
F2833x - Multichannel Buffered Serial Port 13 - 1

Introduction
The Multi Channel Buffered Serial Port (McBSP) is a synchronous serial data communi-
cation channel for high-speed data transfer between the F2833x and external serial devices. It
is quite often used to directly connect Audio - or Video - Codec's to an F2833x system. The
2833x device provides up to two high-speed multichannel buffered serial ports (McBSPs).

An independent clock signal (CLK(R/X) for receiver and transmitter can be generated by the
F2833x (master - mode) or by the external device (slave - mode).

A frame sync signal (FS(R/X) indicates the beginning of a new data sequence (frame).

A frame contains between 1 and 128 words (or channels); a word is a number of bits (8, 12,
16, 20, 24 or 32).

The serial data streams are available on the “Data Transmit” (DX) and “Data Receive” (DR)
pins.

A hardware compression and expanding technique by coding standards “A - law” (US and
Japan) or “µ - law” (Europe) can be included into the transmission path. The specifications
for µ-law and A-law log PCM are part of the CCITT G.711 recommendation.

One of the ranges of operating modes of McBSP is a hardware emulation of an additional
Serial Peripheral Interface (SPI).

The Peripheral Explorer Board provides interfaces to two McBSP related devices:

• A stereo audio codec TLV320AIC23B, connected to interface McBSP - A for the
stereo in/out audio data stream and to interface SPI-A for the AIC23B control data
stream.

• A serial EEPROM AT25C256K connected to interface McBSP - B.

 F2833x Multichannel Buffered Serial Port

Module Topics

13 - 2 F2833x - Multichannel Buffered Serial Port

Module Topics
F2833x Multichannel Buffered Serial Port.. 13-1

Introduction ... 13-1

Module Topics ... 13-2

F2833x McBSP Block diagram ... 13-4

Basic F2833x McBSP Features ... 13-6

McBSP Data Frame Diagram ... 13-7

Companding (Compressing and Expanding) .. 13-9

McBSP - clocking .. 13-10

McBSP Frame Phases ... 13-11

McBSP Receive ... 13-12

McBSP Transmission .. 13-13

McBSP - Interrupts and DMA ... 13-14

McBSP Module Registers .. 13-15
Data Receive and Transmit Register ... 13-16
Serial Port Control Register 1 (SPCR1) .. 13-17
Serial Port Control Register 2 (SPCR2) .. 13-17
Receive Control Register 1 (RCR1) .. 13-18
Receive Control Register 2 (RCR2) .. 13-18
Transmit Control Register 1 (XCR1) .. 13-19
Transmit Control Register 2 (XCR2) .. 13-19
Sample Rate Generator Register 1 (SRGR1) .. 13-20
Sample Rate Generator Register 2 (SRGR2) .. 13-20
Pin Control Register (PCR) .. 13-21
Interrupt Enable Register (MFFINT) .. 13-21
Multichannel Mode Enable Registers (RCERx, XCERx)... 13-22

Stereo Audio Codec TLV320AIC23B .. 13-23
Functional Block Diagram .. 13-24
Initialization of SPI - channel A ... 13-26
Initialization of the AIC23 .. 13-26

Lab Exercise 13_1: single audio tone ... 13-33
Objective ... 13-33
Preface .. 13-34
Procedure .. 13-38
Open Files, Create Project File ... 13-38
Project Build Options .. 13-38
Preliminary Test .. 13-39
Change the GPIO - Multiplex Registers ... 13-39
Remove code from Lab6 ... 13-39
Add SPI-A Initialzation Code ... 13-40
Add McBSP-A Initialzation Code .. 13-40
Initialize the codec AIC23B .. 13-40
Change the Interrupt Structure for Lab13_1 ... 13-40
Add global variables and IQ-Math .. 13-41
Calculate new DAC - Value ... 13-42
Add McBSP - Transmit Interrupt Service ... 13-43
Build, Load and Run ... 13-43

 Module Topics

F2833x - Multichannel Buffered Serial Port 13 - 3

Lab Exercise 13_2: Dual audio tone .. 13-45
Objective .. 13-45
Procedure .. 13-45
Open Project, Modify Source File .. 13-45
Build, Load and Run .. 13-46

Lab 13_3: Dual audio tone and XRDY - Interrupt ... 13-48
Objective .. 13-48
Procedure .. 13-48
Open Project, Modify Source File .. 13-48
Build, Load and Run .. 13-49

Lab Exercise 13_4: EEPROM via McBSP ... 13-51
Objective .. 13-51
Hardware Description:.. 13-52
Timing Diagram ... 13-53
AT25256 Status Register .. 13-54
Instruction Register .. 13-55
Procedure .. 13-58
Open Project, Modify Source File .. 13-58
Build, Load and Run .. 13-62

Optional Exercise (EEPROM and SCI): ... 13-64

F2833x McBSP Block diagram

13 - 4 F2833x - Multichannel Buffered Serial Port

F2833x McBSP Block diagram
Each McBSP - interface consists of six electrical signals:

13 - 2

Multichannel Buffered Serial Port (McBSP)
Introduction:
• Two High – Speed multichannel synchronous serial ports (McBSP-

A and McBSP-B)
• Maximum data rate: 20 MHz
• Each McBSP consists of a data - flow – path and a control - path

• Six Pins per channel
• MDX: data transmit
• MDR: data received
• MCLKX: transmit clock
• MCLKR: receive clock
• MFSX: frame sync transmit
• MFSR: frame sync receive

The following slide explains the data flow:

13 - 3

McBSP Block Diagram

16
DXR2 TX Buffer

XSR2

16
DXR1 TX Buffer

XSR1

16

DRR2 RX Buffer

RBR2 Register
16

DRR1 RX Buffer

RBR1 Register

16
RSR2

16
RSR1

MDXx

MDRx

MFSXx

MFSRx

MCLKXx

MCLKRx

Peripheral / DMA Bus

Peripheral / DMA Bus

16

16

16

16

CPU

 F2833x McBSP Block diagram

F2833x - Multichannel Buffered Serial Port 13 - 5

The electrical signals of a McBSP interface are listed in the following table. The direction of
the clock signals depends on the setup of the McBSP as a master device (output) or as a slave
device (input):

McBSP - A McBSP - B Signal Description
MCLKRA MCLKRB Receiver clock signal
MCLKXA MCLKXB Transmitter clock signal
MFSRA MFSRB Receiver Frame-Sync pulse signal
MFSXA MFSXB Transmitter Frame-Sync pulse signal
MDRA MDRB Data Input (Receiver)
MDXA MDXB Data Output (Transmitter)

The McBSP - interface is also connected to the CPU and to the DMA - unit of the F2833x
via four internal event signals:

• MRINT: McBSP - Receive Interrupt signal
• MXINT: McBSP - Transmit Interrupt signal
• REVT: Receive Synchronization event to DMA - unit
• XEVT: Transmit Synchronization event to DMA - unit

Data values are communicated to devices interfaced to the McBSP via the data transmit
(MDX) pin for transmission and via the data receive (MDR) pin for reception. Control in-
formation in the form of clocking and frame synchronization is communicated via the fol-
lowing pins: MCLKX (transmit clock), MCLKR (receive clock), MFSX (transmit frame
synchronization), and MFSR (receive frame synchronization).

The CPU and the DMA controller communicate with the McBSP through 16-bit-wide regis-
ters, accessible via the internal peripheral bus. The CPU or the DMA controller writes the
data to be transmitted to the data transmit registers (DXR1, DXR2). Data written to the
DXRs is shifted out to DX via the transmit shift registers (XSR1, XSR2). Similarly, receive
data on the DR pin is shifted into the receive shift registers (RSR1, RSR2) and copied into
the receive buffer registers (RBR1, RBR2). The contents of the RBRs are then copied to the
DRRs, which can be read by the CPU or the DMA controller. This allows simultaneous data
movement of internal and external data communications.

DRR2, RBR2, RSR2, DXR2, and XSR2 are not used (written, read, or shifted) if the serial
word length is 8 bits, 12 bits, or 16 bits. For larger word lengths, these registers are needed to
hold the most significant bits.

Basic F2833x McBSP Features

13 - 6 F2833x - Multichannel Buffered Serial Port

Basic F2833x McBSP Features

13 - 4

Features of McBSP
• Full - duplex communication
• Double-buffered transmission and triple-buffered reception,

allowing a continuous data stream
• Independent clocking and framing for reception and transmission
• send interrupts to the CPU and send DMA events to the DMA -

controller
• 128 channels for transmission and reception
• Multichannel selection modes that enable or disable block

transfers in each of the channels
• Direct interface to industry-standard CODECs, analogue interface

chips (AICs), and other serially connected A/D and D/A devices
• Support for external generation of clock signals and frame -

synchronization signals
• A programmable sample rate generator for internal generation and

control of clock signals and frame - synchronization signals

13 - 5

Features of McBSP
• Direct interface to:

• T1/E1 framers
• IOM-2 compliant devices
• AC97-compliant devices with multiphase

frame capability
• I2S compliant devices
• SPI devices

• Variable data sizes: 8, 12, 16, 20, 24, and 32 bits
• A-law (Europe) and µ-law (US & Japan)

hardware compression / expanding

 McBSP Data Frame Diagram

F2833x - Multichannel Buffered Serial Port 13 - 7

McBSP Data Frame Diagram
Since McBSP is a synchronous serial data communication interface, all bits are time syn-
chronized by a clock signal (“CLK” in Slide 13-6). The receiver and transmitter part can use
different timings (clock signals “MCLKX” and “MCLKR”)

A McBSP data frame is started by a frame sync signal (“FS”) shown in Slide 13-6. Again the
transmitter and receiver can use independent frame sync signals (transmitter: “MFSX”, re-
ceiver: “MFSR”).

13 - 6

Definition: Word and Frame

 “Frame” - contains one or multiple words
 Number of words per frame: 1-128

w0 w1 w2 w3 w4 w5 w6 w7

Frame
Word

w6 w7D

FS

A frame consists of multiple “words”. The number of words is programmable between 1 and
128 words.

A “word” is a certain number of bits, which can be programmed as:

• 8
• 12
• 16
• 20
• 24 or
• 32 bits per word.

In addition, there is the option to initialize the McBSP to a “single” phase mode or in a
“dual” phase mode. In the latter we can use different setups for “words per frame” and “bits
per word” in phase 1 and in phase 2. In Lab exercise 13_3 we will use a dual phase setup to
send different stereo signals to right channel (phase 1) and left channel (phase 2) of the
AIC23B audio codec.

McBSP Data Frame Diagram

13 - 8 F2833x - Multichannel Buffered Serial Port

13 - 7

Definition: Bit and Word

CLK

b7 b6 b5 b4 b3 b2 b1 b0

Word

FS

a1 a0

Bit

D

 “Word” or “channel” contains number of bits
(8, 12, 16, 20, 24, 32)

 “Bit” - one data bit per serial clock period

Another operating mode of the McBSP is called “multi-channel” - mode, in which we can
time slice a frame and process only preselected words of this frame. The following slide is an
example, in which a codec sends 32 words per frame, but the F2833x reads only words 0, 5
and 27 from each frame. Since we will not use this mode in our lab exercises, we will not go
deeper into details of this operating mode for now.

13 - 8

Multi-Channel Selection
Ch0-0
Ch0-1

Ch5-0
Ch5-1

Ch27-0
Ch27-1

 Multi-channel mode controlled primarily via two registers:

MCR
Multi-channel Control Reg

(enables Mc-mode)

R/XCER (A-H)
Rec/Xmt Channel Enable Regs

(enable/disable channels)

 Up to 128 channels can be enabled/disabled

C
O
D
E
C

M
c
B
S
P

Frame TDM Bit Stream

Ch0Ch1Ch31 ...0

Ch0Ch1Ch31 ...1

Transmit
&

Receive
only selected

Channels

Multi-channel

 Allows multiple channels (words) to be independently selected for transmit
and receive (e.g. only enable Ch0, 5, 27 for receive, then process via CPU)

 The McBSP keeps time sync with all channels, but only “listens” or “talks”
if the specific channel is enabled (reduces processing/bus overhead)

 Companding (Compressing and Expanding)

F2833x - Multichannel Buffered Serial Port 13 - 9

Companding (Compressing and Expanding)
Companding (COMpressing and exPANDing) hardware allows compression and expansion
of data in either µ-law or A-law format. The companding standard employed in the United
States and Japan is µ-law. The European companding standard is referred to as A-law. The
specifications for µ-law and A-law log PCM are part of the CCITT G.711 recommendation.

The dynamic ranges of A-law and µ-law are 13 bits and 14 bits, respectively. Any values
outside this range are set to the most positive or most negative value. Thus, for companding
to work best, the data transferred to and from the McBSP via the CPU or DMA controller
must be at least 16 bits wide. The µ-law and A-law formats both encode data into 8-bit code
words. Companded data are always 8-bits wide; the appropriate word length bits
(RWDLEN1, RWDLEN2, XWDLEN1 and XWDLEN2) must therefore be set to 0, indicat-
ing an 8-bit wide serial data stream.

13 - 9

Compression & Expanding Data

When companding is chosen for the transmitter, compression occurs during the process of
copying data from DXR1 to XSR1. The transmit data is encoded according to the specified
companding law (A-law or µ-law). When companding is chosen for the receiver, expansion
occurs during the process of copying data from RBR1 to DRR1. The receive data values are
decoded into twos-complement format.

McBSP - clocking

13 - 10 F2833x - Multichannel Buffered Serial Port

McBSP - clocking

13 - 10

McBSP - Clocking

• Data is shifted one bit at a time
• from the DR pin to the RSR(s) or
• from the XSR(s) to the DX pin.

• The receive clock signal (CLKR) controls bit transfers
from the DR pin to the RSR(s).

• The transmit clock signal (CLKX) controls bit transfers
from the XSR(s) to the DX pin.

Data words are shifted one bit at a time from the DR pin to the RSR(s) or from the XSR(s) to
the DX pin. The time for each bit transfer is controlled by the rising or falling edge of the
receiver and transmitter clock signals.

The receive clock signal (CLKR) controls bit transfers from the DR pin to the RSR(s).

The transmit clock signal (CLKX) controls bit transfers from the XSR(s) to the DX pin.

CLKR or CLKX can be derived from a pin at the boundary of the McBSP (slave mode) or
derived from inside the McBSP (master mode).

The polarities of CLKR and CLKX are programmable.

Please note: The McBSP cannot operate at a frequency faster than ½ the LSPCLK fre-
quency. When driving CLKX or CLKR at the pin, choose an appropriate input clock fre-
quency. When using the internal sample rate generator for CLKX and/or CLKR, choose an
appropriate input clock frequency and divide down value (CLKDV) (i.e., be certain that
CLKX or CLK do not exceed LSPCLK/2).

 McBSP Frame Phases

F2833x - Multichannel Buffered Serial Port 13 - 11

McBSP Frame Phases
The McBSP allows you to configure each frame to contain one or two phases. The number
of words and the number of bits per word can be specified differently for each of the two
phases of a frame, allowing greater flexibility in structuring data transfers. For example, you
might define a frame as consisting of one phase containing two words of 16 bits each, fol-
lowed by a second phase consisting of 10 words of 8 bits each. This configuration permits
you to compose frames for custom applications or, in general, to maximize the efficiency of
data transfers.

13 - 11

McBSP – Frame Phases

Phase 1: 2 words of 12 bits each
Phase 2: 3 words of 8 bit each

Single Phase Frame, 8 bits per word

Dual Phase Frame

One clock pulse is generated by the master device for each data bit transferred. Due to a va-
riety of different technology devices that can be connected to the I2C-bus, the levels of logic
0 (low) and logic 1 (high) are not fixed and depend on the associated level of VDD. For de-
tails, see the data manual for your particular F2833x.

McBSP Receive

13 - 12 F2833x - Multichannel Buffered Serial Port

McBSP Receive
The following process describes how data travels from the DR pin to the CPU or to the
DMA controller:

13 - 12

McBSP – Reception

DRR = Data Receive Register
RRDY = status bit “Receiver Ready”

Reception physical data path

Reception signal activity

1. The McBSP waits for a receive frame-synchronization pulse on the internal FSR.
2. When the pulse arrives, the McBSP inserts the appropriate data delay that is selected

with the RDATDLY bits of register RCR2 (with 1 data bit delay shown in Slide 13-12
above).

3. The McBSP accepts data bits on the DR pin and shifts them into the receive shift regis-
ter(s). If the word length is 16 bits or smaller, only RSR1 is used. If the word length is
larger than 16 bits, RSR2 and RSR1 are used; RSR2 contains the most significant bits.

4. When a full word is received, the McBSP copies the contents of the receive shift regis-
ter(s) to the receive buffer register(s), provided that RBR1 is not full with previous data.
If the word length is 16 bits or smaller, only RBR1 is used. If the word length is larger
than 16 bits, RBR2 and RBR1 are used and RBR2 contains the most significant bits.

5. The McBSP copies the contents of the receive buffer register(s) into the data receive
register(s), provided that DRR1 is not full with previous data. When DRR1 receives
new data, the receiver ready bit (RRDY) is set in SPCR1. This indicates that received
data is ready to be read by the CPU or the DMA controller. If the word length is 16 bits
or smaller, only DRR1 is used. If the word length is larger than 16 bits, DRR2 and
DRR1 are used and DRR2 contains the most significant bits. If companding is used dur-
ing the copy (RCOMPAND = 10b or 11b in RCR2), the 8-bit compressed data value in
RBR1 is expanded to a left-justified 16-bit value in DRR1. If companding is disabled,
the data value copied from RBR[1,2] to DRR[1,2] is justified and bit filled according to
the RJUST bits.

6. The CPU or the DMA controller reads the data from the data receive register(s). When
DRR1 is read, RRDY is cleared and the next RBR-to-DRR copy is initiated.

 McBSP Transmission

F2833x - Multichannel Buffered Serial Port 13 - 13

McBSP Transmission
This section explains the fundamental process of transmission in the McBSP.

13 - 13

McBSP – Transmission

DXR = Data Transmit Register
XRDY = status bit “Transmitter Ready”

Transmission physical data path

Transmission signal activity

1. The CPU or the DMA controller writes data to the data transmit register(s). When
DXR1 is loaded, the transmitter ready bit (XRDY) is cleared in SPCR2 to indicate
that the transmitter is not ready for new data. If the word length is 16 bits or smaller,
only DXR1 is used. If the word length is larger than 16 bits, DXR2 and DXR1 are
used and DXR2 contains the most significant bits.

2. When new data arrives in DXR1, the McBSP copies the contents of the data transmit
register(s) to the transmit shift register(s). In addition, the transmit ready bit (XRDY)
is set. This indicates that the transmitter is ready to accept new data from the CPU or
the DMA controller. If the word length is 16 bits or smaller, only XSR1 is used. If
the word length is larger than 16 bits, XSR2 and XSR1 are used and XSR2 contains
the most significant bits. If companding is used during the transfer (XCOMPAND =
10b or 11b in XCR2), the McBSP compresses the 16-bit data in DXR1 to 8-bit data
in the µ-law or A-law format in XSR1. If companding is disabled, the McBSP passes
data from the DXR(s) to the XSR(s) without modification.

3. The McBSP waits for a transmit frame-synchronization pulse on the internal FSX.
4. When the pulse arrives, the McBSP inserts the appropriate data delay that is selected

with the XDATDLY bits of XCR2. In the preceding timing diagram, a 1-bit data de-
lay is selected.

5. The McBSP shifts data bits from the transmit shift register(s) to the DX pin.

McBSP - Interrupts and DMA

13 - 14 F2833x - Multichannel Buffered Serial Port

McBSP - Interrupts and DMA
The McBSP sends notification of important events to the CPU and DMA via the internal
signals shown in Slide 13-14:

13 - 14

McBSP – Interrupts and DMA
Internal Signals from McBSP to CPU or DMA:

Internal Signal Description
RINT Receiver Interrupt from McBSP to CPU; based

on a selected condition in the receiver
XINT Transmitter Interrupt from McBSP to CPU;

based on a selected condition in the transmitter
REVT Receive synchronization event from McBSP to

DMA; triggered when data has been received in
DRR.

XEVT Transmit synchronization event from McBSP to
DMA; triggered when DXR is ready to accept
new data.

 McBSP Module Registers

F2833x - Multichannel Buffered Serial Port 13 - 15

McBSP Module Registers
A register summary of the set of McBSP - Registers is shown at the following two slides:

13 - 15

McBSP – Register Set
McBSP Control & Data Registers:

Register Description
DRR2 Data Receive Register 2 (high)
DRR1 Data Receive Register 1 (low)
DXR2 Data Transmit Register 2 (high)
DXR1 Data Receive Register 1 (low)

SPCR2 Serial Port Control Register 2
SPCR1 Serial Port Control Register 1
RCR2 Receive Control Register 2
RCR1 Receive Control Register 1
XCR2 Transmit Control Register 2
XCR1 Transmit Control Register 1

SRGR2 Sample Rate Generator Register 2
SRGR1 Sample Rate Generator Register 1

13 - 16

McBSP – Register Set
McBSP Multi Channel Control Registers:

Register Description
MCR2 Multichannel Control Register 2
MCR1 Multichannel Control Register 1
RCERx Receive Channel Enable Register Partition x
XCERx Transmit Channel Enable Register Partition x

PCR Pin Control Register
XCERB Transmit Channel Enable Register Partition B

PCR Pin Control Register
MFFINT Interrupt Enable Register

x = Partition A, B, C, D, E, F, G, H

Partition Channels
A 0 - 1 5

B 16 – 31

C 32 – 47

D 48 – 63

E 64 – 79

F 80 – 95

G 96 – 111

H 112 - 127

McBSP Module Registers

13 - 16 F2833x - Multichannel Buffered Serial Port

Data Receive and Transmit Register

The CPU or the DMA controller reads received data from one or both of the data receive
registers. If the serial word length is 16 bits or smaller, only DRR1 is used. If the serial
length is larger than 16 bits, both DRR1 and DRR2 are used and DRR2 holds the most sig-
nificant bits.

13 - 17

McBSP – Data Register
McBSP Data Receive Register (DRR2 and DRR1):

McBSP Data Transmit Register (DXR2 and DXR1):

If the serial word length is 16 bits or smaller, receive data on the MDRx pin is shifted into
receive shift register 1 (RSR1) and then copied into receive buffer register 1 (RBR1). The
content of RBR1 is then copied to DRR1, which can be read by the CPU or by the DMA
controller. The RSRs and RBRs are not accessible by the user.
If the serial word length is larger than 16 bits, receive data bits on the MDRx pin are shifted
into both of the receive shift registers (RSR2, RSR1) and then copied into both of the receive
buffer registers (RBR2, RBR1). The contents of the RBRs are then copied into both of the
DRRs, which can be read by the CPU or by the DMA controller.
If companding is used during the copy from RBR1 to DRR1 (RCOMPAND = 10b or 11b),
the 8-bit compressed data value in RBR1 is expanded to a left-justified 16-bit value in
DRR1. If companding is disabled, the data copied from RBR[1,2] to DRR[1,2] is justified
and bit filled according to the RJUST bits.

If the serial word length is 16 bits or fewer, data written to DXR1 is copied to transmit shift
register 1 (XSR1). From XSR1, the data is shifted onto the DX pin one bit at a time. If the
serial word length is more than 16 bits, data written to DXR1 and DXR2 is copied to both
transmit shift registers (XSR2, XSR1). From the XSRs, the data is shifted onto the DX pin
one bit at a time. If companding is used during the transfer from DXR1 to XSR1
(XCOMPAND = 10b or 11b), the McBSP compresses the 16-bit data in DXR1 to 8-bit data
in the µ-law or A-law format in XSR1. If companding is disabled, the McBSP passes data
from the DXR(s) to the XSR(s) without modification.

 McBSP Module Registers

F2833x - Multichannel Buffered Serial Port 13 - 17

Serial Port Control Register 1 (SPCR1)

13 - 18

McBSP – Serial Port Control Register (SPCR1)

DLB: Digital Loopback Mode 0 = disabled; 1 = enabled
RJUST: Receive Justification Mode 0 = Right justify data and zero fill MSBs

1 = Right justify data and sign – extend MSBs
2 = Left justify data and zero fill LSBs

CLKSTP: Clock Stop Mode 0 and 1 = disabled
2 = enabled, without clock delay (SPI – Mode)
3 = enabled, with half-cycle clock delay (SPI – Mode)

DXENA: DX Delay Enable 0 = OFF
1 = ON; extra delay for turn – ON - time

RINTM: Receiver Interrupt Mode 0 = INT when RRDY = 1
1 = INT after 16 channels (multichannel mode)
2 = INT of frame sync pulse
3 = INT on Receive Frame Sync Error

RSYNCERR: Receive Frame Sync Error 0 = no error; 1 = error
RFULL: Receiver Full Status bit 1 = Receiver Full condition (RSR, RBR and DRR full)
RRDY: Receiver Ready Status bit 1 = Receiver Ready; new data in DRR
RRST: Receiver Reset Control Bit 0 = Reset Receiver; 1 = release Receiver from Reset

Serial Port Control Register 2 (SPCR2)

13 - 19

McBSP – Serial Port Control Register (SPCR2)

FREE: Free Run JTAG Mode 0 = Stop at breakpoint; 1 = Free Run
Soft: Soft Stop JTAG Mode 0 = if FREE = 0, stop immediately in case of breakpoint

1 = if FREE = 0, stop at end of frame

FRST: Frame Sync Logic Reset 0 = Reset; 1 = release Frame Logic from Reset
GRST: Sample Rate Generator Reset 0 = Reset; 1 = release SRG from Reset
XINTM: Transmit Interrupt Mode 0 = INT when XRDY = 1

1 = INT after 16 channels (multichannel mode)
2 = INT of frame sync pulse
3 = INT on Transmit Frame Sync Error

XSYNCERR: Receive Frame Sync Error 0 = no error; 1 = error
XEMPTY: Transmitter Empty Status bit 0 = Transmitter empty (DXR1); 1 = not empty
XRDY: Transmitter Ready Status bit 1 = Transmitter ready (DXR1,2) to accept new data
XRST: Transmitter Reset Control Bit 0=Reset Transmitter; 1=release Transmitter from Reset

McBSP Module Registers

13 - 18 F2833x - Multichannel Buffered Serial Port

Receive Control Register 1 (RCR1)

13 - 20

McBSP – Receive Control Register 1 (RCR1)

RFRLEN1: Receive Frame Length1(0…0x7F)
Single Phase Frame: Number of Words in a frame (1…128)
Dual Phase Frame: Number of Words in frame – phase 1 (1...128)

RWDLEN1: Receive Word Length1 (0…7)
Single Phase Frame: Number of Bits in a Word
Dual Phase Frame: Number of Bits in a Word of frame - phase 1
0 = 8 Bit
1 = 12 Bit
2 = 16 Bit
3 = 20 Bit
4 = 24 Bit
5 = 32 Bit
6 and 7: reserved

Receive Control Register 2 (RCR2)

13 - 21

McBSP – Receive Control Register 2 (RCR2)

RPHASE: Receive Phase Number 0 = Single Phase Frame
1 = Dual Phase Frame

RFRLEN2: Receive Frame Length 2 (0…0x7F)
Single Phase Frame: don’t care
Dual Phase Frame: Number of Words in frame – phase 2 (1...128)

RWDLEN2: Receive Word Length 2 (0…7)
Single Phase Frame: don’t care
Dual Phase Frame: Number of Bits in a Word of frame - phase 2
0 = 8 Bit, 1 = 12 Bit, 2 = 16 Bit, 3 = 20 Bit, 4 = 24 Bit, 5 = 32 Bit

RCOMPAND: Receive Companding Mode 0 = no companding, MSB received first
1 = no companding, 8-bit-data, LSB first
2 = µ-law; 8-bit-data, MSB received first
3 = A-law; 8-bit-data, MSB received first

RFIG: Receive Frame Sync Ignore 1 = unexpected Frame Sync ignored
RDATDLY: Receive Data Delay 0 = 0 clock cycles delay after frame Sync

1 = 1 cycle; 2 = 2 cycles; 3 =reserved

 McBSP Module Registers

F2833x - Multichannel Buffered Serial Port 13 - 19

Transmit Control Register 1 (XCR1)

13 - 22

McBSP – Transmit Control Register 1 (XCR1)

XFRLEN1: Transmit Frame Length1(0…0x7F)
Single Phase Frame: Number of Words in a frame (1…128)
Dual Phase Frame: Number of Words in frame – phase 1 (1...128)

XWDLEN1: Transmit Word Length1 (0…7)
Single Phase Frame: Number of Bits in a Word
Dual Phase Frame: Number of Bits in a Word of frame - phase 1
0 = 8 Bit
1 = 12 Bit
2 = 16 Bit
3 = 20 Bit
4 = 24 Bit
5 = 32 Bit
6 and 7: reserved

Transmit Control Register 2 (XCR2)

13 - 23

McBSP – Transmit Control Register 2 (XCR2)

XPHASE: Transmit Phase Number 0 = Single Phase Frame
1 = Dual Phase Frame

XFRLEN2: Transmit Frame Length 2 (0…0x7F)
Single Phase Frame: don’t care
Dual Phase Frame: Number of Words in frame – phase 2 (1...128)

XWDLEN2: Transmit Word Length 2 (0…7)
Single Phase Frame: don’t care
Dual Phase Frame: Number of Bits in a Word of frame - phase 2
0 = 8 Bit, 1 = 12 Bit, 2 = 16 Bit, 3 = 20 Bit, 4 = 24 Bit, 5 = 32 Bit

XCOMPAND: Transmit Companding Mode 0 = no companding, MSB transmitted first
1 = no companding, 8-bit-data, LSB first
2 = µ-law; 8-bit-data, MSB transmitted first
3 = A-law; 8-bit-data, MSB transmitted first

XFIG: Transmit Frame Sync Ignore 1 = unexpected Frame Sync ignored
XDATDLY: Transmit Data Delay 0 = 0 clock cycles delay after frame Sync

1 = 1 cycle; 2 = 2 cycles; 3 =reserved

McBSP Module Registers

13 - 20 F2833x - Multichannel Buffered Serial Port

Sample Rate Generator Register 1 (SRGR1)

13 - 24

McBSP – Sample Rate Generator (SRGR1)

FWID: Frame Sync Pulse Width 0…255
Pulse Width of Frame Sync Signal in McBSP
clock cycles

CLKGDV: Divide Down Value for Clock-Generator 0…255

CLKG frequency = (Input clock frequency)/ (CLKGDV + 1)
The input clock is selected by the SCLKME (Register PCR) and CLKSM
(Register SRGR) bits:

SCLKME CLKSM Input Clock Source
0 0 Reserved
0 1 LSPCLK
1 0 Signal on pin MCLKR
1 1 Signal on pin MCLKX

Sample Rate Generator Register 2 (SRGR2)

13 - 25

McBSP – Sample Rate Generator (SRGR2)

GSYNC: Clock Sync Mode only used, if clock source is external
1 = Clock Synchronization;

CLKG is adjusted to MCLKR / MCLKX
0 = no clock sync;

CLKG free running, FSG every FPER-cycles
CLKSM: Sample Clock Mode

FSGM: Frame Sync Mode; Frame Pulse from pin FSX (if FSXM = 0)
0: if FSXM = 1, generate frame pulse when DXR is copied into XSR
1: if FSXM = 1, generate frame pulse based on FPER and FWID

FPER: Frame Sync Period (1…4096); Number of CLKG cycles between frame
pulses

SCLKME CLKSM Input Clock Source

0 0 Reserved

0 1 LSPCLK

1 0 Signal on pin MCLKR

1 1 Signal on pin MCLKX

 McBSP Module Registers

F2833x - Multichannel Buffered Serial Port 13 - 21

Pin Control Register (PCR)

13 - 26

McBSP – Pin Control Register (PCR)

FSXM: Transmit Frame Sync Mode 0 = Frame Pulse is supplied externally via pin FSX
1 = Frame Pulse generated internally by Sample Rate

Generator (bit FSGM of register SRGR2)
FSRM: Receive Frame Sync Mode 0 = Frame Pulse is supplied externally via pin FSR

1 = Frame Pulse generated internally by Sample Rate
Generator (bit FSGM of register SRGR2)

CLKXM: Transmit Clock Mode if CLKSTP = 0 or 1:
0 = external transmit clock from pin MCLKX
1 = internal transmit clock; MCLKX is output
if CLKSTP = 2 or 3:
0 = McBSP is slave in SPI – Protocol; MCLKX is input
1 = McBSP is master in SPI – Mode; MCLKX is output

SCLKME:Sample Rate Generator Input Mode (see CLKSM in Register SRGR2)
DXSTAT: DX pin Status Bit 1 = drive DX pin high; 0 = DX pin low (GPIO mode)
DRSTAT: DR pin Status Bit 1 = drive DR pin high; 0 = DR pin low (GPIO mode)
FSXP: Transmit Frame Sync Polarity 0 = active high; 1 = active low
FSRP: Receive Frame Sync Polarity 0 = active high; 1 = active low
CLKXP: Transmit Clock Polarity data valid on rising (0) or falling (1) edge of CLKX
CLKRP: Receive Clock Polarity data sampled on rising (1) or falling (0) edge

Interrupt Enable Register (MFFINT)

13 - 27

McBSP – Interrupt Enable Register (MFFINT)

RINT ENA: 0 = disable McBSP Receive Interrupts
1 = enable McBSP Receive Interrupts

XINT ENA: 0 = disable McBSP Transmit Interrupts
1 = enable McBSP Transmit Interrupts

McBSP Module Registers

13 - 22 F2833x - Multichannel Buffered Serial Port

Multichannel Mode Enable Registers (RCERx, XCERx)

We will not use the multichannel operation mode in our next lab exercises. Therefore we will
not discuss these registers here. For more information about these registers and the multi-
channel operation mode please refer to user manual “TMS320F2833x Multichannel Buffered
Serial Port (McBSP) Reference Guide”, literature number: SPRUFB7A at www.ti.com.

In the next pages we will discuss the first external device of the Peripheral Explorer Board,
which is connected via McBSP - A:

Stereo Audio Codec TLV320AIC23B

http://www.ti.com/�

 Stereo Audio Codec TLV320AIC23B

F2833x - Multichannel Buffered Serial Port 13 - 23

Stereo Audio Codec TLV320AIC23B
Here is what the data sheet says:

“The TLV320AIC23B is a high-performance stereo audio codec with highly integrated ana-
logue functionality. The analogue-to-digital converters (ADCs) and digital-to-analogue con-
verters (DACs) within the TLV320AIC23B use multi-bit sigma-delta technology with inte-
grated oversampling digital interpolation filters. Data-transfer word lengths of 16, 20, 24,
and 32 bits, with sample rates from 8 kHz to 96 kHz, are supported. The ADC sigma-delta
modulator features third-order multi-bit architecture with up to 90-dBA signal-to-noise ratio
(SNR) at audio sampling rates up to 96 kHz, enabling high-fidelity audio recording in a
compact, power-saving design. The DAC sigma-delta modulator features a second-order
multi-bit architecture with up to 100-dBA SNR at audio sampling rates up to 96 kHz, ena-
bling high-quality digital audio-playback capability, while consuming less than 23 milliwatts
during playback only. The TLV320AIC23B is the ideal analogue input/output (I/O) choice
for portable digital audio-player and recorder applications, such as MP3 digital audio play-
ers.”

Wow, sounds impressive, doesn’t it? But the question is: how can we get this device to
work? And, more importantly, if it is running, can we explain why? So let us try to use it in a
simple application first. At the end of this chapter we will use the internal DAC to “synthe-
size” an audio stereo output signal, based on the TMS320F2833x internal sine wave lookup
table. With a headphone plugged into J25 of the Peripheral Explorer Board we can make this
signal audible (or we use a scope to measure it).

To start with, let us start with a brief discussion of the functionality of this device. Here are
the main features:

13 - 28

Stereo Audio Codec TLV320AIC23B
Main Features:

• 90dB SNR Multibit Sigma-Delta ADC
• 100-dB SNR Multibit Sigma-Delta DAC
• 8 kHz …96 kHz Sampling-Frequency
• SPI- Interface for Control Channel Compatible Serial-

Port Protocols
• 2 - Phase Audio - Data Input/Output via McBSP
• Standard I2S, MSB, or LSB Justified-Data Transfers
• 16/20/24/32-Bit Audio Data Word Length
• Volume Control With Mute on Input and Output
• ADC Multiplexed Input for Stereo-Line Inputs and

Microphone
• Highly Efficient Linear Headphone Amplifier (30 mW into

32 Ohm from a 3.3-V Analogue Supply Voltage

Stereo Audio Codec TLV320AIC23B

13 - 24 F2833x - Multichannel Buffered Serial Port

Functional Block Diagram

13 - 29

Stereo Audio Codec TLV320AIC23B
Functional Block
Diagram:

Signals:
RHPOUT =

right headphone out
LHPOUT =

left headphone out

© Document Number : SLWS106H,
page 1-3 (www.ti.com)

The AIC23 is connected to the F2833x by the following signal lines:

GPIO -MUX F2833x - Function Description AIC23-signal

GPIO20 = 2 McBSPA - MDXA Audio data out DIN

GPIO21 = 2 McBSPA - MDRA Audio data in DOUT

GPIO22 = 2 McBSPA - MCLKXA Transmit clock BCLK

GPIO23 = 2 McBSPA - MFSXA Transmit frame sync LRCIN

GPIO58 = 1 McBSPA - MCLKRA Receive Clock BCLK

GPIO59 = 1 McBSPA - MFSRA Receive frame sync LRCOUT

GPIO16 = 1 SPIA - SPISIMO Control data out SDIN

GPIO18 = 1 SPIA - SPICLK Control data clock SCLK

GPIO19 = 1 SPIA - SPISTE Slave trans. enable /CS

 Stereo Audio Codec TLV320AIC23B

F2833x - Multichannel Buffered Serial Port 13 - 25

Description:

• MXDA: serial audio data output stream from F2833x to AIC23

• MRDA: serial audio data input stream from AIC23 to F2833x

• MCLKXA: McBSPA Transmit Bit Clock.
 Generated by AIC23 (signal: “BCLK”; 12 MHz).

• MCLKRA: McBSPA Receive Bit Clock.
 Generated by AIC23 (signal: “BCLK”; 12 MHz).

• MFSXA: McBSPA Frame Sync Transmit.
 Generated by AIC23 (signal: “LRCIN”; 44.1 kHz).

• MFSRX: McBSPA Frame Sync Transmit.
 Generated by AIC23 (signal: “LRCIN”; 44.1 kHz).

• SPISIMO: SPIA “Slave In - Master Out” - signal.
 Generated by F2833x

• SPICLK: SPIA - clock signal.
 Generated by F2833x (1.0 MHz).

• SPISTE: SPIA - “Slave Transmit Enable”.
 Generated by F2833x.

Signal “BCLK” is the data clock signal for the audio data transmission between the AIC23
and the F2833x. It defines the bit rate of the digital audio data stream. After a successful
initialization of the AIC23, this 12 MHz - signal should look like:

Stereo Audio Codec TLV320AIC23B

13 - 26 F2833x - Multichannel Buffered Serial Port

Signal “LRCIN” is a 44.1 kHz - signal that starts the transmission of a new McBSP - frame.
After a successful initialization it will look like this:

To generate the signal waveforms from above and to use the DAC of the codec to produce a
sinusoidal stereo audio signal, we have to initialize the codec. The control channel of the
AIC23 is connected to SPI-channel A of the F2833x (for SPI - details see also Chapter 10).

Initialization of SPI - channel A
The SPI communication between the F2833x and the AIC23 will be used to initialize the
operating mode of the AIC23. For the SPI-A setup, we only need to perform a simple
initialization:

• Register SPICCR:
o SPICHAR: 16 bit character transmission
o CLKPOLARITY: Clock polarity: Output on falling edge
o SPILBK: no loopback mode
o SPISWRESET: release from RESET

• Register SPIBRR:
o SPI-clock = LSPCLK / (BRR +1)

• Register SPICTL:
o MASTER_SLAVE: Master
o CLK_PHASE: no
o Disable interrupts
o Enable Talk

Initialization of the AIC23

To initialize the AIC23, we have to send a series of SPI - commands. Let us inspect the
command structure of the AIC23. A control word consists of 16 bits, starting with the MSB.
The control word is divided into two parts. The first part (bits 15 - 9) is the AIC23 register
address block; the second part (bits 8 - 0) is the data block.

 Stereo Audio Codec TLV320AIC23B

F2833x - Multichannel Buffered Serial Port 13 - 27

The TLV320AIC23B has the following set of registers, which are used to program the
modes of operation:
ADDRESS REGISTER
0000000 Left line input channel volume control
0000001 Right line input channel volume control
0000010 Left channel headphone volume control
0000011 Right channel headphone volume control
0000100 Analog audio path control
0000101 Digital audio path control
0000110 Power down control
0000111 Digital audio interface format
0001000 Sample rate control
0001001 Digital interface activation
0001111 Reset register

When we initialize the AIC23 to accept a stereo audio data stream, we have to initialize this
list of registers. This requires the merging of the 7-bit register address (15-9) with the 8-bit
data (8-0), before it will be transmitted as a 16 - bit result via SPI. Please try to follow the
given sequence:

1. Reset Register

Clear all 8 data bits to zero.

13 - 31

Stereo Audio Codec TLV320AIC23B
Reset Register:

Power Down Control Register:

LINE = Line Input
MIC = Microphone Input
ADC = Internal ADC
DAC = Internal DAC
OUT = Output Signals
OSC = Oscillator
CLK = CLOCK
OFF = Device Power

0 = ON; 1 = OFF

2. Power Down Control Register

Switch OFF: LINE, MIC, ADC, DAC and OUT. Switch ON: OSC, CLK and OFF.

Stereo Audio Codec TLV320AIC23B

13 - 28 F2833x - Multichannel Buffered Serial Port

3. Left Headphone Volume Control Register

• Set Left Headphone Volume (LHV) to 0dB.
• Enable Left Zero Crossing (LZC) to update volume on zero crossing only.

13 - 32

Stereo Audio Codec TLV320AIC23B
Left Channel Headphone Volume Control Register:

Right Channel Headphone Volume Control Register:

LRS = Left / Right simultaneous update volume (0 = OFF, 1 = ON)
LZC = Left channel zero cross (0 = OFF, 1 = ON). If ON, volume updates
only at zero crossings
LHV = Left Headphone Volume (0x7F = +6dB; 0x79 = 0dB; 0x30 = -73dB (mute)

RLS = Right / Left simultaneous update volume (0 = OFF, 1 = ON)
RZC = Right channel zero cross (0 = OFF, 1 = ON). If ON, volume updates only
at zero crossings
RHV = Right Headphone Volume (0x7F = +6dB; 0x79 = 0dB; 0x30 = -73dB (mute)

4. Right Headphone Volume Control Register

• Set Right Headphone Volume (RHV to 0dB).
• Enable Right Zero Crossing (RZC) to update volume on zero crossing only.

5. Analogue Audio Path Control Register

• Switch ON the DAC.
• Mute the Microphone.
• Microphone boost = 0dB.
• Audio Input Select = Line.
• Disable ADC and DAC Bypass mode.
• Switch OFF the Microphone Side Tone

 Stereo Audio Codec TLV320AIC23B

F2833x - Multichannel Buffered Serial Port 13 - 29

13 - 33

Stereo Audio Codec TLV320AIC23B
Analogue Audio Path Control Register:

MICB = Microphone boost (0 = 0dB; 1 = 20dB)
MICM = Microphone mute (0 = normal; 1 = muted)
INSEL = Input Select for Audio (0 = line; 1 = Microphone)
BYP = Bypass (0 = disabled; 1 = enabled (line in to line out))
DAC = DAC select (0 = DAC OFF; 1 = DAC ON)
STE = Added Side Tone (0 = OFF; 1 = ON)
STA = Side Tone Volume (If STE = ON, MIC is routed both to headphone & line out).

6. Digital Audio Path Control Register

• Enable ADC High Pass Filter, Disable De - emphasis, disable DAC soft mute.

13 - 34

Stereo Audio Codec TLV320AIC23B

ADCHP = ADC High Pass Filter (0 = enabled; 1 = disabled)
DEEMP = De-emphasis control (0 = disabled, 1 = 32kHz, 2 = 44.1kHz, 3 = 48kHz)
DACM = DAC soft mute (0 = disabled; 1 = enabled)

Digital Audio Path Control Register:

Stereo Audio Codec TLV320AIC23B

13 - 30 F2833x - Multichannel Buffered Serial Port

7. Digital Audio Interface Format Register

13 - 35

Stereo Audio Codec TLV320AIC23B
Digital Audio Interface Format Register:

FOR = Data Format 0 = MSB first, right aligned
1 = MSB first, left aligned
2 = I2S – Format, MSB first, left -1 aligned
3 = DSP – Format; Frame sync followed by 2 words

IWL = Input word length 0 = 16 bit
1 = 20 bit
2 = 24 bit
3 = 32 bit

LRP = DAC left /right phase 0 = right channel on and LRCIN = high
1 = right channel on and LRCIN = low

LRSWAP = DAC left / right swap (0 = NO, 1 = YES)
MS = Master Mode (0 = Slave; 1 = Master)

• FOR: set to DSP-Mode
• IWL: set to 32 - bit mode
• LRP: Right Channel with LRCIN = low
• LRSWAP: no swap
• MS: set to Master

 Stereo Audio Codec TLV320AIC23B

F2833x - Multichannel Buffered Serial Port 13 - 31

8. Sample Rate Control Register

• Set USB - Mode.
• Set BOSR to 272 fs.
• Set SR to 44.1 kHz for ADC and DAC

13 - 36

Stereo Audio Codec TLV320AIC23B
Sample Rate Control Register:

USB = Clock Mode Select (0 = Normal, 1 = USB)
BOSR = Base Oversampling Rate

USB – Mode: 0 = 250fs, 1 = 272fs;
Normal – Mode: 0 = 256fs; 1 = 384fs

SR = Sampling Rate

CLKIN = Clock Input Divider (0 = MCLK; 1 = MCLK/2)
CLKOUT = Clock Output Divider (0 = MCLK; 1 = MCLK/2)

Stereo Audio Codec TLV320AIC23B

13 - 32 F2833x - Multichannel Buffered Serial Port

9. Digital Interface Activation Register

• Activate Interface

13 - 37

Stereo Audio Codec TLV320AIC23B
Digital Interface Activation Register:

ACT = Activate Interface (0 = NO, 1 = YES)
RES = reserved

10. Power Down Control Register

• As a final step, activate everything except Microphone.

1= OFF, 0 = ON

 Lab Exercise 13_1: single audio tone

F2833x - Multichannel Buffered Serial Port 13 - 33

Lab Exercise 13_1: single audio tone

Objective

After the previous extensive (and probably boring) description of control registers for
McBSP and the stereo audio codec AIC23B it is time for experiments. In Lab13_1 we will
use the DAC of the AIC23B to synthesize a signal of 200 Hz on both the left and right head-
phone channels. In Lab 13_2 we will improve the code to use interrupts. Finally, in Lab13_3
we will generate two independent signals on the left and right stereo channels. Since we will
generate audio signals, they do have to be sinusoidal - we have to update the DAC periodi-
cally - exactly at 44.1 kHz. To do so, we will initialize the codec to operate at this frequency
- a typical frequency for audio devices, such as CD - Players or MP3 - devices.

The question is: How do we generate a sinusoidal output value? One answer could be: “Use
the trigonometric function y = sin(x).” However, the call to a trigonometric function is a time
- consuming task and in time - critical applications we would need to make this function
faster. A better solution is to use a “look-up-table”. In such a table, we pre-calculate all the
values, we will need in the code. For example, for y = sin(x), we could calculate 360 sine -
values for a 360° unit circle, to obtain 360 points for interpolation.

Fortunately Texas Instruments already implemented a sine - wave look - up table in the
boot - ROM memory of the F2833x! It consists of 512 entries for a unit circle of 360°, which
will give us a next value at 360 degree / 512 = 0.7 degree. The values of this table are 32 bit
wide and stored in fractional I2Q30 - format (range -2.0 ... +1.9999). The table starts at ad-
dress 0x3FE000 with value y = sin (0), followed by value y = sin (0.7) and so on. We will
use this table for the labs in this chapter.

But let us first inspect this sine look-up table (note: Q30 is currently not working in CCS4.1):

• Open a memory window (View  Memory)
• In the top left corner of the memory window, enter address 0x3FE000
• In the bottom left corner, change the data type to: 32 Bit Signed Integer
• Open the properties of memory window (right mouse click) and change Q Value to

30:

Lab Exercise 13_1: single audio tone

13 - 34 F2833x - Multichannel Buffered Serial Port

Preface

Before we start the laboratory procedure, it would be helpful to summarize the necessary
steps to initialize the audio codec. The control channel of the AIC23B is connected to inter-
face SPI-A. Of the F2833x and the audio data stream is interfaced to McBSP. Here is what
we have to do:

SPI - A - Initialization

To initialize the control channel of the AIC23B, we have to set up the SPI - A unit of the
F2833x. Since we will not use SPI - interrupts or SPI - FIFO units for this first exercise, the
initialization sequence is quite simple:

For Register “SPICCR”:

• First hold SPI-A in Reset (Bit “SPIWRESET”)
• Select16 - bit Mode (Bit field “SPICHAR”)
• Select output data on falling edge of clock (Bit “CLKPOLARITY”)
• Disable loopback Mode (Bit “SPILBK”)
• Finally, release SPI - A from Reset (Bit “SPIWRESET”)

For Register “SPICTL”:

• Select Master Mode (Bit “MASTER_SLAVE”)
• Select no clock delay (Bit “CLK_PHASE”)
• Enable SPI - transmissions (Bit “TALK”)
• Disable Interrupts (Bits “SPIINTENA” and “OVERRUNINTENA”)

For Register “SPIBRR”:

• Although the data rate of this channel is not really critical, because SPI-A is used for
initialization purpose only, let us agree to initialize it to 1 MBit/s. Assuming that you
have not changed the provided function “InitSysCtrl()” from Texas Instruments
Header Files, your F2833xControlCard will run at 150 MHz (SYSCLKOUT) and
with a LSPCLK = 37.5 MHz The SPI - data rate is calculated as:

𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

=
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 1

• Load Register SPIBRR with the calculated value.

In preparation for Lab13_1, we can write a new function “SPIA_init()”, which covers the
initialization steps discussed above.

 Lab Exercise 13_1: single audio tone

F2833x - Multichannel Buffered Serial Port 13 - 35

AIC23B Control Command Sequence

Next, we need to prepare the control sequence for the AIC23B. Please refer to pages 13-27
of this textbook module, where we discussed the AIC23B registers. Now we have to define
the initialization sequence:

1. Apply a Reset - command to the Reset Register.

Hint: The address of the Reset-Register is 0001111 (see Slide 13-31). A reset command
consists of 9 zero bits 0000 0000 0. The resulting 16 - bit value is 0x1E00. Send this
value as first command via SPI-A to the AIC23B.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

2. Address the Power - Down - Control Register (Slide 13-31). For now switch OFF

“Line”, “Mic”, “ADC”, “DAC”, and “OUT”. Switch to ON bits for “OSC”, “CLK” and
“OFF”. Fill in the values for all 16 bits in the table below:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. Address the Left Headphone Control Register (Slide 13-32). Switch ON “LZC” and set

“LHV” to volume = 0 db. LZC is the left zero crossing. When ON, it changes volume
levels only at the zero crossing of the sinusoidal signal.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4. Address the Right Headphone Control Register (Slide 13-32). Switch ON “RZC” and set

“RHV” to volume = 0 db. RZC is the right zero crossing. When ON, it changes volume
levels only at the zero crossing of the sinusoidal signal.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5. Address the Analogue Audio Path Control Register (Slide 13-33). Enable the DAC and

mute the microphone. Disable bypass and side tone. Set Audio Input to “Line”.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6. Address the Digital Audio Path Control Register (Slide 13-34). Set all 9 data bits to zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7. Address the Digital Audio Interface Format Register (Slide 13-35). Set the AIC23B to

Master Mode (MS). Set the data format to DSP (FOR). Set the input word length to 32
bit (IWL). Set LRP to 1 (right channel when LRCIN = low). Do not swap the DAC -
channels (LRSWAP).
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8. Address the Sample Rate Control Register (Slide 13-36). Select USB-Mode (USB). Se-

lect 44.1 kHz both for ADC and DAC (SR and BOSR). Set CLKIN and CLKOUT to
MCLK.

Lab Exercise 13_1: single audio tone

13 - 36 F2833x - Multichannel Buffered Serial Port

9. Address the Digital Interface Activation Register (Slide 13-37). Activate the interface

(ACT).
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10. Address the Power - Down - Control Register (Slide 13-31). Turn on everything except

the microphone (MIC).
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

McBSP - A Initialization Sequence
To be able to send audio data to the AIC23B we also have to initialize McBSP-A.

1. Register Serial Port Control 1 (SPCR1) - see Slide 13-18:

• Reset Receiver. We don’t use the McBSP-Receiver for Lab13_1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2. Serial Port Control 2 Register (SPCR2) - see Slide 13-19:
• Do not stop McBSP on JTAG - Breakpoints (Bit “FREE”)
• Request Transmit Interrupt Service on Frame Sync Pulse (Bit field “XINTM”)
• Release Frame Sync Logic from Reset (Bit “FRST”)
• Release Sample Rate Generator from Reset (Bit “GRST”)
• Set all remaining bits to zero.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. Interrupt Enable Register (MFFINT) - see Slide 13 - 27:

• Enable Transmit Interrupts (XINT)
• Disable Receive Interrupts (RINT)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4. Transmit Control Register 1 (XCR1) - see Slide 13 - 22:
• Select “32 - bit” data in phase 1 (XWDLEN1)
• Select 1 word in phase 1 (XFRLEN1)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

5. Transmit Control Register 2 (XCR2) - see Slide 13 - 23:
• Select “Dual Phase” - Frame (XPHASE). We will use phase 1 for the left audio

signal and phase 2 for the right signal
• Select “32 - bit” data in phase 2 (XWDLEN2)
• Select 1 word in phase 2 (XFRLEN2)
• Set data delay to 1 clock cycle after frame sync (XDATDLY)
• Disable Compand, MSB first (XCOMPAND)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Lab Exercise 13_1: single audio tone

F2833x - Multichannel Buffered Serial Port 13 - 37

6. Sample Rate Generator Register 2 (SRGR2) - see Slide 13 - 25:

• Select pin MCLKX as source for sample clock (bit “CLKSM”).
• Set all remaining bits to zero.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7. Pin Control Register (PCR) - see Slide 13 - 26:
• Select external pulses for Receive and Transmit Frame Sync (Bits “FSXM” and

“FSRM”).
• Select external clock from pin MCLKX (Bit “CLKXM”)
• Select external clock from pin MCLKR (Bit “CKLRM”)
• Set Bit “SCLKME” = 1 to select MCLKX as clock source for sample rate generator
• Select Frame Sync Polarity as “active low” (Bits “FSXP” and “FSRP”)
• Select Transmit Clock polarity to “rising edge” (Bit “CLKXP”)
• Select Receive Clock Polarity to “rising edge” (Bit “CLKRP”)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

13 - 38

AIC23B Exercises:
Lab13_1:
• Initialize SPI-A as control channel for AIC23B
• Initialize McBSP-A as data channel for AIC23B
• AIC23B is master and sends the 12MHz base clock
• AIC23B sends a 44.1 kHz frame sync signal to McBSP
• Send a sinusoidal signal, based on the BOOT-ROM

look-up table to the DAC of the AIC23B; sample rate is
44.1 kHz

Lab13_2:
• Send two different signals to left and right audio channel
• Add volume control

Lab13_3:
• Improvement of Lab13_2; reduce Interrupt Service time

Lab Exercise 13_1: single audio tone

13 - 38 F2833x - Multichannel Buffered Serial Port

Procedure
Now we are ready to code a new project for Lab13_1:

Open Files, Create Project File
1. Using Code Composer Studio, create a new project called Lab13.pjt in

C:\DSP2833x_V4\Labs (or in another path that is accessible by you; ask your teacher
or a technician for an appropriate location!).

2. A good point to start with is the source code of Lab6.c, which produces a hardware
based time period using CPU core timer 0. Open file Lab6.c from
C:\DSP2833x_V4\Labs\Lab6 and save it as Lab13_1.c in
C:\DSP2833x_V4\Labs\Lab13.

3. Define the size of the C system stack. In the project window, right click at project
“Lab13” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

Link some of the source code files, provided by Texas Instruments, to the project:

4. In the C/C++ perspective, right click at project “Lab13” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source” and
link:

• DSP2833x_GlobalVariableDefs.c

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link:
• DSP2833x_PieCtrl.c
• DSP2833x_PieVect.c
• DSP2833x_DefaultIsr.c
• DSP2833x_CpuTimers.c
• DSP2833x_SysCtrl.c
• DSP2833x_CodeStartBranch.asm
• DSP2833x_ADC_cal.asm
• DSP2833x_usDelay.asm

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link:

• DSP2833x_Headers_nonBIOS.cmd

Project Build Options
5. We have to extent the search path of the C-Compiler for include files. Right click at

project “Lab13” and select “Properties”. Select “C/C++ Build”, “C2000 Compiler”,
“Include Options”. In the box: “Add dir to #include search path”, add the following
lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include

 Lab Exercise 13_1: single audio tone

F2833x - Multichannel Buffered Serial Port 13 - 39

C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Close the Property Window by Clicking <OK>.

Preliminary Test
6. So far we only created a new project “Lab13.pjt”, with the same functionality as in

Lab6. A good step would be to rebuild Lab13, load the code into the controller and
verify the binary counter at LEDs LD1 to LD4 of the Peripheral Explorer Board.

The LEDs should display the counter at 100 milliseconds time steps.

If not: Debug!

Change the GPIO - Multiplex Registers
7. Open file “Lab13_1.c” and edit the function “Gpio_select()”:

• The control channel of the AIC23B is connected to the SPI-A interface. Change
the setup for multiplex register “GPAMUX2” to use SPI-A at pins GPIO16
(SPISIMO), 18(SPICLK) and 19(SPISTE).

• The digital audio data channel to and from the AIC23B uses the McBSP-A
interface. Change the setup for multiplex register “GPAMUX2” to use McBSP-
A functions on pins GPIO20 (MDXA), 21(MDRA), 22 (MCLKXA) and 23
(MFSXA). With the help of register “GPAQSEL2”, set all four lines to
“asynchronous”.

• For register “GPBMUX2”, select two more McBSP-A signals at pin 58
(MCLKRA) and pin 59 (MFSRA).

Remove code from Lab6
8. In the function “main()”, remove the local variable “counter” and the all the code

inside the while(1) -loop that is related to the variable “counter”.

Please note: although we do not need CPU Timer 0 and its interrupt service routine for
lab exercise 13_1, we keep this unit in our code, (a) as an exercise to have multiple
interrupt sources and (b) as a placeholder for further extensions to this lab exercise.

Lab Exercise 13_1: single audio tone

13 - 40 F2833x - Multichannel Buffered Serial Port

Add SPI-A Initialzation Code
9. At the end of “Lab13_1”, add a function “SPIA_Init()” to initialize the interface for

SPI-A. In the preface of this exercise (pages 13-34 to 13-37), we discussed all
necessary initialization steps.

10. At the beginning of “Lab13_1”, add a function prototype for “SPIA_Init()”.

11. In “main()”, after the function call to “Gpio_select()”, add a function - call to
“SPIA_Init()”.

Add McBSP-A Initialzation Code
12. At the end of “Lab13_1”, add the function “McBSPA_Init()” to initialize the interface

for McBSP-A. In the preface of this exercise (pages 13-36 to 13-37), we discussed all
the necessary initialization steps.

13. At the beginning of “Lab13_1”, add a function prototype for “McBSPA_Init()”.

14. In “main()”, after the function call to “SPIA_Init()”, add a function - call to
“McBSPA_Init()”.

Initialize the codec AIC23B
15. At the end of “Lab13_1” add the function “AIC23_Init()” to initialize the AIC23B

stereo audio codec. The initialization process is a sequence of SPI - A commands that
must be transmitted from the F2833x to the AIC23. In the Preface for this lab we
discussed the necessary commands (pages 13-35 and 13-36).

The code in function “AIC23_Init()” must consist of a series of write commands of
16-bit words into register “SPITXBUF”, followed by a wait construction for the end
of the transmission and a dummy read of SPIRXBUF to clear the interrupt flag:

SpiaRegs.SPITXBUF = command_1;
while (SpiaRegs.SPISTS.bit.INT_FLAG != 1);
i = SpiaRegs.SPIRXBUF;
SpiaRegs.SPITXBUF = command_2;
while (SpiaRegs.SPISTS.bit.INT_FLAG != 1);
i = SpiaRegs.SPIRXBUF;

16. At the beginning of “Lab13_1”, add a function prototype for “AIC23_Init()”.

17. In “main()”, after the function call to “McBSPA_Init()” add a function - call to
“AIC23_Init()”.

Change the Interrupt Structure for Lab13_1
18. We will use the McBSP - Transmit Frame - Sync signal, which is generated by the

AIC23B at a frequency of 44.1 kHz, to request an interrupt service. This interrupt
service routine will be used to send the next pair of stereo amplitude values for the
sinusoidal audio signal to the AIC23B. In main, search for the line, that we used to

 Lab Exercise 13_1: single audio tone

F2833x - Multichannel Buffered Serial Port 13 - 41

overload the PieVectTable with the address of function “cpu_timer0_isr()”. After that
line add:

PieVectTable.MXINTA = &McBSP_A_TX_isr;
19. By adding a new code - line enable the PIE - interrupt - line McBSP-A (which is PIE

line 6, interrupt number 6):

PieCtrlRegs.PIEIER6.bit.INTx6 = 1;

20. Change the line to enable interrupt lines in Register IER. Now we have to enable line
INT1 (CPU - Timer 0) and line INT6 (McBSP-A).

21. At the beginning of “Lab13_1”, add a function prototype for the interrupt function
“McBSP_A_TX_isr()”.

Add global variables and IQ-Math
22. At the beginning of “Lab13_1.c”, add two global variables:

float volume = 0.2; // relative sound volume control (0...1)
unsigned int fsin= 220; // audio stereo sine frequency in Hertz

23. Also at the beginning of “Lab13_1.c” add a global array variable “sine_table[512]” to
obtain access to the ROM - sine - value lookup-table. This table consists of 512 values
for a unit circle (see page 13-33) in I2Q30 - format. A “pragma DATA_SECTION”
directive will connect this variable to a linker symbol “IQmathTables”, which is
defined in file “28335_RAM_lnk.cmd”:

#pragma DATA_SECTION(sine_table,"IQmathTables");
_iq30 sine_table[512]; // lookup-table 512 values in I2Q30 (+1...-1)

24. The new data type “_iq30” is defined in another header file, provided by Texas
Instruments and called “IQmathLib.h”. Include this file in your source code
“Lab13_1.c”:

#include "IQmathLib.h"

25. We have to extent the include search path. Right click at project “Lab13” and select
“Properties”. Select “C/C++ Build”, “C2000 Compiler”, “Include Options”. In the
box: “Add dir to #include search path”, add the following line:

C:\tidcs\c28\IQmath\v15a\include

Note: Depending on the installation on your PC, the IQ-Math library can be installed
at a different location. If the IQ-math - library is not installed at all, search for
“sprc087” on Texas Instruments website (www.ti.com) and download it from there.

26. Link the IQ-Math - Library to your project. From C:\tidcs\c28\IQmath\v15a\lib, link:

IQmath.lib

http://www.ti.com/�

Lab Exercise 13_1: single audio tone

13 - 42 F2833x - Multichannel Buffered Serial Port

Calculate new DAC - Value
Before we go into the coding details, we should discuss how to calculate the next
amplitude based on the sine-lookup-table in boot-ROM.

The sine table consists of 512 entries for 360 degrees. If we would read the next value
each time we get a frame synch pulse (fframe = 44.1 kHz), we would generate a resulting
signal of

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
512

= 44.1 𝑘𝑘𝑘𝑘𝑘𝑘
512

= 86 𝐻𝐻𝐻𝐻 [1]

To produce a higher signal frequency fsignal, we have to reduce the number of sample
points taken from the table. For example, if we were to take every other sample point
(Step_Size = 2), we would obtain:

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

512
= 44.1 𝑘𝑘𝑘𝑘𝑘𝑘

512
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 _𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 44.1 𝑘𝑘𝑘𝑘𝑘𝑘
512

= 2∗ 44.1 𝑘𝑘𝑘𝑘𝑘𝑘
512

= 172 𝐻𝐻𝐻𝐻 [2]

Rearranging this formula to Step_Size gives:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗512

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 [3]

For example to produce a signal of fsignal = 100 Hz we would need a Step_Size of 1.16.

To calculate the next index into the look-up - table (lut_idx) we have to multiply the
linear index by Step_Size:

𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 [4]

The linear index “linear_idx” (0…511) is incremented with each 44.1 kHz - Interrupt.
The look-up - table index “lut_idx” is the resulting integer index into the sine - table. The
final equation to calculate the next index is:

𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗512

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
 [5]

This formula will be used to read the next lookup table value, which is a value between
+1 and -1 in I2Q30 - Format. We will multiply this value with the relative value
“volume” (0…1) for volume control. A conversion function “_IQ30()” can be used to
convert a float type “volume” into an I2Q30 type. The multiply is done using function
“_IQ30mpy()”:

 amplitude = _IQ30mpy(sine_table[lut_idx],_IQ30(volume)); [6]

The result of the multiply operation is an I2Q30 - number. The AIC23B expects it as a
‘per unit’ value or, in other words an I1Q31 - number. When we left shift the amplitude
by 1 bit, we have the final value for the AIC23B:

amplitude <<= 1; [7]

 Now let us resume the lab procedure!

 Lab Exercise 13_1: single audio tone

F2833x - Multichannel Buffered Serial Port 13 - 43

Add McBSP - Transmit Interrupt Service
27. At the beginning of “Lab13_1.c”, add a function prototype for a new interrupt service

function:

interrupt void McBSP_A_TX_isr(void);

28. At the end of “Lab13_1.c”, add a new interrupt service function
“McBSP_A_TX_isr()”. This function will be called by the frame sync signal
(MFSXA), which is produced by the AIC23B as signal “LCRIN” at a frequency of
44.1 kHz. With this pulse, the AIC23B requests a new pair of amplitude values for the
right and left stereo audio channel of its DAC. We have to include the following steps
in the function “McBSP_A_TX_isr()”:

• First, we need three local variables:
static unsigned int linear_idx=0;
unsigned int lut_idx;
long amplitude;

• Next, calculate “lut_idx” according Equation [5] from page 3-42.

• If the result of the calculation for “lut_idx” is greater than 511, reset both
“linear_idx” and “lut_idx” to zero.

• Calculate the new amplitude for the audio signal according equation [6] and [7].

• Load register McspaRegs.DXR2 with the upper 16 bits of “amplitude”.

• Load register McspaRegs.DXR1 with the lower 16 bits of “amplitude”.

• Increment variable “linear_idx”. If the value exceeds 511, reset it to zero.

• Finally, acknowledge PIE - Interrupt - Group 6:

PieCtrlRegs.PIEACK.bit.ACK6 = 1;

Build, Load and Run
29. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

30. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

31. Verify that in the debug perspective the window of the source code “Lab13_1.c” is

high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

Lab Exercise 13_1: single audio tone

13 - 44 F2833x - Multichannel Buffered Serial Port

32. Perform a real time run.

Target  Run

33. Connect headphones to J25 (Headphone - Out) of the Peripheral Explorer Board. A
signal of 220 Hz should be audible on the right and left ear pieces. Or use an oscillos-
cope to measure the signal amplitudes on J25 left and right channels:

Right (yellow) and left (blue) stereo audio signal at headphone connector J25

34. Open a Watch Window and modify the values for variables “fsin” and “volume” to

change the signal on the headphones:

Note: If you use “real-time debug mode”, which we already used in previous chap-
ters, you can change the variables whilst the code is running!

 Lab Exercise 13_2: Dual audio tone

F2833x - Multichannel Buffered Serial Port 13 - 45

Lab Exercise 13_2: Dual audio tone

Objective

In Lab13_1, we generated a single frequency on both audio channels. Now we will generate
two different frequencies for the left and right channels. Recall that we initialized the
AIC23B in dual phase operating mode. In this mode each frame sync signal (MFSXA) starts
the transmission of two 32 Bit words from McBSP to the AIC23B. The first 32-bit word
(phase 1) is the new data for the left channel and the 2nd 32-bit word (phase 2) is for the right
channel.

In Lab13_1 we loaded the 32 - bit register-pair DX2/DX1 only once. As a result, the McBSP
transmitted the same word twice, for the left and right channels. For the new lab, we have to
load a 2nd 32-bit number into DX2/DX1, after the first one has been transmitted to drive the
two channels with different signals.

Procedure

Open Project, Modify Source File
1. If not still open from Lab13_1, re-open project Lab13.pjt in C:\DSP2833x_V4\Labs.

2. Open the file “Lab13_1.c” and save it as “Lab13_2.c”

3. Exclude file “Lab13_1.c” from build. Use a right mouse click at file “Lab13_1.c”, and
enable “Exclude File(s) from Build”.

4. In “Lab13_2.c”, replace the variable “fsin” by two new global variables:
unsigned int fsine_left= 110; // left audio frequency in Hertz
unsigned int fsine_right = 220; //right audio frequency in Hertz

Next, we have to change the interrupt service routine “McBSP_A_TX_isr()”. The calculation
for the next amplitude must now be performed independently for the left and right signals.

5. In the function “McBSP_A_TX_isr()” double the local variables, one set for left and one
set for the right channel:

static unsigned int left_linear_idx=0, right_linear_idx;
unsigned int left_lut_idx,right_lut_idx;
long left_amplitude,right_amplitude;

6. Using the new set for the “left”- variables, change the code sequence to calculate
“amplitude” into a sequence to calculate “left_amplitude”.

7. Add a similar calculation for value “right_amplitude”.
8. Load registers DX2 and DX1 with the upper and lower halves of the variable

“left_amplitude”.
9. Add a waiting loop to wait until the first 32 - bit value has been copied into the McBSP -

shift Register XSR2/XSR1. The status flag “XRDY” is set in such a case:

Lab Exercise 13_2: Dual audio tone

13 - 46 F2833x - Multichannel Buffered Serial Port

while(McbspaRegs.SPCR2.bit.XRDY == 0);

Note: The line above is a wait construction, which should never be used in an interrupt
service routine of a real project. The two basic rules of coding ISRs are (1) keep ISRs
as short as possible and (2) never include wait loops, because they can stall the whole
project. However, since we are learning students, we are allowed to do everything
(unless your teacher intervenes…). In “Lab3_3” we will improve the code in a way
that we can avoid the wait - construction from above!

10. After the wait - construction, add two more load instructions for registers DX2 and DX1,
now for value “right_amplitude”.

11. Change the code to increment and limit variable “linear_idx” into “left_linear_idx”.

12. Add similar instructions as in step 11 for the variable “right_linear_idx”.

Build, Load and Run
13. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

14. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

15. Verify that in the debug perspective the window of the source code “Lab13_2.c” is

high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

16. Perform a real time run.

Target  Run

17. Connect headphones to J25 (Headphone - Out) of the Peripheral Explorer Board. A
signal of 220 Hz should be audible on the right channel and a signal of 110 Hz on the
left channel. Or, use an oscilloscope to measure the signal amplitudes on J25 left and
right channels:

 Lab Exercise 13_2: Dual audio tone

F2833x - Multichannel Buffered Serial Port 13 - 47

Right Channel (yellow) and Left Audio Channel (blue)

18. Using a Watch Window change the signals “fsine_left” and “fsine_right” of the head-

phone:

Note: If you use “real-time debug mode”, which we used in previous chapters, you
can change the variables whilst the code is running!

Lab 13_3: Dual audio tone and XRDY - Interrupt

13 - 48 F2833x - Multichannel Buffered Serial Port

Lab 13_3: Dual audio tone and XRDY - Interrupt

Objective

In Lab13_2 we used an interrupt service routine with a wait construction in it. For a real pro-
ject such a technique is unacceptable. Therefore we have to improve our AIC23B Lab now!

The solution is based on using a different interrupt source. Labs13_2 was based on frame
sync - interrupts, which were caused by the AIC23B at 44.1 kHz. In response, we had to load
two pairs of values into registers DX2/DX1. But before we could load the 2nd pair, we had to
wait, because there is only one register pair DX2/DX1. This was the reason for the unfortu-
nate wait-loop in Lab13_2.

For Lab13_3 we will use the XRDY - signal to request an interrupt service. This interrupt is
triggered each time a 32 - bit word is loaded from DX2/DX1 into the McBSP-internal shift
registers XSR2/XSR1. The idea for the new lab is this:

In the middle of the left transmission we get the 1st XRDY - interrupt. We use this ISR to
load the right channel data into DX2/DX1. Similar, in the middle of the right transmission,
we get the 2nd XRDY - interrupt. We use this ISR to load the next left channel data into
DX2/DX1 - in preparation of the next transmission, which will be started by the next exter-
nal frame - sync - signal (MFSXA).

Summary: We will use an alternating technique in the interrupt service for XRDY. Every
odd interrupt will load the next left value, every odd interrupt the next right value.

Procedure

Open Project, Modify Source File

1. If not still open from Lab13_2, re-open project Lab13.pjt in C:\DSP2833x_V4\Labs.

2. Open the file “Lab13_2.c” and save it as “Lab13_3.c”

3. Exclude file “Lab13_2.c” from build. Use a right mouse click at file “Lab13_2.c”, and
enable “Exclude File(s) from Build”.

4. In the function “McBSPA_Init()”, change the initialization for the register “SPRC2”,
to now request a transmit interrupt service on event “XRDY” (hint: change bit
“XINTM”).

Left Right Left Right

 Lab 13_3: Dual audio tone and XRDY - Interrupt

F2833x - Multichannel Buffered Serial Port 13 - 49

5. Change interrupt service function “McBSP_A_TX_isr()”

• Add a new local variable “even”. We will use this variable as a switch to
alternately execute the reload code for phase 1 (left channel) or phase 2 (right
channel):

static unsigned int even = 0; //switch reload phase1 / phase2

• Next, add an if-statement and include all instructions that are related to the
“left”-variables into the “TRUE” - block and all “right”-variables into the
“FALSE” - block:

if (even == 0)
{
 // Calculation for amplitude left channel
 // load left_amplitude to DX2/DX1
 // increment and limit left_linear_idx
 // even = 1
}
else
{
 // Calculation for amplitude right channel
 // load right_amplitude to DX2/DX1
 // increment and limit right_linear_idx
 // even = 0
}

6. The McBSP - Transmit - Interrupt is now based on XRDY. This signal is generated
after a word has been loaded from DX2/DX1 into XSR2/XSR1. To get the first
interrupt, we have to force a load into DX2/DX1. In main, just before we enter the
endless while(1) loop, add the two following lines:

 McbspaRegs.DXR2.all = 0;

 McbspaRegs.DXR1.all = 0;

This code will force a first XRDY - interrupt.

Build, Load and Run
7. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

8. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

9. Verify that in the debug perspective the window of the source code “Lab13_3.c” is

high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

Lab 13_3: Dual audio tone and XRDY - Interrupt

13 - 50 F2833x - Multichannel Buffered Serial Port

10. Perform a real time run.

Target  Run

11. Connect headphones to J25 (Headphone - Out) of the Peripheral Explorer Board. A
signal of 220 Hz should be audible on the right channel and a signal of 110 Hz on the
left channel. Or, use an oscilloscope to measure the signal amplitudes on J25 left and
right channel:

Right Channel (yellow) and Left Audio Channel (blue)

12. Using a Watch Window change the signals “fsine_left” and “fsine_right” of the head-

phones:

Note: If you use “real-time debug mode”, which we used in previous chapters, you
can change the variables whilst the code is running!

 Lab Exercise 13_4: EEPROM via McBSP

F2833x - Multichannel Buffered Serial Port 13 - 51

Lab Exercise 13_4: EEPROM via McBSP

Objective

The Peripheral Explorer Board is equipped with a serial SPI - EEPROM (CSI25C256K or
AT25256). This lab exercise will write and read into this memory.

Write:
We will use the Peripheral Explores Boards push-button PB1 (GPIO17) to start a write to the
EEPROM. The data to be written into the EEPROM is the current position of the 4 - bit
hexadecimal digital input encoder (GPIO12...15). Only bits 3...0 of the EEPROM memory
address will be used.

Read:
We will use push-button PB2 (GPIO48) to read the EEPROM. From the 8 bit data only bits
2...0 will be displayed on LEDs LD4 (GPIO49), LD3 (GPIO34), and LD1 (GPIO9). Note:
LED LD2 (GPIO11) cannot be used for this exercise, because the Peripheral Explorer Board
uses this output line to control the “chip-select” signal (/CS) of the EEPROM.

13 - 39

EEPROM AT25256 Exercise:
Lab13_4:
• Initialize McBSP-B in SPI-Mode for AT25256
• Write data to EEPROM, if button PB1 (GPIO17) is

pushed. Read the current value from Hex-Encoder
(GPIO12…15) and store it into EEPROM-address
0x0040, bits 3…0.

• Read data from EEPROM-address 0x0040, when button
PB2 (GPIO48) is pushed and display bits 2…0 at LEDs
LD4 (GPOI49), LD3 (GPIO34) and LD1 (GPIO9).

Lab Exercise 13_4: EEPROM via McBSP

13 - 52 F2833x - Multichannel Buffered Serial Port

Hardware Description:

The SPI - Interface of this device is connected to the F28335 - McBSP - channel B. The fol-
lowing schematic gives the hardware - details:

Peripheral Explorer Board EEPROM Circuitry

• Input pin “/CS” connected to GPIO11, which could be initialized as Signal “SPI-Slave

Transmit Enable (SPISTE)”. However, since we will use McBSP-B in a SPI operating -
mode, we are not able to generate “SPISTE” from this interface. Therefore we will use
GPIO11 as digital output line controlled by software.

• Output pin “Slave Out (SO)” is connected to GPIO25, which can be initialized as

McBSP-signal “MDRB”. In SPI - mode, this pin will operate as “Slave Out Master In”
signal.

• Input pin “Slave Clock (SCLK)” is connected to GPIO26, which can be initialized as

McBSP-signal “MCLKB”. In SPI - mode this pin will operate as “SPI - clock” signal.

• Input pin “Slave In (SIN)” is connected to GPIO24, which will be initialized as McBSP-

signal “MDXB”. In SPI-mode, this pin will feature the “Master Out Slave In” data sig-
nal.

 Lab Exercise 13_4: EEPROM via McBSP

F2833x - Multichannel Buffered Serial Port 13 - 53

Timing Diagram
The AT25256 has the following timing requirements:

13 - 40

EEPROM AT25256
Timing Diagram:

Source: http://www.atmel.com document “doc0872.pdf”

An access cycle is enclosed within an active /CS - signal. At the beginning, we will need to
set /CS low and when we have transmitted the frame, we need to de-activate /CS by making
it high again.

To write data into the EEPROM, the F2833x has to generate the data bit first; with a clock
delay of ½ cycles, the rising edge is the strobe pulse for the EEPROM to store the data.

When reading the EEPROM, the falling clock edge causes the EEPROM to send out data
and the rising clock edge the F2833x can read the valid data bit.

http://www.atmel.com/�

Lab Exercise 13_4: EEPROM via McBSP

13 - 54 F2833x - Multichannel Buffered Serial Port

AT25256 Status Register
The AT25256 internal Status Register controls write accesses to the internal memory.

13 - 41

EEPROM AT25256
Access Status Register:

00 = no protection
01 = 0x6000 – 0x7FFF protected
10 = 0x4000 – 0x7FFF protected
11 = 0x0000 – 0x7FFF protected

Write Protect Enable
1 = no write access
0 = normal operation

Write in progress
0 = no write cycle
1 = write in progress

0127 6 5 34

Write Enable Latch
0 = write disabled
1 = write enabled

/RDYWENBP0WPEN 0 0 BP10

Block protect select

It also flags the current status of the EEPROM:

Bit 0 (“/RDY’) flags whether an internal write cycle is in progress or not. Internal write
cycles are started at the end of a command sequence and last quite long (maximum 10ms).
To avoid the interruption of a write cycle in progress any other write access should be
delayed as long as /RDY=1.

Bit 1(“Write Enable Latch”) is a control bit that must be set to 1 for every write access to
the EEPROM. After a successful write cycle this bit is cleared by the EEPROM.

Bits 3 and 2(“Block Protect Select”) are used to define the area of memory that should be
protected against any write access. We will not use any protection in our lab, so just set the
two bits to ‘00’.

Bit 7 (“Write Protect Enable”) allows us to disable any write access into the Status
Register. For our Lab we will leave this bit cleared all the time (normal operation).

 Lab Exercise 13_4: EEPROM via McBSP

F2833x - Multichannel Buffered Serial Port 13 - 55

Instruction Register

The AT25128/256 utilizes an 8-bit instruction register. The list of instructions and their op-
eration codes are contained in the next slide. All instructions, addresses and data are trans-
ferred with the MSB first and start with a high-to-low CS transition.

13 - 42

EEPROM AT25256
Instruction Register:

Instruction Description Code

WREN Write Enable 0000 0110

WRDI Write Disable 0000 0100

RDSR Read Status
Register 0000 0101

WDSR Write Status
Register 0000 0001

READ Read Data 0000 0011

WRITE Write Data 0000 0010

Before we can start our Lab procedure, we need to discuss these instructions in little more
detail.

The “Write Enable (WREN)” command must be applied to the EEPROM to open
the Write Enable Latch (WEN) prior to each WRITE and WDSR instruction. The command
is an 8-clock SPI- sequence, as shown on the next slide (Slide 13-43):

Lab Exercise 13_4: EEPROM via McBSP

13 - 56 F2833x - Multichannel Buffered Serial Port

13 - 43

EEPROM AT25256
Write – Enable (WREN) Timing:

© Atmel Corporation; Datasheet AT25256 (doc0872.pdf) – 2005; Page 10

The “RDSR” instruction allows the Status Register to be read. The Status Register may be
read any time. It is recommended to use this instruction to check the “Write In Progress”
(/RDY) bit before sending a new instruction to the EEPROM. This is also possible to read
the Status Register continuously.

13 - 44

EEPROM AT25256
Read Status Register (RDSR) Timing:

© Atmel Corporation; Datasheet AT25256 (doc0872.pdf) – 2005; Page 10

 Lab Exercise 13_4: EEPROM via McBSP

F2833x - Multichannel Buffered Serial Port 13 - 57

The “READ” instruction is used to read data out of the EEPROM. The address range of
the AT25256 is from 0 to 0x7FFF. After the first 8 - bit (instruction code), the address is
transmitted as a 16 - bit address. As shown in Slide 13-45, the cycle is finished with the de-
activation of the /CS signal (high). However, if /CS stays active (low) and the master applies
another 8 clock pulses, an internal address counter is incremented with each READ
instruction.

13 - 45

EEPROM AT25256
Read (READ) Timing:

© Atmel Corporation; Datasheet AT25256 (doc0872.pdf) – 2005; Page 11

13 - 46

EEPROM AT25256
Write (WRITE) Timing:

© Atmel Corporation; Datasheet AT25256 (doc0872.pdf) – 2005; Page 11

Lab Exercise 13_4: EEPROM via McBSP

13 - 58 F2833x - Multichannel Buffered Serial Port

The “WRITE” instruction is used to write data into the EEPROM. The instruction is
terminated by a rising edge at signal chip select (/CS) high. At this point the internal self -
timed write cycle actually starts, at the end of which the “Write In Progress”(/RDY) bit of
the Status Register is reset to 0.

Procedure

Open Project, Modify Source File

1. If not still open from Lab13_3, re-open the project Lab13.pjt in C:\DSP2833x\Labs.

2. Open the file “Lab13_1.c” and save it as “Lab13_4.c”

3. Remove the file “Lab13_3.c” from the project and add “Lab13_4.c” to it. Note:
optionally you can also keep “Lab13_3.c” in the project, but exclude it from build.
Use a right mouse click on file “Lab13_3.c”, select “File Specific Options”; in
category “General” enable “Exclude from Build”.

4. At the beginning of file “Lab13_4.c” we can simplify our coding by adding some
useful macros:

#define WRITE_BUTTON GpioDataRegs.GPADAT.bit.GPIO17 // PB1
#define READ_BUTTON GpioDataRegs.GPBDAT.bit.GPIO48 // PB2
#define CS_EEPROM GpioDataRegs.GPADAT.bit.GPIO11 //CS - EEPROM
// Instruction Register Definitions for EEPROM
#define WREN 0x06 // Write Enable
#define WRDI 0x04 // Write Disable
#define RDSR 0x05 // Read Status Register
#define WRSR 0x01 // Write Status Register
#define READ 0x03 // Read Command
#define WRITE 0x02 // Write Command

5. Remove all lines (Prototypes, Function calls and Function definitions) for functions
“AIC23_init()” , “McBSP_A_TX_isr()” and “SPIA_Init()”. We do not need these
functions in this lab. Also remove the global variables “volume”, fsin” and
“sine_table”, including the DATA_SECTION statement for “sine_table”.

6. Next, change the interrupt enable lines. For the IER register, enable the INT1 line
only. Remove the PIE - interrupt enable line for McBSP-A (register PIEIER6). The
only active interrupt in lab 13_4 is the CPU - Timer 0 interrupt service.

7. Inspect and change function “Gpio_select()”. Delete the setup for GPIO16, 18, 19, 20,
21, 22, 23, 58 and 59 as SPI-A or McBSP-A signals. Instead, initialize GPIO24, 25
and 26 to their McBSP-B - function. Set the direction of GPIO9 (LD1), GPIO11 (/CS-
EEPROM), GPIO34 (LD3) and GPIO49 (LD4) to output. Make sure, that lines
GPIO17 and GPIO48 are initialized as inputs, because they are used as push-button
lines. Finally in register GPADAT, set the data level for GPIO11 to 1, because this is
the passive level for the chip select line (/CS) of the EEPROM.

 Lab Exercise 13_4: EEPROM via McBSP

F2833x - Multichannel Buffered Serial Port 13 - 59

8. Rename the function “McBSPA_Init()” to “McBSPB_Init()” and change the code of
this function. The best way is to remove all old lines and code new lines. Please keep
the “EALLOW” - statement at the beginning and the “EDIS” - statement at the end of
the function code:

• Register SPCR1:
• Enable clock-stop mode (CLKSTP) with ½ cycle clock delay
• Enable receiver (RRST)

• Register SPRC2:
• Set Free-Run (FREE) in a break event
• Enable transmitter (XRST)
• Enable sample rate generator (GRST)
• Release frame logic from reset (FRST)

• Register PCR:
• Valid transmit data on rising edge of clock (CLKXP)
• Receive data sampled on rising edge of clock (CLKRP)
• McBSP is master in SPI (CLKXM)
• McBSP-clock derived from LSPCLK (SCLKME)
• Transmit frame sync generated internally (FSXM)
• Transmit frame sync pulses are active low(FSXP)

• Register SRGR1:

• Set CLKG frequency to 1 MBit/s. (CLKGDV)

• Register SRGR2:
• Select LSPCLK as input clock source (CLKSM)
• Generate frame sync when DXR is copied into XSR (FSGM)

• Register XCR1:
• Select 1 word per frame (XFRLEN1)
• Select 8 bit per word (XWDLEN1)

• Register XCR2:
• Select Single Phase Transmit (XPHASE)
• No Data delay between sync and first data bit (XDATDLY)

• Register RCR1:
• Select 1 word per frame (RFRLEN1)
• Select 8 bit per word (RWDLEN1)

• Register RCR2:
• Select Single Phase Receive (RPHASE)
• No Data delay between sync and first data bit (RDATDLY)

Lab Exercise 13_4: EEPROM via McBSP

13 - 60 F2833x - Multichannel Buffered Serial Port

Next we have to prepare some access functions to the EEPROM. Recall that the access to
this device is controlled by a sequence of serial commands (see Slide 13-42).

10. Write a function “McBSP_B_EEPROM_Read_Status()”. As the name indicates,
we will use this function to read the current value from the EEPROM status register
(see Slide 13-41). The bit “/RDY” is important. If a previous command has not
completed (/RDY =1), we cannot apply another one to the EEPROM. Here is the
required function code:

int McBSP_B_EEPROM_Read_Status(void)
{
 unsigned int k;
 CS_EEPROM = 0; // activate /CS of EEPROM
 McbspbRegs.DXR1.all = RDSR; // read status register command
 while (McbspbRegs.SPCR1.bit.RRDY == 0); // wait for end of SPI - cycle
 k=McbspbRegs.DRR1.all; // dummy read to release receiver

 McbspbRegs.DXR1.all = 0; // dummy data to drive 8 more SPICLK
 while (McbspbRegs.SPCR1.bit.RRDY == 0); // wait for end of SPI - cycle
 k=McbspbRegs.DRR1.all; // read status , LSB is WIP
 CS_EEPROM = 1; // deactivate /CS of EEPROM
 return (k);
}

Add a function prototype at the beginning of “Lab13_4.c”.

Note: in this function and in all other functions of this lab we apply “while”-loops to
wait until a certain condition becomes true. This is a first and simple approach to
communicate with the device. However, there is a big problem with such a technique,
since the program will stall, if the condition never becomes true. So please do not use
such a technique in a real application! Instead, use timeout wait - loops or interrupt
service routines in such events. If you have spare laboratory time, you can try to
improve your project in such a way, after you have a first running example.

11. Write a new function “McBSP_B_EEPROM_Write_Enable()”. Later we will use
this function to enable a write instruction into the EEPROM. Such a preceding step is
necessary for all write accesses. Add:

void McBSP_B_EEPROM_Write_Enable(void)
{

volatile int dummy;
 CS_EEPROM = 0; // activate /CS of EEPROM
 McbspbRegs.DXR1.all = WREN; // write enable command
 while (McbspbRegs.SPCR1.bit.RRDY == 0); // wait for end of cycle
 dummy = McbspbRegs.DRR1.all; // dummy read to clear RX
 CS_EEPROM = 1; // deactivate /CS of EEPROM
}

Also add a function prototype for this function at the beginning of “Lab13_4.c”.

 Lab Exercise 13_4: EEPROM via McBSP

F2833x - Multichannel Buffered Serial Port 13 - 61

12. Write a new function “McBSP_B_EEPROM_Write()”. This will be the function to
write a new 8-bit pattern into an EEPROM-address. Add:

void McBSP_B_EEPROM_Write(int address,int data)
{
 volatile int dummy;
 CS_EEPROM = 0; // activate /CS of EEPROM
 McbspbRegs.DXR1.all = WRITE; // send write code
 while (McbspbRegs.SPCR2.bit.XRDY == 0); // wait for end of cycle
 McbspbRegs.DXR1.all = (address>>8); // write upper address byte
 while (McbspbRegs.SPCR2.bit.XRDY == 0); // wait for end of cycle
 McbspbRegs.DXR1.all = address; // write lower address byte
 while (McbspbRegs.SPCR2.bit.XRDY == 0); // wait for end of cycle
 McbspbRegs.DXR1.all = data; // send data
 while (McbspbRegs.SPCR2.bit.XRDY == 0); // wait for end of cycle
 dummy = McbspbRegs.DRR1.all; // dummy read to clear receiver
 while (McbspbRegs.SPCR1.bit.RRDY == 0);
 dummy = McbspbRegs.DRR1.all;
 CS_EEPROM = 1; // deactivate /CS of EEPROM
}

Add a function prototype at the beginning of “Lab13_4.c”.

13. Write a new function “McBSP_B_EEPROM_Read()”. This will be the function to
read an 8 - bit data from an EEPROM - address. Add:

int McBSP_B_EEPROM_Read(int address)
{
 int data;
 CS_EEPROM = 0; // activate /CS of EEPROM
 McbspbRegs.DXR1.all = READ; // Read op-code
 while (McbspbRegs.SPCR2.bit.XRDY == 0);
 McbspbRegs.DXR1.all = address>>8; // upper byte of read address
 while (McbspbRegs.SPCR2.bit.XRDY == 0);
 McbspbRegs.DXR1.all = address; // lower byte of read address
 while (McbspbRegs.SPCR2.bit.XRDY == 0);
 McbspbRegs.DXR1.all = 0x00; // send dummy data
 while (McbspbRegs.SPCR2.bit.XRDY == 0);
 data = McbspbRegs.DRR1.all; // Clear receive flag
 while (McbspbRegs.SPCR1.bit.RRDY == 0);
 data = McbspbRegs.DRR1.all; // Read data from memory
 CS_EEPROM = 1; // deactivate /CS of EEPROM
 return(data);
}

Add a function prototype at the beginning of “Lab13_4.c”.

Now we are ready to add function calls to write into or to read from the EEPROM into
our main-loop.

14. In the function “main()” just before we enter the endless while(1)-loop, add code to
check if bit “/RDY” of the EEPROM status - register is zero. Use the function
“McBSP_B_EEPROM_Read_Status()” to read the current status byte. Continue into
the while(1)-loop only if “/RDY” is zero. If it is not zero, repeat the status check.

Lab Exercise 13_4: EEPROM via McBSP

13 - 62 F2833x - Multichannel Buffered Serial Port

15. In the endless while(1)-loop of “main()”, just after the 100 milliseconds wait
construction based on CPU-Timer 0 and the service - instructions for the watchdog,
add new code to write or to read the EEPROM.

 Write into EEPROM - Address 0x0040:

 Recall, that we would like to execute a write access at address 0x0040, if button PB1
(GPIO17) is pushed (this line is zero, if the button is pressed down). If this is true:

• Call function “McBSP_B_EEPROM_Write_Enable()”.

• Wait until EEPROM status bit “WEN” = 1. Use function
“McBSP_B_EEPROM_Read_Status” to get the latest status.

• Call function “McBSP_B_EEPROM_Write()” to write data to the EEPROM.
The first parameter is the internal EEPROM - Address (for example 0x0040), the
second parameter is the data. For data we will use the current value of the Hex-
Encoder device (GPIO15…GPIO12), which inputs a value between 0 and 15.

• Wait until EEPROM status - bit “/RDY” is zero. Use the function
“McBSP_B_EEPROM_Read_Status()” to get the latest status.

• Note: At the end of this sequence you should also add some code lines to make
sure that the second execution of a write sequence is only possible, after button
PB1 has been released. Since the watchdog is active, you cannot simply put a
wait-loop here!

Read from EEPROM - Address 0x0040:

Finally we have to add some code to read EEPROM - address 0x0040, if button PB2
(GPIO48) has been pushed (this line is zero, if the button is pressed down). If this is
true:

• Call the function “McBSP_B_EEPROM_Read()” and store the return value in a
new local unsigned integer variable “data_read”.

• Copy bit 2 of “data_read” to LED LD4 (GPIO49), bit 1 to LED LD3(GPIO34)
and bit 0 of “data_read” to LED LD1 (GPIO9).

Build, Load and Run
16. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

17. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

 Lab Exercise 13_4: EEPROM via McBSP

F2833x - Multichannel Buffered Serial Port 13 - 63

18. Verify that in the debug perspective the window of the source code “Lab13_3.c” is
high-lighted and that the blue arrow for the current Program Counter position is placed
under the line “void main(void)”.

19. Perform a real time run.

Scripts  Realtime Emulation Control  Run_Realtime_with_Restart

20. Turn the 4-Bit Hex-Encoder to a known state. Hint: Use a Watch window and monitor
GPIO15…GPIO12.

21. Now press button PB1. The Encoder value is written into EEPROM - Address 0x0040.

22. Now press button PB2. The bits 2…0 of the returned value from EEPROM address
0x0040 should be displayed at LEDs LD4, LD3 and LD1. It should correspond to the
status of GPIO12, GPIO13 and GPIO14 which was written into the EEPROM by the
last write command.

23. Stop the Realtime Run:

Scripts  Realtime Emulation Control  Full Halt

24. Close Code Composer Studio and switch off the Peripheral Explorer Board. After a
few seconds re-power the board and start Code Composer Studio. Download the
project into the DSP, run it and push the read button PB2 first. Now the LEDs LD4,
LD3 and LD1 should display the last value that has been stored in EEPROM-address
0x0040 before the power has been switched off. (An EEPROM is non - volatile
memory that retains the information when power supply has been switched off).

END of Lab-Exercise 13_4

Optional Exercise (EEPROM and SCI):

13 - 64 F2833x - Multichannel Buffered Serial Port

Optional Exercise (EEPROM and SCI):
If your Laboratory time permits, you can try to combine Lab13_4 (EEPROM) with one of
the exercises from chapter 9 (SCI - module). The task is to store a whole message, which is
transmitted by a host to the F2833x via RS232. If PB2 is pushed, the message, which is
stored inside the F2833x, must be sent back to the host.

	F2833x Multichannel Buffered Serial Port
	Introduction
	Module Topics
	F2833x McBSP Block diagram
	Basic F2833x McBSP Features
	McBSP Data Frame Diagram
	Companding (Compressing and Expanding)
	McBSP - clocking
	McBSP Frame Phases
	McBSP Receive
	McBSP Transmission
	McBSP - Interrupts and DMA
	McBSP Module Registers
	Data Receive and Transmit Register
	Serial Port Control Register 1 (SPCR1)
	Serial Port Control Register 2 (SPCR2)
	Receive Control Register 1 (RCR1)
	Receive Control Register 2 (RCR2)
	Transmit Control Register 1 (XCR1)
	Transmit Control Register 2 (XCR2)
	Sample Rate Generator Register 1 (SRGR1)
	Sample Rate Generator Register 2 (SRGR2)
	Pin Control Register (PCR)
	Interrupt Enable Register (MFFINT)
	Multichannel Mode Enable Registers (RCERx, XCERx)

	Stereo Audio Codec TLV320AIC23B
	Functional Block Diagram
	Initialization of SPI - channel A
	Initialization of the AIC23

	Lab Exercise 13_1: single audio tone
	Objective
	Preface
	SPI - A - Initialization
	AIC23B Control Command Sequence
	McBSP - A Initialization Sequence

	Procedure
	Open Files, Create Project File
	Project Build Options
	Preliminary Test
	Change the GPIO - Multiplex Registers
	Remove code from Lab6
	Add SPI-A Initialzation Code
	Add McBSP-A Initialzation Code
	Initialize the codec AIC23B
	Change the Interrupt Structure for Lab13_1
	Add global variables and IQ-Math
	Calculate new DAC - Value
	Add McBSP - Transmit Interrupt Service
	Build, Load and Run

	Lab Exercise 13_2: Dual audio tone
	Objective
	Procedure
	Open Project, Modify Source File
	Build, Load and Run

	Lab 13_3: Dual audio tone and XRDY - Interrupt
	Objective
	Procedure
	Open Project, Modify Source File
	Build, Load and Run

	Lab Exercise 13_4: EEPROM via McBSP
	Objective
	Hardware Description:
	Timing Diagram
	AT25256 Status Register
	Instruction Register
	Procedure
	Open Project, Modify Source File
	Build, Load and Run

	Optional Exercise (EEPROM and SCI):

