate from 10 kbps up to 400 kbps
• Each device can be considered as a Master or Slave
• Master initiates data transfer and generates clock signal
• Device addressed by Master is considered a Slave
• Multi-Master mode supported
• Standard Mode – send exactly n data values (specified in register)
• Repeat Mode – keep sending data values (use software to initiate

a stop or new start condition)

Serial Clock (SCL)

2833x
I2C

2nd - I2C
Controller

I2C
EPROM

TMP101
I2C

Pull-up
Resisters

VDD

Serial Data (SDA)

The I2C module has the following features:

• Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):
o Support for 8-bit format transfers
o 7-bit and 10-bit addressing modes
o General call
o START byte mode
o Support for multiple master-transmitters and slave-receivers
o Support for multiple slave-transmitters and master-receivers
o Combined master transmit/receive and receive/transmit mode
o Data transfer rate of from 10 kbps up to 400 kbps (Philips Fast-mode rate)

• One 16-byte deep receive FIFO and one 16-byte deep transmit FIFO
• An interrupt can be generated as a result of one of the following conditions:

o transmit-data ready,
o receive-data ready,
o register-access ready,
o no-acknowledgment received,
o arbitration lost,
o stop condition detected,
o addressed as slave.

• Free data format mode

 F2833x I2C Block Diagram

F2833x - Inter Integrated Circuit 12 - 5

F2833x I2C Block Diagram

12 - 3

I2C Block Diagram

TX FIFO

RX FIFO

I2CDXR

I2CDRR

I2CXSR

I2CRSR

Clock
Circuits

SDA

SCL

The I2C module consists of the following primary blocks:

• A serial interface: one data pin (SDA) and one clock pin (SCL)
• Data registers and FIFOs to temporarily hold receive data and transmit data travel-

ling between the SDA pin and the CPU
• Control and status registers
• A peripheral bus interface to enable the CPU to access the I2C module registers and

FIFOs.
• A clock synchronizer to synchronize the I2C input clock (from the DSP clock gen-

erator) and the clock on the SCL pin, and to synchronize data transfers with masters
of different clock speeds required.

• A pre-scaler to divide down the input clock that is driven to the I2C module
• A noise filter on each of the two pins, SDA and SCL
• An arbitrator to handle arbitration between the I2C module (when it is a master) and

another master
• Interrupt generation logic, so that an interrupt can be sent to the CPU.

Slide 12-3 shows the four registers used for transmission and reception in non-FIFO mode.
The CPU writes data for transmission to I2CDXR and reads received data from I2CDRR.
When the I2C module is configured as a transmitter, data written to I2CDXR is copied to
I2CXSR and shifted out on the SDA pin one bit a time. When the I2C module is configured
as a receiver, received data is shifted into I2CRSR and then copied to I2CDRR.

I2C Clock Generation

12 - 6 F2833x - Inter Integrated Circuit

I2C Clock Generation
As shown in Slide 12-4, the I2C input clock is equivalent to the CPU clock (SYSCLKOUT)
and is then divided twice more inside the I2C module to produce the module clock and the
master SCL clock.

12 - 4

I2C Clock Generation

÷÷
SYSCLKOUT

IPSC ICCL, ICCH

I2C – Clock Module

SCL (*)

I2C Module Clock

(*) SCL is output in master – mode only

The I2C module clock determines the frequency at which the I2C module operates. A pro-
grammable pre-scaler in the I2C module divides down the I2C input clock to produce the
module clock. To specify the divide-down value, initialize the IPSC field of the pre-scaler
register, I2CPSC. The resulting frequency should be in the range of 7 - 12 MHz and is given
by:

)1(
__2

+
=

IPSC
SYSCLKOUTClockModuleCI

IPSC must be initialized only while the I2C module is in the reset state (IRS = 0 in
I2CMDR). The pre-scaled frequency takes effect only when IRS is changed to 1. Changing
the IPSC value while IRS = 1 has no effect.

The master clock appears on the SCL pin when the I2C module is configured to be a master
on the I2C-bus. This clock controls the timing of communication between the I2C module
and a slave. As shown in slide 12-4, a second clock divider in the I2C module divides down
the module clock to produce the master clock. The clock divider uses the ICCL value of
I2CCLKL to divide down the low portion of the module clock signal and uses the ICCH
value of I2CCLKH to divide down the high portion of the module clock signal.

 I2C Clock Generation

F2833x - Inter Integrated Circuit 12 - 7

Example for I2C-clock calculation:

The period of the master clock (TMASTER) is a multiple of the period of the I2C module clock:

SYSCLKOUT
dICCHdICCLIPSCTMASTER

)]())[(1(++++
=

Parameter d is a systematic offset, which depends on the device type.

Example: Set I2C-Master clock to 50 kHz for a 150 MHz device

(1) Set I2C module clock to 10MHz:

;
)1(

10010
+

=
IPSC

MHzMHz IPSC = 14

(2) Set I2C Master clock to 20µs; use d = 5

MHz
ICCHICCLµs

150
)]5()5)[(114(20 ++++

=

ICCL + ICCH = 190;

To produce an I2C master clock with a duty cycle of 50% set:

• IPSC = 14
• ICCL = 95
• ICCH = 95

The following table give some more options for the I2C clock unit:

SYSCLKOUT 100 MHz 100MHz 150MHz 150MHz

I2C-clock IPSC ICCL / ICCH IPSC ICCL / ICCH

50 kHz 9 95 / 95 14 95 /95

100 kHz 9 45 / 45 14 45 /45

400 kHz 9 10 / 5 14 10 / 5

I2C Operating Modes

12 - 8 F2833x - Inter Integrated Circuit

I2C Operating Modes

Master / Slave modes
The I2C module has four basic operating modes to support data transfers as a master and as a
slave.

If the I2C module is a master, it begins as a master-transmitter and typically transmits an ad-
dress for a particular slave. When giving data to the slave, the I2C module must remain a
master-transmitter. To receive data from a slave, the I2C module must be changed to the
master-receiver mode.

When the I2C module is a slave, it begins as a slave-receiver and typically sends acknowl-
edgment when it recognizes its slave address from a master. If the master is sending data to
the I2C module, the module must remain a slave-receiver. If the master has requested data
from the I2C module, the module must be changed to the slave-transmitter mode.

12 - 5

I2C Operating Modes

Operating Mode Description

Slave-receiver mode Module is a slave and receives data from a master
(all slaves begin in this mode)

Slave-transmitter mode Module is a slave and transmits data to a master
(can only be entered from slave-receiver mode)

Master-receiver mode Module is a master and receives data from a slave
(can only be entered from master-transmit mode)

Master-transmitter mode Module is a master and transmits to a slave
(all masters begin in this mode)

Input and Output Voltage Levels

One clock pulse is generated by the master device for each data bit transferred. Due to a va-
riety of different technology devices that can be connected to the I2C-bus, the levels of logic
0 (low) and logic 1 (high) are not fixed and depend on the associated level of VDD. For de-
tails, see the data manual for your particular F2833x.

 I2C Operating Modes

F2833x - Inter Integrated Circuit 12 - 9

Data Validity

The data on SDA must be stable during the high period of the clock (see Slide 12-6). The
high or low state of the data line, SDA, should change only when the clock signal on SCL is
low.

12 - 6

I2C Data Validity

START and STOP conditions can be generated by the I2C module when the module is con-
figured to be a master on the I2C-bus.

• The START condition is defined as a high-to-low transition on the SDA line while
SCL is high. A master drives this condition to indicate the start of a data transfer.

• The STOP condition is defined as a low-to-high transition on the SDA line while
SCL is high. A master drives this condition to indicate the end of a data transfer

After a START condition and before a subsequent STOP condition, the I2C-bus is consid-
ered busy, and the bus busy (BB) bit of I2CSTR is 1. Between a STOP condition and the
next START condition, the bus is considered free, and BB is 0.

For the I2C module to start a data transfer with a START condition, the master mode bit
(MST) and the START condition bit (STT) in I2CMDR must both be 1. For the I2C module
to end a data transfer with a STOP condition, the STOP condition bit (STP) must be set to 1.

I2C Operating Modes

12 - 10 F2833x - Inter Integrated Circuit

Serial Data Formats
I2C is programmable to operate in different addressing formats, selected by bits “FDF” and
“XA” in register I2CMDR.

12 - 7

I2C Serial Data Formats

S Slave Address R/W ACK Data DataACK ACK P
1 7 1 1 n 1 n 1 1
7-Bit Addressing Format

S 11110AA R/W ACK AAAAAAAA DataACK ACK P
1 7 1 1 8 1 n 1 1
10-Bit Addressing Format

S Data ACK Data DataACK ACK P
1 n 1 n 1 n 1 1
Free Data Format

R/W = 0 – master writes data to addressed slave
R/W = 1 – master reads data from the slave
n = 1 to 8 bits
S = Start (high-to-low transition on SDA while SCL is high)
P = Stop (low-to-high transition on SDA while SCL is high)

FDF XA Format

1 X Free Data Format

0 0 7-Bit Addressing Format

0 1 10-Bit Addressing Format

In the 7-bit addressing format, which is often used, the first byte after a START condition (S)
consists of a 7-bit slave address followed by an R/W bit. R/W determines the direction of the
data:

• R/W = 0: The master writes (transmits) data to the addressed slave.
• R/W = 1: The master reads (receives) data from the slave.

An extra clock cycle dedicated to acknowledgment (ACK) is inserted after each byte. If the
ACK bit is inserted by the slave after the first byte from the master, it is followed by n bits of
data from the transmitter (master or slave, depending on the R/W bit). N is a number from 1
to 8 determined by the bit count (BC) field of I2CMDR. After the data bits have been trans-
ferred, the receiver inserts an ACK bit.

 Arbitration

F2833x - Inter Integrated Circuit 12 - 11

Arbitration
If two or more master-transmitters attempt to start a transmission on the same bus at ap-
proximately the same time, an arbitration procedure is invoked. The arbitration procedure
uses the data presented on the serial data bus (SDA) by the competing transmitters. Slide 12-
8 illustrates the arbitration procedure between two devices. The first master-transmitter,
which releases the SDA line high, is overruled by another master-transmitter that drives SDA
low. The arbitration procedure gives priority to the device that transmits the serial data
stream with the lowest binary value. Should two or more devices send identical first bytes,
arbitration continues on the subsequent bytes.

12 - 8

I2C Arbitration
 Arbitration procedure invoked if two or more master-

transmitters simultaneously start transmission
 Procedure uses data presented on serial data bus (SDA) by

competing transmitters

 First master-transmitter which drives SDA high is overruled by
another master-transmitter that drives SDA low

 Procedure gives priority to the data stream with the lowest binary
value

1 0

1 0 0 1 0 1

1 0 0 1 0 1

SCL

SDA

Data from
device #1
Data from
device #2

Device #1 lost arbitration
and switches to slave-

receiver mode

Device #2
drives SDA

If the I2C module is the losing master, it switches to the slave-receiver mode, sets the arbitra-
tion lost (AL) flag, and generates the arbitration-lost interrupt request.

If during a serial transfer the arbitration procedure is still in progress when a repeated
START condition or a STOP condition is transmitted to SDA, the master-transmitters in-
volved must send the repeated START condition or the STOP condition at the same position
in the format frame. Arbitration is not allowed between:

• A repeated START condition and a data bit
• A STOP condition and a data bit
• A repeated START condition and a STOP condition

I2C Interrupts

12 - 12 F2833x - Inter Integrated Circuit

I2C Interrupts
The I2C module generates the interrupt requests described in Slide 12-9. All interrupt
sources are multiplexed through an arbiter to a single I2C interrupt request to the CPU. Each
interrupt request has a flag bit in the status register (I2CSTR) and an enable bit in the inter-
rupt enable register (I2CIER). When one of the specified events occurs, its flag bit is set. If
the corresponding enable bit is 0, the interrupt request is blocked. If the enable bit is 1, the
request is forwarded to the CPU as an I2C interrupt.

12 - 9

I2C Interrupts
Interrupt Source Description

XRDYINT Transmit ready condition: The data transmit register (I2CDXR) is ready
to accept new data because the previous data has been copied from
I2CDXR to the transmit shift register (I2CXSR).

RRDYINT Receive ready condition: The data receive register (I2CDRR) is ready to
be red because data has been copied from the receive shift register
(I2CRSR) to I2CDRR.

ARDYINT Register-access ready condition: The I2C module registers are ready to
be accessed because the previously programmed address, data, and
command values have been used.

NACKINT No-acknowledgment condition: The I2C module is configured as a
master-transmitter and did not received acknowledgment from the
slave-receiver.

ALINT Arbitration-lost condition: The I2C module has lost an arbitration contest
with another master-transmitter.

SCDINT Stop condition detected: A STOP condition was detected on the I2C
bus.

AASINT Addressed as slave condition: The I2C has been addressed as a slave
device by another master on the I2C bus.

I2CFIFO see FIFO - Registers

The I2C interrupt is one of the maskable interrupts of the CPU. Like any other maskable in-
terrupt request, if it is properly enabled, the CPU executes the corresponding interrupt ser-
vice routine (I2CINT1A_ISR). The I2CINT1A_ISR for the I2C interrupt can determine the
interrupt source by reading the interrupt source register, I2CISRC. Then the I2CINT1A_ISR
can branch to the appropriate subroutine.
After the CPU reads I2CISRC, the following events occur:

(1) The flag for the source interrupt is cleared in I2CSTR. Exception: The ARDY,
RRDY, and XRDY bits in I2CSTR are not cleared when I2CISRC is read. To clear
one of these bits, write a 1 to it.

(2) The arbiter determines which of the remaining interrupt requests has the highest pri-
ority, writes the code for that interrupt to I2CISRC, and forwards the interrupt re-
quest to the CPU.

In addition to the seven basic I2C interrupts, the transmit and receive FIFOs each have the
ability to generate an additional interrupt (I2CINT2A). The FIFOs can be configured to gen-
erate an interrupt after transmitting/receiving a defined number of bytes, up to 16. These two
interrupt sources are ORed together into a single maskable CPU interrupt. The interrupt ser-
vice routine can then read the FIFO interrupt status flags to determine from which source the
interrupt came. See the I2C transmit FIFO register (I2CFFTX) and the I2C receive FIFO reg-
ister (I2CFFRX) descriptions.

 I2C Module Registers

F2833x - Inter Integrated Circuit 12 - 13

I2C Module Registers

12 - 10

I2C Registers
Register Name Description

I2COAR I2C own address register

I2CIER I2C interrupt enable register

I2CSTR I2C status register

I2CCLKL I2C clock low-time divide register

I2CCLKH I2C clock high-time divide register

I2CCNT I2C data count register

I2CDRR I2C data receive register

I2CSAR I2C slave address register

I2CDXR I2C data transmit register

I2CMDR I2C mode register

I2CISRC I2C interrupt source register

I2CEMDR I2C extended mode register

I2CPSC I2C prescaler register

I2CFFTX I2C FIFO transmit register

I2CFFRX I2C FIFO receive register

I2C Mode Register

12 - 11

815 91011121314

I2C Mode Register (I2CMDR)
I2caRegs.I2CMDR

TRXFREE STPSTT MSTNACKMOD reserved

NACKMOD
(receiver mode only)

0 = I2C sends ACK
1 = I2C sends NACK

XA

FREE
0 = I2C stop on EMULCK
1 = no I2C stop on EMUL

STT
0 = no START
1 = generate a START

STP
0 = no STOP
1 = generate a STOP

MST
0 = Slave Mode
1 = Master Mode

TRX
0 = Receiver Mode
1 = Transmitter Mode

XA
0 = 7 Bit Address
1 = 10 Bit Address

The I2C mode register (I2CMDR) is a 16-bit register that contains the control bits of the I2C
module. The bit fields of I2CMDR are shown in slides 12-11 and 12-12.

I2C Module Registers

12 - 14 F2833x - Inter Integrated Circuit

NACKMOD
This bit is only applicable when the I2C module is acting as a receiver.
0 In the slave-receiver mode: The I2C module sends an acknowledge (ACK) bit to the

transmitter during each acknowledge cycle on the bus. The I2C module only sends a
no-acknowledge (NACK) bit if you set the NACKMOD bit.
In the master-receiver mode: The I2C module sends an ACK bit during each ac-
knowledge cycle until the internal data counter counts down to 0. At that point, the
I2C module sends a NACK bit to the transmitter. To have a NACK bit sent earlier,
you must set the NACKMOD bit.

1 In either slave-receiver or master-receiver mode: The I2C module sends a NACK bit
to the transmitter during the next acknowledge cycle on the bus. Once the NACK bit
has been sent, NACKMOD is cleared. Note: To send a NACK bit in the next ac-
knowledge cycle, NACKMOD must be set before the rising edge of the last data bit.

FREE
This bit controls the action taken by the I2C module when a debugger breakpoint is encoun-
tered.
0 When the I2C module is a master:

If SCL is low when the breakpoint occurs, the I2C module stops immediately and
keeps driving SCL low, whether the I2C module is the transmitter or the receiver. If
SCL is high, the I2C module waits until SCL becomes low and then stops.
When I2C module is slave:
A breakpoint forces the I2C module to stop when the current transmission/reception
is complete.

1 The I2C module runs free; that is, it continues to operate when a breakpoint occurs.

STT
START condition bit (only applicable when the I2C module is a master). The RM, STT, and
STP bits determine when the I2C module starts and stops data transmissions (see Table 6).
Note that the STT and STP bits can be used to terminate the repeat mode, and that this bit is
not writable when IRS = 0.
0 In the master mode, STT is automatically cleared after the START condition has

been generated.
1 In the master mode, setting STT to 1 causes the I2C module to generate a START

condition on the I2C-bus.

STP
STOP condition bit (only applicable when the I2C module is a master). In the master mode,
the RM, STT, and STP bits determine when the I2C module starts and stops data transmis-
sions. Note that the STT and STP bits can be used to terminate the repeat mode, and that this
bit is not writable when IRS=0.
0 STP is automatically cleared after the STOP condition has been generated.
1 STP has been set to generate a STOP condition when the internal data counter of the

I2C module counts down to 0.

 I2C Module Registers

F2833x - Inter Integrated Circuit 12 - 15

MST
Master mode bit. MST determines whether the I2C module is in the slave mode or the master
mode. MST is automatically changed from 1 to 0 when the I2C master generates a STOP
condition.
0 Slave mode. The I2C module is a slave and receives the serial clock from the master.
1 Master mode. The I2C module is a master and generates the serial clock on the SCL
 pin.

TRX
Transmitter mode bit. When relevant, TRX selects whether the I2C module is in the trans-
mitter mode or the receiver mode.
0 Receiver mode. The I2C module is a receiver and receives data on the SDA pin.
1 Transmitter mode. The I2C module is a transmitter and transmits data on the SDA

pin.

XA
Expanded address enable bit.
0 7-bit addressing mode (normal address mode). The I2C module transmits 7-bit slave

addresses (from bits 6-0 of I2CSAR).
1 10-bit addressing mode (expanded address mode). The I2C module transmits 10-bit
 slave addresses (from bits 9-0 of I2CSAR).

12 - 12

7 2 - 03456

I2C Mode Register (I2CMDR)
I2caRegs.I2CMDR

IRS STB FDF BCRM

RM
0 = no repeat mode
1 = repeat mode

DLB

DLB
0 = no loopback
1 = loopback mode

IRS
0 = I2C in RESET
1 = I2C enabled

STB
0 = no START byte mode
1 = START byte mode

FDF
0 = no free data format
1 = free data format

BC
0 = 8 bit per data
1 = 1 bit per data
2 = 2 bit per data
…
7 = 7 bit per data

RM
Repeat mode bit (only applicable when the I2C module is a master-transmitter). The RM,
STT, and STP bits determine when the I2C module starts and stops data transmissions.
0 Non-repeat mode. The value in the data count register (I2CCNT) determines how

many bytes are received / transmitted by the I2C module.

I2C Module Registers

12 - 16 F2833x - Inter Integrated Circuit

1 Repeat mode. A data byte is transmitted each time the I2CDXR register is written to
(or until the transmit FIFO is empty when in FIFO mode) until the STP bit is manu-
ally set. The value of I2CCNT is ignored. The ARDY bit/interrupt can be used to de-
termine when the I2CDXR (or FIFO) is ready for more data, or when the data has all
been sent and the CPU is allowed to write to the STP bit.

DLB
Digital loopback mode bit.
0 Digital loopback mode is disabled.
1 Digital loopback mode is enabled. For proper operation in this mode, the MST bit

must be 1.
IRS
I2C module reset bit.
0 The I2C module is in reset/disabled. When this bit is cleared to 0, all status bits (in

I2CSTR) are set to their default values.
1 The I2C module is enabled. This has the effect of releasing the I2C bus if the I2C

peripheral is holding it.

STB
START byte mode bit. This bit is only applicable when the I2C module is a master. As de-
scribed in version 2.1 of the Philips Semiconductors I2C-bus specification, the START byte
can be used to help a slave that needs extra time to detect a START condition. When the I2C
module is a slave, it ignores a START byte from a master, regardless of the value of the STB
bit.
0 The I2C module is not in the START byte mode.
1 The I2C module is in the START byte mode.

FDF
Free data format mode bit.
0 Free data format mode is disabled. Transfers use the 7-/10-bit addressing format se-

lected by the XA bit.
1 Free data format mode is enabled.

BC
Bit count bits. BC defines the number of bits (1 to 8) in the next data byte that is to be re-
ceived or transmitted by the I2C module. The number of bits selected with BC must match
the data size of the other device. Notice that when BC = 000b, a data byte has 8 bits. BC
does not affect address bytes, which always have 8 bits.

000 8 bits per data byte
001 1 bit per data byte
010 2 bits per data byte
011 3 bits per data byte
100 4 bits per data byte
101 5 bits per data byte
110 6 bits per data byte
111 7 bits per data byte

 I2C Module Registers

F2833x - Inter Integrated Circuit 12 - 17

I2C Interrupt Enable Register

12 - 13

I2C Interrupt Enable Register
I2caRegs.I2CIER

07 123456

NACKAAS RRDYSCD ARDYreserved XRDY AL

815 91011121314

reservedreserved reservedreserved reservedreserved reserved reserved

1 = enable interrupt source 0 = disable

AAS: an I2C - master has addressed the DSC as slave
SCD: Stop condition detected
XRDY: Transmit data ready for new data
RRDY: Receive data available
ARDY: I2C register access ready
NACK: No – Acknowledge received
AL: Arbitration lost during competition

I2C Status Register

12 - 14

I2C Status Register
I2caRegs.I2CSTR

07 123456

NACKreserved RRDYSCD ARDYreserved XRDY AL

815 91011121314

AASSDIR RSFULLNACKSNT XSMTreserved BB AD0

SDIR: 1 = I2C is addressed as a slave transmitter; 0 = as receiver
NACKSNT: 1 = a NACK was sent as receiver from I2C
BB: 1 = Bus is busy, a START has been sent
RSFULL: 1 = Overrun of the receiver detected
XSMT: 0 = underflow of transmit shift register detected
AAS: 1 = I2C was addressed a s slave
AD0: 1 = a general call (address 0) has been detected
SCD: 1 = a STOP condition has been detected
XRDY: 1 = Transmit register I2CDXR ready for new data
RRDY: 1 = Receive data available in I2CDRR
ARDY: 1 = a previous cycle has completed
NACK: 0 = ACK received; 1 = NACK received
AL: 1 = Arbitration lost during competition by 2 masters

I2C Module Registers

12 - 18 F2833x - Inter Integrated Circuit

I2C Interrupt Source Register

12 - 15

I2C Interrupt Source Register
I2caRegs.I2CISRC

2 - 015 - 3

INTCODEreserved

INTCODE Event
000 None
001 Arbitration lost
010 No-acknowledgment
011 Registers ready to be accessed
100 Receive data ready
101 Transmit data ready
110 Stop condition detected
111 Addressed as slave

Note: A CPU read of INTCODE will clear this field. If another lower priority
interrupt is pending and enabled, the value corresponding to that interrupt will
then be loaded. Otherwise, the value will stay cleared.

I2C Clock Register

12 - 16

I2C Clock Register
I2caRegs.I2CPSC

7 - 015 - 8

IPSCreserved

TI2C_MASTER_CLOCK = TI2C_MODULE_CLOCK * [(ICCL +d) + (ICCH + d)]

Note: should be 7…12 MHz

I2caRegs.I2CCLKL

015

ICCH

I2caRegs.I2CCLKH

015

ICCL

I2C module clock frequency = SYSCLKOUT / (IPSC + 1)

 I2C Module Registers

F2833x - Inter Integrated Circuit 12 - 19

12 - 17

I2C Master Clock

IPSC Value for d
0 7
1 6

greater than 1 5

(A):

I2C Slave Address Register

12 - 19

I2C Slave Address Register
I2caRegs.I2CSAR

9 - 015 - 10

SARreserved

SAR: next slave address that will be transmitted
Bits 6…0 in 7 Bit - Address - Mode (XA = 0 in I2CMDR)
Bits 9…0 in 10 Bit - Address _ Mode (XA = 1)

I2C Module Registers

12 - 20 F2833x - Inter Integrated Circuit

I2C Own Address Register

12 - 20

I2C Own Address Register
I2caRegs.I2COAR

9 - 015 - 10

OARreserved

OAR: F2833x address in case of slave mode
Bits 6…0 in 7 Bit - Address - Mode (XA = 0 in I2CMDR)
Bits 9…0 in 10 Bit - Address _ Mode (XA = 1)

I2C Data Count Register

12 - 20

I2C Data Count Register
I2caRegs.I2CCNT

015

ICDC

ICDC: Data Count Value

ICDC indicates the number of data bytes to transfer or receive.

0x0000: The start value loaded to the internal data counter is 65536.

00001-0xFFFF: The start value loaded to internal data counter is 1-65535.

F2833x - Inter Integrated Circuit 12 - 21

I2C Data Registers
To read or write data from / to I2C, we use the lower 8 bits of two data registers:

12 - 21

I2C Data Receive Register
I2caRegs.I2CDRR

7 - 015 - 8

DATAreserved

I2C Data Transmit Register
I2caRegs.I2CDXR

7 - 015 - 8

DATAreserved

I2C FIFO Buffers
The I2C module of the F2833x is enhanced by a set of FIFO-buffers for register I2CDRR
and I2CDXR. The FIFO-buffers, each of them 16 levels deep, can be used to buffer up to 16
characters, before they are transmitted into I2C (TXFIFO) or after they have been received
(RXFIFO). This greatly reduces the workload for the CPU to service the I2C.

Note that the FIFO-units have no individual register names or address spaces; once the
FIFOs are enabled, a repeated write into register I2CDXR will indirectly use this background
transmit buffer to store the data. Values from this background FIFO are loaded into the
foreground automatically as soon as register I2CDXR is ready for new data.

The same principle applies to the I2CDRR register for data, received by the I2C input
channel. By defining a threshold for an interrupt request, when a certain number of FIFO
entries are consumed, the number of interrupts for I2C can be reduced.

The FIFO-option is disabled by default. Since we will use the FIFO in lab exercise 12_3, we
will have to discuss the two control registers in the following two slides:

I2C FIFO Buffers

12 - 22 F2833x - Inter Integrated Circuit

I2C TX-FIFO Register

12 - 22

I2C Transmit FIFO Register
I2caRegs.FFTX

7 4 - 056

TXFFINTCLR TXFFIENA TXFFILTXFFINT

15 12 – 8 1314

TXFFSTI2CFFEN TXFFRSTreserved

I2CFFEN: 1 = enable TXFIFO - mode
TXFFRST: 0 = reset TXFIFO; 1 = enable TX - operation
TXFFST: Filling level of TXFIFO (0 – 16)
TXFFINT: TXFIFO Interrupt flag

1 = TX FIFO interrupt condition has occurred.
0 = TX FIFO interrupt condition has not occurred.
cleared by writing a 1 into bit TXFFINTCLR

TXFFINTCLR: 1 = clear flag TXFFINT
TXFFIENA: 1 = enabled. TXFFINT generates an interrupt when set.
TXFFIL: TX FIFO Interrupt level. If TXFFST is equal or less than

TXFFIL, the flag TXFFINT is set.

I2C RX-FIFO Register

12 - 23

I2C Receive FIFO Register
I2caRegs.I2CFFRX

7 4 - 056

RXFFINTCLR RXFFIENA RXFFILRXFFINT

15 12 – 8 1314

RXFFSTreserved RXFFRSTreserved

RXFFRST: 0 = reset RXFIFO; 1 = enable RX – FIFO - operation
RXFFST: Filling level of RXFIFO (0 – 16)
RXFFINT: RXFIFO Interrupt flag

1 = RX FIFO interrupt condition has occurred.
0 = RX FIFO interrupt condition has not occurred.
cleared by writing a 1 into bit RXFFINTCLR

RXFFINTCLR: 1 = clear flag RXFFINT
RXFFIENA: 1 = enabled. RXFFINT generates an interrupt when set.
RXFFIL: RX FIFO Interrupt level. If RTXFFST is equal or greater

than RXFFIL, the flag RXFFINT is set.

 Temperature Sensor TMP100

F2833x - Inter Integrated Circuit 12 - 23

Temperature Sensor TMP100
To exercise the I2C module of the F2833x we need to connect external I2C-device(s). The
Peripheral Explorer Board is equipped with a Texas Instruments temperature sensor TMP100
(or TMP 100) - see datasheet literature number “SBOS231G”.

12 - 25

Temperature Sensor TMP101

• Digital Interface: I2C Serial 2-Wire
• Resolution: 9- to 12-Bits, User-Selectable

• 9 – Bit: 0.5 °C; 12 – Bit:0.0625 °C
• Accuracy:

• ±2.0°C from −25°C to +85°C (max)
• ±3.0°C from −55°C to +125°C (max)

• Low quiescent current of 45μA, 0.1μA Standby
• Power supply range: 2.7V to 5.5V
• Tiny SOT23-6 package

The TMP100 and TMP101 are two-wire, serial output temperature sensors available in
SOT23-6 packages. Requiring no external components, the TMP100 and TMP101 are capa-
ble of reading temperatures with a resolution of 0.0625°C. The TMP100 and TMP101 fea-
ture I2C interface compatibility, with the TMP100 allowing up to eight devices on one bus.

The TMP101 offers SMBus alert function with up to three devices per bus. The TMP100 and
TMP101 are ideal for extended temperature measurement in a variety of communication,
computer, consumer, environmental, industrial, and instrumentation applications.

The TMP100 and TMP101 are specified for operation over a temperature range of −55°C to
+125°C.

Temperature Sensor TMP100

12 - 24 F2833x - Inter Integrated Circuit

The following Slide 12-26 shows the physical pin out of the device. Signals SCL and SDA
are the I2C clock and data lines discussed above. Signal V+ is connected to +3.3V. Pins
“ADD0” and “ADD1” are code pins to define the device slave address:

ADD1 ADD0 Slave address
0 0 0x48
0 Float 0x49
0 1 0x4A
1 0 0x4C
1 Float 0x4D
1 1 0x4E

Float 0 0x4B
Float 1 0x4F

At the Peripheral Explorer Board pins ADD0 and ADD1 are fixed to 0.

12 - 26

Temperature Sensor TMP100

 Temperature Sensor TMP100

F2833x - Inter Integrated Circuit 12 - 25

TMP100 Register Structure
The TMP100 must be initialized by a set of 5 internal registers:

12 - 27

Temperature Sensor TMP100

00

10

01

11

Pointer:

The 8-bit Pointer Register of the TMP100 and TMP101 is used to address a given data
register. The Pointer Register uses the two LSBs to identify which of the data registers
should respond to a read or write command.

The Pointer Register has the following layout:

P7 P6 P5 P4 P3 P2 P1 P0

0 0 0 0 0 0 Register - Bits

Using the “Register-Bits”, one of the registers available in the TMP100 and TMP101 can be
pre-selected. The Power-up Reset value of P1/P0 is 00.

P1 P0 Register

0 0 Temperature Register

0 1 Configuration Register

1 0 Low Temperature Threshold Register

1 1 High Temperature Threshold Register

Temperature Sensor TMP100

12 - 26 F2833x - Inter Integrated Circuit

Temperature Register

The Temperature Register of the TMP100 or TMP101 is a 12-bit read-only register that
stores the output of the most recent conversion. Two bytes must be read to obtain the data:

12 - 28

Temperature Sensor TMP100

 Configuration Register

The Configuration Register is an 8-bit read/write register used to store bits that control the
operational modes of the temperature sensor. Read/write operations are performed MSB
first. The format of the Configuration Register for the TMP100 and TMP101 is shown in
Slide 12-29.

 Temperature Sensor TMP100

F2833x - Inter Integrated Circuit 12 - 27

12 - 29

TMP100 Configuration Register
07 123456

TMR1 F0R0 POLOS/ALERT F1 SD

OS/ALERT: write 1: single temperature conversion
write 0: continuous temperature conversion
read 1: temperature above THIGH
read 0: temperature below TLOW

R1, R0: Resolution 9 bit (0,0) … 12 bit (1,1)
F1,F0: activate ALERT after number of consecutive faults (1,2,4,6)
POL: Polarity of ALERT (0 or 1)
TM: write 0: Comparator Mode

(ALERT stays active as long as condition is true)
write 1: Interrupt Mode

(ALERT is cleared by a read instruction of any reg)
SD: write 1: shutdown

write 0: active mode

The power-up/reset value of the Configuration Register is with all bits equal to 0.

TMP100 Timing Diagrams
The I2C Bus Timing is based on different bus conditions:

Bus Idle:
Both SDA and SCL lines remain HIGH.

Start Data Transfer:
A change in the state of the SDA line, from HIGH to LOW, while the SCL line is HIGH,
defines a START condition. Each data transfer is initiated with a START condition.

Stop Data Transfer:
A change in the state of the SDA line from LOW to HIGH while the SCL line is HIGH de-
fines a
STOP condition. Each data transfer is terminated with a repeated START or STOP condi-
tion.

Data Transfer:
The number of data bytes transferred between a START and a STOP condition is not limited
and is determined by the master device. The receiver acknowledges the transfer of data.

Acknowledge and Not-Acknowledge:

Temperature Sensor TMP100

12 - 28 F2833x - Inter Integrated Circuit

Each receiving device, when addressed, is obliged to generate an Acknowledge bit. A device
that acknowledges must pull down the SDA line during the Acknowledge clock pulse in such
a way that the SDA line is stable LOW during the HIGH period of the Acknowledge clock
pulse. Setup and hold times must be taken into account. On a master receive, the termination
of the data transfer can be signalled by the master generating a Not-Acknowledge (NACK)
on the last byte that has been transmitted by the slave.

Note: Data books on I2C sometimes state that “the master does NOT acknowledge”. This
means that “the master performs Not-Acknowledge (NACK)”, rather than skipping the ac-
knowledge part of the cycle.

TMP100 / TMP101 Write Timing

12 - 30

TMP101 Write Timing

 Temperature Sensor TMP100

F2833x - Inter Integrated Circuit 12 - 29

TMP100 / TMP101 Write Timing

12 - 31

TMP101 Read Timing

Lab Exercise 12_1

12 - 30 F2833x - Inter Integrated Circuit

Lab Exercise 12_1

Preface

The Peripheral Explorer Board is equipped with an external temperature sensor TMP100
(device U9). During the early stages of this textbook the first version of the Peripheral Ex-
plorer Board was not equipped with such an I2C- device.

Here is the description what to do, in case if your Peripheral Explorer Board does not include
a TMP101 or TMP100. Connect the following four pins of the TMP101 with wires to the
headers of the Peripheral Explorer Board:

Pin TMP101 Header of Peripheral Explorer
1: SCL J15:1 (I2C - SCL)
2: GND J12:3 (RS232 - GND)
4: V+ J12:2 (RS232 - V33)

6: SDA J15:2(I2C - SDA)

The two I2C-signals are multiplexed at GPIO32 (SDA) and GPIO33 (SCL). To guarantee the
voltage levels for the two signals we need external pull-up - resistors of 4.7 kOhm between
the signal line SCL and 3.3V and between SDA and 3.3V. Note: The F2833x is equipped
with internal pull-up- resistors. However, their resistance is not low enough to guarantee the
timing of an I2C-bit period.

Objective

The objective of Lab 12_1 is to initialize the I2C interface and to read the current tempera-
ture from the external device TMP100. For simplification we will use a watch window to
monitor the current value of integer variable “temperature”. Note that the result 16-bit regis-
ter of the TMP100 has 8 integer bits and 8 binary fraction bits; so if we display this value as
I8Q8-number (type: int, Radix: Q8) we can immediately verify the temperature value.

Procedure

Open Files, Create Project File
1. Using Code Composer Studio, create a new project, called Lab12.pjt in

C:\DSP2833x_V4\Labs (or in another path that is accessible by you; ask your teacher
or a technician for an appropriate location!).

2. A good point to start with is the source code of Lab6.c, which produces a hardware
based time period using CPU core timer 0. Open file Lab6.c from
C:\DSP2833x_V4\Labs\Lab6 and save it as Lab12_1.c in
C:\DSP2833x_V4\Labs\Lab12.

 Lab Exercise 12_1

F2833x - Inter Integrated Circuit 12 - 31

3. Define the size of the C system stack. In the project window, right click at project
“Lab12” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

Link some of the source code files, provided by Texas Instruments, to the project:

4. In the C/C++ perspective, right click at project “Lab12” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source” and
link:

• DSP2833x_GlobalVariableDefs.c

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link:
• DSP2833x_PieCtrl.c
• DSP2833x_PieVect.c
• DSP2833x_DefaultIsr.c
• DSP2833x_CpuTimers.c
• DSP2833x_SysCtrl.c
• DSP2833x_CodeStartBranch.asm
• DSP2833x_ADC_cal.asm
• DSP2833x_usDelay.asm

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link:

• DSP2833x_Headers_nonBIOS.cmd

Project Build Options
5. We have to extent the search path of the C-Compiler for include files. Right click at

project “Lab12” and select “Properties”. Select “C/C++ Build”, “C2000 Compiler”,
“Include Options”. In the box: “Add dir to #include search path”, add the following
lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include

C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Close the Property Window by Clicking <OK>.

Lab Exercise 12_1

12 - 32 F2833x - Inter Integrated Circuit

Preliminary Test
6. So far, we have just created a new project “Lab12.pjt” with the same functionality as

in Lab6. A good step would be to rebuild Lab12, load the code into the controller and
verify the binary counter at LED’s LD1 to LD4 of the Peripheral Explorer Board.

The LEDs should be updated by the counter in 100 milliseconds time steps.

If not: Debug!

Add TMP100 and I2C Initialization Code
7. Now let us add code to initialize the I2C and the TMP100.

The TMP100 is addressed as I2C-Slave. If pin ADDR0 is floating, its address is
hexadecimal 0x49. The initialization is based on TMP100 internal registers with the
following addresses:

• Temperature Register: 0
• Configuration Register: 1
• Temperature Low Register: 2
• Temperature High Register: 3

To allow a simple addressing of these registers, add the following macros at the
beginning of Lab12_1.c:

#define TMP100_SLAVE 0x48
#define POINTER_TEMPERATURE 0
#define POINTER_CONFIGURATION 1
#define POINTER_T_LOW 2
#define POINTER_T_HIGH 3

8. At the beginning of “main()”, remove variable “counter”. Define a global integer
variable “temperature”. Note: it is good software practice to write out the word
“temperature” in full, rather than using the abbreviation “temp”. This is because the
abbreviation could mean either “temporary” or “temperature”.

9. In local function “Gpio_select()” change register GPBMUX1 to enable lines GPIO32
and GPIO33 for I2C operation. In register GPBPUD enable the internal pull-up -
resistors for lines GPIO32 and GPIO33. In register GPBQSEL1 set lines GPIO32 and
GPIO33 to asynchronous input.

10. In main, after the function call of “Gpio_select()”, add a function call of a new
function “I2CA_Init()”.

11. At the end of “main()”, add the definition of the new function “I2CA_Init()” with void
both as input and return parameter type. In “I2CA_Init()” perform the following:

• Reset the I2C-module (Register I2CMDR, bit IRS)

• Set the slave address register to 0x49 (Register I2CSAR)

• Initialize the I2C module clock to 10MHz. If SYSCLKOUT is 150 MHz, set
Register I2CPSC to 14:

 Lab Exercise 12_1

F2833x - Inter Integrated Circuit 12 - 33

;
)1(

10
+

=
PSC

SYSCLKOUTMHz

• Set low and high phase of the I2C-clock signal to 50% each. As an example, we will
use an I2C-clock frequency of 50 kHz (clock period = 20µs).

MHz
ICCHICCLµs

150
)]5()5)[(114(20 ++++

=

The equation above results in ICCL = ICCH = 95. Initialize registers I2CCLKL and
I2CCLKH accordingly.

• Finally take the I2C module out of reset (Register I2CMDR bit IRS).

• At the beginning of “Lab12_1.c” add a prototype for the new local function
“I2CA_Init()”.

12. In the endless while(1)-loop of function "main()", remove all lines which are related to
variable “counter” and to the monitoring with LEDs LD1 to LD4.

13. After the watchdog service code lines in the while(1)-loop of “main()”, add code to
read the current temperature from TMP100:

• Set register “I2CCNT” to 2 to read a 2 byte temperature information from TMP100

• Initialize register “I2CMDR”:
• Bit15 = 0; no NACK in receiver mode
• Bit14 = 1; FREE on emulation halt
• Bit13 = 1; STT generate START
• Bit12 = 0; reserved
• Bit11 = 1; STP generate STOP
• Bit10 = 1; MST master mode
• Bit9 = 0; TRX master-receiver mode
• Bit8 = 0; XA 7-bit address mode
• Bit7 = 0; RM non-repeat mode, I2CCNT determines # of bytes
• Bit6 = 0; DLB no loopback mode
• Bit5 = 1; IRS I2C module enabled
• Bit4 = 0; STB no start byte mode
• Bit3 = 0; FDF no free data format
• Bit2…0 = 0; BC 8 bit per data byte

14. Install a wait loop until the 1st byte has been received from TMP100:

 while(I2caRegs.I2CSTR.bit.RRDY == 0);

15. Read the upper 8 bits of temperature:
temperature = I2caRegs.I2CDRR << 8;

16. Wait for the 2nd byte and add it as the 8 lower bits to temperature:
while(I2caRegs.I2CSTR.bit.RRDY == 0);

 temperature += I2caRegs.I2CDRR;

Lab Exercise 12_1

12 - 34 F2833x - Inter Integrated Circuit

Build, Load and Run
17. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

and watch the tools run in the build output window. If you get errors or warnings de-
bug as necessary.

18. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

19. Verify that in the debug perspective the window of the source code “Lab12_1.c” is

high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

20. Open a watch window and enter variable “temperature”. With a left mouse click into
column “Format”, select “Q-Value(8). Activate “Continuous Refresh” button in the
Watch Window.

Now start a “Real Time Run”:

 Scripts  Realtime Emulation Control  Run_Realtime_with_Restart

The Variable “temperature” should display the current ambient temperature with a
resolution of 0.5 °C (the example above shows 29.0 °C).

21. Stop the code- execution:

 Scripts  Realtime Emulation Control  Full Halt

 Lab Exercise 12_2

F2833x - Inter Integrated Circuit 12 - 35

Lab Exercise 12_2

Objective

In Lab12_1 we used the TMP100 in a basic scenario with a resolution of 9 bits (or 0.5 °C)
only. However, the TMP100 is able to operate with a resolution of 12 bits (or 1/16 °C). This
high resolution must be initialized in the configuration register of the TMP100. This is the
task for Lab12_2.

Procedure

Open Project, Modify Source File
1. If not still open from Lab12_1, re-open project Lab12.pjt in C:\DSP2833x_V4\Labs.

2. Open file “Lab12_1.c” and save it as “Lab12_2.c”

3. Exclude file “Lab12_1.c” from build. Use a right mouse click at file “Lab12_1.c”, and
enable “Exclude File(s) from Build”.

4. In function main, after the function call of “I2CA_Init()”, add I2C-code to address the
configuration register of the TMP100:

• Set register “I2CCNT” to 2 to send a 2-byte command (configuration
register address, followed by configuration data) to TMP100.

• Load register “I2CDXR” with the configuration register address:

 I2caRegs.I2CDXR = POINTER_CONFIGURATION;

• Initialize register “I2CMDR”:
• Bit15 = 0; no NACK in receiver mode
• Bit14 = 1; FREE on emulation halt
• Bit13 = 1; STT generate START
• Bit12 = 0; reserved
• Bit11 = 1; STP generate STOP
• Bit10 = 1; MST master mode
• Bit9 = 1; TRX master-transmitter mode
• Bit8 = 0; XA 7-bit address mode
• Bit7 = 0; RM non-repeat mode, I2CCNT defines # of bytes
• Bit6 = 0; DLB no loopback mode
• Bit5 = 1; IRS I2C module enabled
• Bit4 = 0; STB no start byte mode
• Bit3 = 0; FDF no free data format
• Bit2…0 = 0; BC 8 bit per data byte

• Install a wait loop until the 1st byte has been transmitted to TMP100:

 while(I2caRegs.I2CSTR.bit.XRDY == 0);

Lab Exercise 12_2

12 - 36 F2833x - Inter Integrated Circuit

• Load register “I2CDXR” with the configuration data (0x60, see Slide 12-
29) to initialize the temperature measurement with 12-bit resolution.

• Wait for the successful generation of the stop-condition:

 while(I2caRegs.I2CSTR.bit.SCD == 0);
• Clear the stop condition flag:

 I2caRegs.I2CSTR.bit.SCD = 1;

5. In the endless while(1)- loop of “main()” we have to change the code to read the TMP
100 temperature register. According to the “read temperature” time diagram (Slide 12-
31) we have to generate a 5-byte I2C frame (slave address, temperature register
address, slave address, read temperature high, read temperature low). Note that there
are two “Start By Master” conditions in this sequence. Also, we have to transmit the
first two bytes as Master-Transmitter and then to switch into Master-Receiver-Mode.

12 - 31

TMP101 Read Timing

Whilst the second half of the required code is identical to the code from Lab12_1, we
have to add the code to generate byte 1 and 2 of diagram 12-31. In the while(1)-loop
before the line “I2caRegs.I2CCNT = 2”, add:

I2caRegs.I2CCNT = 1; // 1 byte message
I2caRegs.I2CDXR = POINTER_TEMPERATURE;
I2caRegs.I2CMDR.all = 0x6620; // master-receiver, START, STOP
while(I2caRegs.I2CSTR.bit.ARDY == 0); // wait for STOP condition

Build, Load and Run
6. Click the “Rebuild Active Project ” button or perform:

 Lab Exercise 12_2

F2833x - Inter Integrated Circuit 12 - 37

 Project  Rebuild All (Alt +B)

and watch the tools run in the build output window. If you get errors or warnings de-
bug as necessary.

7. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

8. Verify that in the debug perspective the window of the source code “Lab12_2.c” is

high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

9. Perform a real time run.

Target  Run

10. Open a watch window and enter variable “temperature”. With a left mouse click into
column “Format”, select “Q-Value(8). Activate “Continuous Refresh” button in the
Watch Window.

Now start a “Real Time Run”:

 Scripts  Realtime Emulation Control  Run_Realtime_with_Restart

Variable “temperature” should display the current ambient temperature with a resolu-
tion of 1/16 °C (the example above shows 29.0625 °C).

11. Stop the code - execution:

 Scripts  Realtime Emulation Control  Full Halt

Lab Exercise 12_2

12 - 38 F2833x - Inter Integrated Circuit

Troubleshooting

If your variable “temperature” does not show correct numbers but the code is run-
ning as expected, then it might be useful to measure the signals SCL and SDA with
an oscilloscope or logic analyzer.

The following image is a screenshot of a logic analyzer measurement of bytes 1 and
2 of an I2C-frame “Read -Timing” according to Slide 12-31 (see above) after the 1st
START-Condition.

What follows is a description of the screenshot above from left to right:
• M1 (green marker): START Condition
• M2 (pink marker): 100100100

 | | | | | | | | |___ ACK by TMP101
 | | | | | | | |____ Write

 | | | | | | |_____ device address 0x49

• M3 (yellow marker): 000000000
 | | | | | | | | |___ ACK by TMP101
 | | | | | | | |_____ pointer to temperature register: 0x00

• M4 (green marker): 2nd START Condition

 Lab Exercise 12_2

F2833x - Inter Integrated Circuit 12 - 39

The next image is a screenshot of a logic analyzer measurement of bytes 3, 4 and 5
of an I2C-frame “Read -Timing” according to Slide 12-31 (see above) after the 2nd
START-Condition.

What follows is a description of the screenshot from left to right:
• M4 (green marker): 2nd START Condition
• M5 (blue marker): 100100110

 | | | | | | | | |___ ACK by TMP101
 | | | | | | | |____ Read
 | | | | | | |_____ device address 0x49

• M6 (cyan marker): 000101110
 | | | | | | | | |___ ACK by F2833x
 | | | | | | | |_____ temperature high (16+4+2+1 = 23 °C)

• M8 (red marker): 110100001
 | | | | | | | | |___ NACK by F2833x
 | | | | | | | |_____ temperature low (½ + ¼ + 1/16 = 0.8125 °C)

• M9 (gray marker): STOP condition

Lab Exercise 12_3

12 - 40 F2833x - Inter Integrated Circuit

Lab Exercise 12_3

Objective

In Lab12_1 and Lab12_2 we used the TMP100 with a temperature resolution of 9 bits (or 0.5
°C) or 12 bits (1/16 °C). For the I2C-communication we installed a non FIFO data transmis-
sion, which leads to an increasing CPU load, especially when one would use a more demand-
ing slave device, such as an EEPROM, ADC or DAC. To reduce the CPU load we should try
to setup the FIFO-buffered operating mode of the I2C-interface. This is the objective of
Lab12_3.

Procedure

Open Project, Modify Source File

1. If not still open from Lab12_2, re-open project Lab12.pjt in C:\DSP2833x_V4\Labs.

2. Open file “Lab12_2.c” and save it as “Lab12_3.c”

3. Exclude file “Lab12_2.c” from build. Use a right mouse click at file “Lab12_2.c”, and
enable “Exclude File(s) from Build”.

4. First we have to change function “I2CA_Init()”. Add new code to initialize registers
I2CFFTX and I2CFFRX at the end of this function directly in front of the last code
line to take the I2C out of reset:

• For register I2CFFTX:
• First reset the whole register to zero.
• Next, set the transmit interrupt level (bit field TXFFIL) to zero.
• Enable the FIFOs (bit I2CFFEN).
• Enable the FIFO-transmit support (bit TXFFRST)

• For register I2CFFRX:
• First reset the whole register to zero.
• Next, set the receive interrupt level (bit field RXFFIL) to 2, because

we will receive a 2 byte temperature message from the TMP100.
• Enable the FIFO-receiver support (bit RXFFRST)

5. Change the code in function “main()”. Before we enter the endless while(1)-loop, we
already have some lines to address the TMP100 configuration register. This command
consists of a 2-byte message from the F2833x to the TMP100. In Lab12_2 we first
wrote byte “POINTER_CONFIGURATION” into register I2CDXR, then we waited
until the first byte had been transmitted, before we wrote the next byte “0x60” (12-bit
resolution mode) into register I2CDXR. For now, since we have enabled the transmit
FIFO, there is no need to wait. We can write the two bytes directly one after another:

I2caRegs.I2CCNT = 2;

 Lab Exercise 12_3

F2833x - Inter Integrated Circuit 12 - 41

I2caRegs.I2CDXR = POINTER_CONFIGURATION;
I2caRegs.I2CDXR = 0x60;
I2caRegs.I2CMDR.all = 0x6E20;

6. In Lab12_2 we read the temperature value from TMP100 in a 2-byte sequence at the
end of the while(1)-loop. First we waited until the first byte was received (register
I2CSTR bit RRDY), then we copied the information into variable “temperature” and
finally we waited for another RRDY flag before we read the remaining byte and added
it to “temperature”. For the new lab 12_3 we initialized the receive FIFO to set the
interrupt flag “RXFFINT” after 2 bytes have been received. Using this new flag we
can simplify the wait construction to a single line and read the two temperature bytes
directly one after another:

while(I2caRegs.I2CFFRX.bit.RXFFINT == 0);
I2caRegs.I2CFFRX.bit.RXFFINTCLR = 1;
temperature = I2caRegs.I2CDRR << 8; //read upper 8 Bit (integers)
temperature += I2caRegs.I2CDRR; //add lower 8 Bit (fractions)

Build, Load and Run
7. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

8. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective. Verify that in the debug perspective the win-
dow of the source code “Lab12_3.c” is high-lighted and that the blue arrow for the
current Program Counter position is placed under the line “void main(void)”.

9. Perform a real time run.

 Scripts  RealTime Emulation Control  Run_Realtime_with_Restart

10. Open a watch window and enter variable “temperature”. With a left mouse click into
column “Format”, select “Q-Value(8). Activate “Continuous Refresh” button in the
Watch Window.

Variable “temperature” should display the current ambient temperature with a resolu-
tion of 1/16 °C (the example above shows 27.625 °C).

11. Stop the code - execution:

  Scripts  Realtime Emulation Control  Full Halt

Lab Exercise 12_4

12 - 42 F2833x - Inter Integrated Circuit

Lab Exercise 12_4

Objective

As final laboratory exercise we will use the I2C-interrupt system to start “follow-up” - activi-
ties. You might have noticed that in “Lab12_1.c” to “Lab12_3.c” we used while-loops to
wait until the I2C-interface had finished previous parts of a data frame. This was simple and
easy; but we wasted CPU performance with this technique. Now we will activate interrupt
services to replace such while-loops.

The I2C interface has two groups of interrupts, (1) basic interrupts, described in Slide 12-13
and (2) FIFO-interrupts. Basic Interrupts are wired to Peripheral Interrupt Expansion (PIE)
8.1; FIFO - Interrupts are wired to PIE 8.2

Procedure

Open Project, Modify Source File

1. If not still open from Lab12_3, re-open project Lab12.pjt in C:\DSP2833x_V4\Labs.

2. Open file “Lab12_3.c” and save it as “Lab12_4.c”

3. Exclude file “Lab12_3.c” from build. Use a right mouse click at file “Lab12_3.c”, and
enable “Exclude File(s) from Build”.

4. Edit file “Lab12_4.c”. First we have to change function “I2CA_Init()”. Since we will
use the RXFIFO - interrupt after receiving two temperature bytes from the TMP100,
we have to enable this interrupt source. Add the following line:

 I2caRegs.I2CFFRX.bit.RXFFIENA = 1;

As a basic I2C-interrupt we will use the “Access Ready” - signal (ARDY), which is
generated, when the first two bytes of the “TMP100 Read Timing” I2C - data frame
(see Slide 12-31) are transmitted. Add the following line:

 I2caRegs.I2CIER.bit.ARDY = 1;

5. In function “main()”, before we enter the endless while(1)-loop we have to enable two
more PIE - interrupt lines for I2C-basic (8.1) and I2C-receiver-FIFO (8.2):

PieCtrlRegs.PIEIER8.bit.INTx1 = 1; // i2c - basic
PieCtrlRegs.PIEIER8.bit.INTx2 = 1; // i2c - FIFO

Also, the register IER must now allow lines INT1 and INT8:

IER |=0x81;

In Lab12_3.c we used only one interrupt source, CPU-Timer 0. Now we have three,
which requires that we load two more addresses of interrupt service routines into the
PieVectTable. At the appropriate spot in your code, add:

 Lab Exercise 12_4

F2833x - Inter Integrated Circuit 12 - 43

PieVectTable.I2CINT2A = &i2c_fifo_isr;
PieVectTable.I2CINT1A = &i2c_basic_isr;

6. Change the type of variable “temperature” from a local variable in “main()” to a
global variable.

7. At the beginning of “Lab12_4.c”, add two prototypes for new interrupt service
routines:

interrupt void i2c_fifo_isr(void);
interrupt void i2c_basic_isr(void);

8. At the end of “Lab12_4.c” add a new interrupt function “i2c_fifo_isr()”. There are two
possible interrupt sources, a receiver FIFO-level and a transmitter FIFO-level
interrupt. We will use the receiver FIFO only. However, it is good practice to verify
which one of the two sources is active. In case the receiver interrupt is active, we will
find bit “RXFFINT” is set. We will use this bit in an if-condition to perform the
following activities:

• Read two times the I2CDRR - register to get the temperature values

• Clear the RXFFINT - flag by setting bit RXFFINTCLR

• Acknowledge the PIE - Interrupt of PIE - group 8.

The code in this interrupt service should look like:
 unsigned int i;
 if (I2caRegs.I2CFFRX.bit.RXFFINT == 1) // RX-FIFO - interrupt
 {
 i = I2caRegs.I2CDRR << 8; // read upper 8 bit (integers)
 i += I2caRegs.I2CDRR; // add lower 8 bit (fractions)
 temperature = i; // update temperature
 I2caRegs.I2CFFRX.bit.RXFFINTCLR = 1; // clear ISR
 }
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP8;

9. At the end of “Lab12_4.c” add a new interrupt function “i2c_basic_isr()”. This
function is shared between all basic I2C - interrupt sources. Register “I2CISRC” (see
Slide 12-15) contains a code number for the current source of the interrupt. Although
we have enabled only 1 of these basic interrupts (ARDY), it is good practice and will
be very important later, when you enable more than one basic source, to make a local
copy of this register. The reason is that the first read of this register will clear it
automatically.

In Lab12_4 we wait for ARDY (code number 3, see Slide 12-15), which is set after
the first two bytes of the “TMP100 Read Timing” (Slide 12-31) are transmitted. At
this moment we have to switch I2C from Master-Transmitter into Master-Receiver via
register I2CMDR. Since the TMP100 will send two temperature bytes, we also set
register I2CCNT = 2.

The whole body of function “i2c_basic_isr()” should look like:

unsigned int IntSource;
IntSource = I2caRegs.I2CISRC.all;
if (IntSource == 3) // ARDY was source of int

Lab Exercise 12_4

12 - 44 F2833x - Inter Integrated Circuit

{
 I2caRegs.I2CCNT = 2; // read 2 byte temperature
 I2caRegs.I2CMDR.all = 0x6C20; // Master-Receiver-Mode
}
PieCtrlRegs.PIEACK.all = PIEACK_GROUP8;

10. In the endless while(1) - loop of “main()”, remove the wait construction, which waits

until bit “ARDY” is set.

 After that line, remove also the code to initialize registers I2CCNT and I2CMDR. We
moved this code in procedure step 9 into interrupt service routine “i2c_basic_isr()”,
which is now called automatically by ARDY.

 Remove also the following lines, where we waited until bit “RXFFINT” was set and
the lines to read the temperature values. We moved this code in procedure step 8 into
interrupt service routine “i2c_fifo_isr()”. This function is now called automatically
after two bytes have been received (RXFFINT).

Build, Load and Run
11. Click the “Rebuild Active Project ” button or perform:

  Project  Rebuild All (Alt +B)

12. Load the output file in the debugger session:

  Target  Debug Active Project

and switch into the “Debug” perspective. Verify that in the debug perspective the win-
dow of the source code “Lab12_3.c” is high-lighted and that the blue arrow for the
current Program Counter position is placed under the line “void main(void)”.

13. Perform a real time run.

 Scripts  RealTime Emulation Control  Run_Realtime_with_Restart

14. Open a watch window and enter variable “temperature”. With a left mouse click into
column “Format”, select “Q-Value(8). Activate “Continuous Refresh” button in the
Watch Window.

Variable “temperature” should display the current ambient temperature with a reso-
lution of 1/16 °C (the example above shows 27.6875 °C).

15. Stop the code - execution:
 Scripts  Realtime Emulation Control  Full Halt

	F2833x Inter Integrated Circuit
	Introduction
	Module Topics
	Basic I2C Features
	F2833x I2C Block Diagram
	I2C Clock Generation
	I2C Operating Modes
	Master / Slave modes
	Input and Output Voltage Levels
	Data Validity
	Serial Data Formats

	Arbitration
	I2C Interrupts
	I2C Module Registers
	I2C Mode Register
	I2C Interrupt Enable Register
	I2C Status Register
	I2C Interrupt Source Register
	I2C Clock Register
	I2C Slave Address Register
	I2C Own Address Register
	I2C Data Count Register
	I2C Data Registers

	I2C FIFO Buffers
	I2C TX-FIFO Register
	I2C RX-FIFO Register

	Temperature Sensor TMP100
	TMP100 Register Structure
	Temperature Register
	Configuration Register
	TMP100 Timing Diagrams
	TMP100 / TMP101 Write Timing
	TMP100 / TMP101 Write Timing

	Lab Exercise 12_1
	Preface
	Objective
	Procedure
	Open Files, Create Project File
	Project Build Options
	Preliminary Test
	Add TMP100 and I2C Initialization Code
	Build, Load and Run

	Lab Exercise 12_2
	Objective
	Procedure
	Open Project, Modify Source File
	Build, Load and Run
	Troubleshooting

	Lab Exercise 12_3
	Objective
	Procedure
	Open Project, Modify Source File
	Build, Load and Run

	Lab Exercise 12_4
	Objective
	Procedure
	Open Project, Modify Source File
	Build, Load and Run

