

F2833x - Flash Programming 14 - 1

Introduction
So far we have used the internal volatile memory (L1 - SARAM) of thee F2833x to store the
code for our examples. Before we could execute the code we used Code Composer Studio to
load it into L1 - SARAM (“File”  “Load Program”). This is fine for projects in a
development and debug phase where there are frequent changes to parts and components of
the software. However, when it comes to production versions with a standalone embedded
control unit based on the F2833x, we no longer have the option to download our control code
using Code Composer Studio. Imagine a control unit for an automotive braking system,
where you have to download the control code first when you hit the brake pedal (“Do you
really want to brake? ...”).

For standalone embedded control applications, we need to store our control code in NON-
Volatile memory. This way it will be available immediately after system power-up. The
question is: what type of non-volatile memory is available? There are several physically
different memories of this type: Read Only Memory (ROM), Electrically Programmable
Read Only Memory (EPROM), Electrically Programmable and Erasable Read Only Memory
(EEPROM) and Flash-Memory. In the case of the F28335, we can add any of the above
types of memory to the control unit using the external interface (XINTF).

The F2833x is also equipped with an internal Flash memory of 256K x 16 bits. This is quite
a large amount of memory and more than sufficient for our lab exercises!

Before we can go to modify one of our existing lab solutions to start up out of Flash
memory, we have to go through a short explanation of how to use this memory. This module
also covers the boot sequence of the F2833x - what happens when we power on the F2833x?

This chapter also covers the password feature of the F2833x code security module. This
module is used to embed dedicated portions of the F2833x memory in a secure section with a
128 bit-password. If the user does not know the correct combination that was programmed
into the password section, any access to the secured areas will be denied! This is a security
measure to prevent reverse-engineering.

At the end of this lesson we will do a lab exercise to load one of our existing solutions into
the internal Flash memory.

CAUTION: Please do not upset your teacher by programming the password area! Be
careful, if you program the password by accident the device will be locked forever! If you
decide to make your mark at your university by locking the device with your own password,
be sure to have passed all your exams first.

 F2833x Flash Programming

Module Topics

14 - 2 F2833x - Flash Programming

Module Topics
F2833x Flash Programming .. 14-1

Introduction ... 14-1

Module Topics ... 14-2

F2833x Start-up Sequences ... 14-3

F2833x Flash Memory Sectors.. 14-5

Flash Speed Initialization .. 14-5

Flash Configuration Registers .. 14-8

Flash Programming Procedure... 14-9

CCS Flash Plug-In .. 14-11

Code Security Mode .. 14-12

Lab Exercise 14: Standalone Project ... 14-16
Objective ... 14-16
Procedure .. 14-17
Open Files, Create Project File ... 14-17
Project Build Options .. 14-18
Add Additional Source Code Files ... 14-18
Modify Source Code to Speed up Flash memory ... 14-18
Build project ... 14-19
Verify Linker Results: The “.map” - File.. 14-20
Use CCS integrated Flash Programming .. 14-20
Shut down CCS and Restart FLASH - Code .. 14-21

 F2833x Start-up Sequences

F2833x - Flash Programming 14 - 3

F2833x Start-up Sequences
There are 16 different options to start the F2833x out of power- on. The options are hard-
coded by 4 GPIO-Inputs (GPIO 87, 86, 85 and 84). The 4 pins are sampled during power-on.
Depending on their status, one of the following options is selected:

GPIO87 GPIO86 GPIO85 GPIO84 Mode

1 1 1 1 Jump to Flash 0x33FFF6

1 1 1 0 SCI-A Boot loader

1 1 0 1 SPI-A Boot loader

1 1 0 0 I2C-A Boot loader

1 0 1 1 eCAN-A Boot loader

1 0 1 0 McBSP-A Boot loader

1 0 0 1 Jump to XINTF x16

1 0 0 0 Jump to XINTF x32

0 1 1 1 Jump to OTP

0 1 1 0 Parallel GPIO – Boot loader

0 1 0 1 Parallel XINTF – Boot loader

0 1 0 0 Jump to SARAM 0x000000

0 0 1 1 Jump “to check boot mode”

0 0 1 0 Jump to Flash, without ADC –
calibration

0 0 0 1 Jump to SARAM, without ADC –
calibration

0 0 0 0 SCI – A boot loader, without ADC -
calibration

On the F28335ControlCard, the four GPIOs are pulled high by resistors R3, R4, R5 and R14
(47 kOhm each) to code “1111” (FLASH). The Peripheral Explorer Board offers only one
other selection for the boot mode: a closed header J3 allows to pull-down GPIO84 to select

F2833x Start-up Sequences

14 - 4 F2833x - Flash Programming

“1110” (SCI-A Boot loader). The following slide shows the sequence that takes place when
we start from Flash.

14 - 2

Startup Sequence from Flash Memory

0x33 FFF6

0x30 0000

0x3F F000

0x3F FFC0

Boot ROM (8Kw)

BROM vector (32w)
0x3F F9CE

Boot Code

RESET

0x3F F9CE

{SCAN GPIO}

FLASH (256Kw)

Passwords (8w)
_c_int00

LB

“rts2800_ml.lib”

“user” code sections

_c_int00

main ()
{

}

2

3

4

5

1

……
……
……

1. RESET-address is always defined in address 0x3F FFC0. This is part of TI’s internal
BOOT-ROM. This address is loaded into the program counter (PC).

2. The BOOT-ROM code performs a basic initialization of the CPU and selects the
boot-code sequence or calculates the entry point address.

3. If GPIO pins 87 to 84 are pulled high “1111” and a jump to address 0x33 FFF6 is
performed. This address is called “the Flash entry point”, which is an empty 2-word
memory space. One of our tasks in preparation to use the Flash is to add a jump
instruction to this two-word space. If we use a project based on the C language, we
have to jump to the C start-up function “c_int00”, which is part of the runtime
library “rts2800_ml.lib”.

CAUTION: Do never exceed the two word memory space for this step.
Addresses 0x33 FFF8 to 0x33 FFFF are reserved for the password area!!

4. Function “c_int00” performs initialization routines for the C-environment and global
variables. For this module, we will have to place this function into a specific Flash
section.

5. At the very end, “c_int00” branches to our C-function called “main()”, which also
must be loaded into a flash section.

 F2833x Flash Memory Sectors

F2833x - Flash Programming 14 - 5

F2833x Flash Memory Sectors

14 - 3

TMS320F28335 Flash Memory Map
Data & Program SpaceAddress Range

0x30 0000 – 0x30 7FFF
0x30 8000 – 0x30 FFFF
0x31 0000 – 0x31 7FFF
0x31 8000 – 0x31 FFFF
0x32 0000 – 0x32 7FFF
0x32 8000 – 0x32 FFFF
0x33 0000 – 0x33 7FFF
0x33 8000 – 0x33 FF7F
0x33 FF80 – 0x33 FFF5
0x33 FFF6 – 0x33 FFF7
0x33 FFF8 – 0x33 FFFF

Sector H; 32K x 16
Sector G; 32K x 16
Sector F; 32K x 16
Sector E; 32K x 16
Sector D; 32K x 16
Sector C; 32K x 16
Sector B; 32K x 16
Sector A; (32K-128) x 16
Program to 0x0000 when using
Code Security Mode !

Flash Entry Point; 2 x 16

Security Password; 8 x 16

The 256k x 16 bit Flash is divided into 8 groups called “sectors”. Each sector can be
programmed independently from the others. Please note that the highest 128 addresses of
sector A (0x33FF80 to 0x33 FFFF) are not available for general purpose. Lab 14 will use
sections A and D.

Flash Speed Initialization
To derive the highest possible speed for the execution of our code we have to initialize the
number of wait states that are added when the Flash area is accessed. When we start the
F2833x out of RESET, the number of wait states defaults to 16. Wait states are additional
clock cycles, that extend the FLASH - access period. For our tiny lab exercises, this
extension is of no significance, but when you work on a real-world project, where computing
power is so important, it would be a shame not to make best use of these wait states. So let us
assume that our lab examples are ‘real’ projects and that we want to use the maximum
frequency for the Flash. But why do we not initialize the wait states down to zero? Well, the
number of wait states is related to the operational speed of the FLASH memory. According
to the data-sheet of the F2833x there is a limit for the minimum number of wait states. For
the current silicon revision of the F2833x this limit is set to 5 for a 150MHz device.

Flash Speed Initialization

14 - 6 F2833x - Flash Programming

14 - 4

Basic Flash Operation
 Flash is arranged in pages of 128 addresses
 Wait states are specified for consecutive accesses within a page,

and random accesses across pages
 OTP has random access only
 Must specify the number of SYSCLKOUT wait-states

 Reset defaults are maximum values!
 Flash configuration code must not run from Flash memory!
FBANKWAIT

@ 0x00 0A86 RANDWAITreserved

15 04 38 7

PAGEWAIT reserved

12 11

FOTPWAIT
@ 0x00 0A87 OTPWAITreserved

15 04 3

*** Refer to the F2833x datasheet for detailed numbers ***
For 150 MHz, PAGEWAIT = 5, RANDWAIT = 5, OTPWAIT = 8
For 100 MHz, PAGEWAIT = 3, RANDWAIT = 3, OTPWAIT = 5

There are two bit-fields in the “FBANKWAIT” register that are used to specify the number
of wait states – PAGEWAIT and RANDWAIT. Consecutive page accesses are performed
within an area of 128 addresses whereas a sequence of random accesses is performed in any
order of addresses. So how fast is the F2833x running out of Flash or, in computer language:
How many millions of instructions (MIPS) is the F2833x doing?

Answer:

The F2833x executes one instruction (a 16-bit word) in 1 cycle. Adding the 5 wait states we
end up with:

1 instruction / 6 cycles * 150MHz = 25 MHz.

For a one-cycle instruction machine like the F2833x, the 25 MHz translate into 25MIPS.
This is pretty slow compared to the original system frequency of 150 MHz! Is this all we can
expect from Texas Instruments? No! The hardware solution is called a “pipeline”, which is
shown in next slide!

Instead of reading only one 16-bit instruction from Flash code memory, Texas Instruments
has implemented a 64-bit access – reading up to 4 instructions in 1+5 cycles. This leads to
the final estimation of the speed of the internal Flash:

 4 instructions / 6 cycles * 150 MHz = 100 MHz.

Using the Flash code Pipeline, the real Flash speed is 100 MIPS!

To use the Flash pipelining code fetch method we have to set bit “ENPIPE” to 1 to enable
pipeline operations. By default after RESET, this feature is disabled.

 Flash Speed Initialization

F2833x - Flash Programming 14 - 7

14 - 5

16 or 32
dispatched

16

64

Aligned
64-bit
fetch

2-level deep
fetch buffer

64
F2833x Core
decoder unit

Speeding Up Code Execution in Flash:
Flash Pipelining (for code fetch only)

Flash Pipeline Enable
0 = disable (default)
1 = enable

ENPIPEreserved
15 01
FOPT @ 0x00 0A80

Flash Configuration Registers

14 - 8 F2833x - Flash Programming

Flash Configuration Registers
There are some more registers to control the timing and operation modes of the F2833x
internal Flash memory. For our lab exercise and most of the ‘real’ F2833x applications, it is
sufficient to use the default values after RESET.

Texas Instruments provides an initialization function for the internal Flash, called
“InitFlash()”. This function is part of file “DSP2833x_SysCtrl.c” of the Peripheral Register
Header Files that we have already used in our previous labs. We will use this function in our
coming lab exercise.

14 - 6

Other Flash Configuration Registers
Address Name Description
0x00 0A80 FOPT Flash option register
0x00 0A82 FPWR Flash power modes registers
0x00 0A83 FSTATUS Flash status register
0x00 0A84 FSTDBYWAIT Flash sleep to standby wait register
0x00 0A85 FACTIVEWAIT Flash standby to active wait register
0x00 0A86 FBANKWAIT Flash read access wait state register
0x00 0A87 FOTPWAIT OTP read access wait state register

 FPWR: Save power by putting Flash/OTP to ‘Sleep’ or ‘Standby’
mode; Flash will automatically enter active mode if a Flash/OTP
access is made

 FSTATUS: Various status bits (e.g. PWR mode)
 FSTDBYWAIT: Specify number of cycles to wait during wake-up

from sleep to standby
 FACTIVEWAIT: Specify number of cycles to wait during wake-up

from standby to active

Defaults for these registers are often sufficient – See “TMS320F2833x System
Control and Interrupts Reference Guide,” SPRUFB0, for more information

 Flash Programming Procedure

F2833x - Flash Programming 14 - 9

Flash Programming Procedure
The procedure to load a portion of code into the Flash is not as simple as loading a program
into the internal RAM. Recall that Flash is non-volatile memory. Flash is based on a floating
gate technology. To store a binary 1 or 0 this gate must load / unload electrons. The term
“Floating Gate” means this is an isolated gate, with no electrical connections. Two effects
are used to force electrons into this gate: ‘Hot electron injection’ or ‘electron tunnelling’
performed by a charge pump on board of the F2833x.

But how do we get the code into the internal Flash?

The F2833x itself will take care of the Flash programming procedure. Texas Instruments
provides the code to execute the sequence of actions. The Flash Utility code can be applied
using two basic options:

1. Code Composer Studio integrated tool

 Tools  On Chip Flash

2. Download both the Flash Utility code and the Flash Data via one of the boot loader
options of the F2833x.

For our lab we will use the CCS-Tool.

Please note that the Flash Utility code must be executed from a SARAM portion of the
F2833x.

14 - 7

Flash Programming Basics
 The DSP CPU itself performs the flash programming
 The CPU executes Flash utility code from RAM that reads the

Flash data and writes it into the Flash
 We need to get the Flash utility code and the Flash data into RAM

FLASH CPU

RAM

TMS320F2833x

JTAGEmulator

SPI

SCIRS232

Flash
Utility
Code

Flash
Data

eCAN

XINTF

I2C

R
O

M
B

oo
tlo

ad
er

GPIO

The steps “Erase” and “Program” to program the Flash are mandatory; “Verify” is an option
but is highly recommended.

Flash Programming Procedure

14 - 10 F2833x - Flash Programming

14 - 8

Flash Programming Basics
 Sequence of steps for Flash programming:

 Minimum Erase size is a sector
 Minimum Program size is a bit!
 Important not to lose power during erase step:

If CSM passwords happen to be all zeros, the
CSM will be permanently locked!

 Chance of this happening is quite small! (Erase
step is performed sector by sector)

1. Erase - Set all bits to zero, then to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

Algorithm Function

14 - 9

Flash Programming Utilities
 Code Composer Studio Plug-in (uses JTAG)
 Third-party JTAG utilities

 SDFlash JTAG from Spectrum Digital (requires SD emulator)
 Signum System Flash utilities (requires Signum emulator)
 BlackHawk Flash utilities (requires Blackhawk emulator)

 SDFlash Serial utility (uses SCI boot)
 Gang Programmers (use GPIO boot)

 BP Micro programmer
 Data I/O programmer

 Build your own custom utility
 Use a different ROM bootloader method than SCI
 Embed flash programming into your application
 Flash API algorithms provided by TI

* TI web has links to all utilities (http://www.ti.com/c2000)

 CCS Flash Plug-In

F2833x - Flash Programming 14 - 11

CCS Flash Plug-In
The Code Composer Studio Flash Plug-in is called from:

 Tools  On Chip Flash

It opens with the following window:

14 - 10

Code Composer Studio Flash Plug-In

First verify that the OSCCLK is set to:

• 30MHz and PLLCR – value to 10 for a F28335ControlCard @ 30MHz or
• 20MHz and PLLCR – value to 10 for a F28335ControlCard @ 20MHz

The resulting SYSCLKOUT frequency is either 150 or 100MHz. Please make sure to use
the correct numbers, which are equivalent to the physical set up of your
F28335ControlCard.

NEVER use the buttons “Program Password” or “LOCK”!

Leave all 8 entries for Key 0 to Key 7 filled with “FFFF”.

On the top right-hand side, we can exclude some of the sectors from being erased.

The lower right side is the Operation part of the window. First we have to specify the name
of the projects out-file. The Plug-In extracts all the information needed to program the Flash
from this COFF- File.

Before you start the programming procedure, it is highly recommended that you inspect the
linker map-file (*.map) in the “Debug”-Subfolder. This file provides a statistical view of the
usage of the different Flash sections by your project. Verify that all sections are used as
expected.

Code Security Mode

14 - 12 F2833x - Flash Programming

Code Security Mode
Before we continue with our next lab, let us first discuss the Code Security feature of the
F2833x. As mentioned earlier in this module, dedicated areas of memory are password
protected. This is valid for memory L0, L1, L2, L3, OTP and Flash.

14 - 11

Code Security Module (CSM)

 Data reads and writes from restricted memory are only
allowed for code running from restricted memory

 All other data read/write accesses are blocked:
JTAG emulator/debugger, ROM boot loader, code running in
external memory or unrestricted internal memory

 Access to the following on-chip memory is restricted:

0x008000
0x009000
0x00A000

0x300000

0x340000

0x3F8000

0x3FA000

0x380400

0x3F9000

FLASH (256Kw)
128-Bit Password

OTP (1Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

0x00B000

0x3FB000

Dual
Mapped

Flash Registers0x000A80

Once a password is applied, a data read or write operation from/to restricted memory
locations is only allowed from code in restricted memory. All other accesses, including
accesses from code running from external or unrestricted internal memories as well as JTAG
access attempts are denied.

As mentioned earlier, the password is located in address space 0x33 FFF8 to 0x33 FFFF and
has a field size of 128-bits. The 8 key registers (Key0 to Key7) are used to allow an access to
a locked device. All you need to do is to write the correct password sequence in Key 0 -7
(address space 0x00 0AE0 – 0x00 0AE7).

The password area filled with 0xFFFF in all 8 words is equivalent to an unsecured device.

The password area filled with 0x0000 in all 8 words locks the device FOREVER!

 Code Security Mode

F2833x - Flash Programming 14 - 13

14 - 12

CSM Password

 128-bit user defined password is stored in Flash

 128-bit KEY registers are used to lock and unlock
the device
 Mapped in memory space 0x00 0AE0 – 0x00 0AE7
 Registers “EALLOW” protected

0x33FFF8 - 0x33FFFF

CSM Password
Locations (PWL)

FLASH (256Kw)

0x300000

128-Bit Password0x33FFF8

14 - 13

CSM Registers
Address Name Reset Value Description
0x00 0AE0 KEY0 0xFFFF Low word of 128-bit Key register
0x00 0AE1 KEY1 0xFFFF 2nd word of 128-bit Key register
0x00 0AE2 KEY2 0xFFFF 3rd word of 128-bit Key register
0x00 0AE3 KEY3 0xFFFF 4th word of 128-bit Key register
0x00 0AE4 KEY4 0xFFFF 5th word of 128-bit Key register
0x00 0AE5 KEY5 0xFFFF 6th word of 128-bit Key register
0x00 0AE6 KEY6 0xFFFF 7th word of 128-bit Key register
0x00 0AE7 KEY7 0xFFFF High word of 128-bit Key register
0x00 0AEF CSMSCR 0xFFFF CSM status and control register

Key Registers – accessible by user; EALLOW protected

Address Name Reset Value Description
0x33 7FF8 PWL0 user defined Low word of 128-bit password
0x33 7FF9 PWL1 user defined 2nd word of 128-bit password
0x33 7FFA PWL2 user defined 3rd word of 128-bit password
0x33 7FFB PWL3 user defined 4th word of 128-bit password
0x33 7FFC PWL4 user defined 5th word of 128-bit password
0x33 7FFD PWL5 user defined 6th word of 128-bit password
0x33 7FFE PWL6 user defined 7th word of 128-bit password
0x33 7FFF PWL7 user defined High word of 128-bit password

PWL in memory – reserved for passwords only

Code Security Mode

14 - 14 F2833x - Flash Programming

14 - 14

Locking and Unlocking the CSM

 The CSM is locked at power-up and reset
 To unlock the CSM:

 Perform a dummy read of each password in
the Flash

 Write the correct passwords to the key
registers

 New Flash Devices (PWL are all 0xFFFF):
 When all passwords are 0xFFFF – only a

read of the PWL is required to bring the
device into unlocked mode

14 - 15

CSM Caveats
 Never program all the PWL’s as 0x0000

 Doing so will permanently lock the CSM

 Flash addresses 0x337F80 to 0x337FF5,
inclusive, must be programmed to 0x0000 to
securely lock the CSM

 Remember that code running in unsecured
RAM cannot access data in secured memory
 Don’t link the stack to secured RAM if you have

any code that runs from unsecured RAM
 Do not embed the passwords in your code!

 Generally, the CSM is unlocked only for debug
 Code Composer Studio can do the unlocking

 Code Security Mode

F2833x - Flash Programming 14 - 15

14 - 16

CSM Password Match Flow

Flash device
secure after

reset or runtime

Do dummy read of PWL
0x33 7FF8 – 0x33 7FFF

Start
Device permanently locked

CPU access is limited –
device cannot be debugged

or reprogrammed

Device unlocked
User can access on-
chip secure memory

Write password to KEY registers
0x00 0AE0 – 0x00 0AE7

(EALLOW) protected

Correct
password?

Is PWL =
all Fs?

Is PWL =
all 0s?

Yes

Yes

Yes

No

No

No

14 - 17

CSM C-Code Examples

volatile int *PWL = &CsmPwl.PSWD0; //Pointer to PWL register file
volatile int i, tmp;

for (i = 0; i<8; i++) tmp = *PWL++; //Dummy reads of PWL locations

asm (” EALLOW”); //KEY regs are EALLOW protected
CsmRegs.KEY0 = PASSWORD0; //Write the passwords
CsmRegs.KEY1 = PASSWORD0; //to the Key registers
CsmRegs.KEY2 = PASSWORD2;
CsmRegs.KEY3 = PASSWORD3;
CsmRegs.KEY4 = PASSWORD4;
CsmRegs.KEY5 = PASSWORD5;
CsmRegs.KEY6 = PASSWORD6;
CsmRegs.KEY7 = PASSWORD7;
asm (” EDIS”);

asm(” EALLOW”); //CSMSCR reg is EALLOW protected
CsmRegs.CSMSCR.bit.FORCESEC = 1; //Set FORCESEC bit
asm (”EDIS”);

Unlocking the CSM:

Locking the CSM:

Lab Exercise 14: Standalone Project

14 - 16 F2833x - Flash Programming

Lab Exercise 14: Standalone Project

14 - 18

Lab 14: Load an application into Flash
 Use Solution for Lab6 to begin with
 Modify the project to use internal Flash for code
 Add “DSP2833x_CodeStartBranch.asm” to branch

from Flash entry point (0x33 FFF6) to C - library
function “_c_int00”

 Add TI - code to set up the speed of Flash
 Add a function to move the speed-up code from

Flash to SARAM Adjust Linker Command File
 Use CCS plug-in tool to perform the Flash

download
 Disconnect emulator and re-power the board!
 Code should be executed out of Flash
 For details see procedure in textbook!

Objective

The objective of this laboratory exercise is to practice working with the F2833x internal
Flash Memory. Let us assume your task is to prepare one of your previous laboratory
solutions to run as a stand-alone solution, direct from Flash memory after powering up the
F2833x. You can select any of your existing solutions, but to keep it easier for your
supervisor to assist you during the debug phase let us take the “binary counter” (Lab 6) as
the starting point.

What do we have to modify?

In Lab 6 the code was loaded by CCS via the JTAG-Emulator into L1-SARAM after a
successful build operation. The linker command file “28335_RAM_lnk.cmd” took care of
the correct connection of the code sections to physical memory addresses of L1-SARAM.
Obviously, we will have to modify this part. Instead of editing the command file, we will use
another one (“F28335.cmd”), also provided by Texas Instruments header file package.

In addition, we will have to fill in the Flash entry point address with a connection to the C
environment start function (“c_int00”). Following a RESET, the Flash memory itself
operates with the maximum number of wait states – our code should reduce this number of
wait states to gain the highest possible speed for Flash operations. Unfortunately we cannot
call this speed-up function when it is still located in Flash – we will have to copy this
function temporarily into any code SARAM before we can call it.

Finally we will use Code Composer Studio’s Flash Programming plug in tool to load our
code into Flash.

 Lab Exercise 14: Standalone Project

F2833x - Flash Programming 14 - 17

Please recall the explanations about the Code Security Module in
this lesson, be aware of the password feature all the time in this lab
session and do NOT program the password area!
There are several things to take into account in this lab session, so as usual, let us use a
procedure to prepare the project.

Procedure

Open Files, Create Project File
1. Create a new project, called Lab14.pjt in C:\DSP2833x\Labs.

2. Open the file “Lab6.c” from C:\DSP2833x_V4\Labs\Lab6 and save it as “Lab14.c” in
C:\DSP2833x_V4\Labs\Lab14.

3. Define the size of the C system stack. In the project window, right click at project
“Lab14” and select “Properties”. In category “C/C++ Build”, “C2000 Linker”, “Basic
Options” set the C stack size to 0x400.

Link some of the source code files, provided by Texas Instruments, to the project:

4. In the C/C++ perspective, right click at project “Lab14” and select “Link Files to
Project”. Go to folder “C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\source” and
link:

• DSP2833x_GlobalVariableDefs.c

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source link:
• DSP2833x_PieCtrl.c
• DSP2833x_PieVect.c
• DSP2833x_DefaultIsr.c
• DSP2833x_CpuTimers.c
• DSP2833x_SysCtrl.c
• DSP2833x_CodeStartBranch.asm
• DSP2833x_ADC_cal.asm
• DSP2833x_usDelay.asm

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_headers\cmd link:

• DSP2833x_Headers_nonBIOS.cmd

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\cmd link:

• F28335.cmd

Exclude the file “F28335_RAM_lnk.cmd from the project

Lab Exercise 14: Standalone Project

14 - 18 F2833x - Flash Programming

Project Build Options
5. We have to extent the search path of the C-Compiler for include files. Right click at

project “Lab13” and select “Properties”. Select “C/C++ Build”, “C2000 Compiler”,
“Include Options”. In the box: “Add dir to #include search path”, add the following
lines:

C:\tidcs\C28\dsp2833x\v131\DSP2833x_headers\include

C:\tidcs\c28\DSP2833x\v131\DSP2833x_common\include

Note: Use the “Add” Icon to add the new paths:

Close the Property Window by Clicking <OK>.

Add Additional Source Code Files
6. To add the machine code for the Flash entry point at address 0x33 FFF6, we have to

add an assembly instruction “LB _c_int00” and to link this instruction exactly to the
given physical address. Instead of writing our own assembly code, we can make use of
another of TI’s predefined functions (“code_start”), which is part of the source code
file “DSP2833x_CodeStartBranch.asm”.

From C:\tidcs\c28\dsp2833x\v131\DSP2833x_common\source we have already linked
to our project:

• DSP2833x_CodeStartBranch.asm

If you open the linker command file “F28335.cmd”, you will find a label “code_start”
linked to “BEGIN” which is defined at address 0x33 FFF6 in code memory page 0.

Modify Source Code to Speed up Flash memory
7. Open file “Lab14.c” to edit.

 In “main()”, after the function call “InitSysCtrl()”, we have to add the code to speed-
up the Flash memory.

 This will be done by the function “InitFlash()”. However, as mentioned earlier, this
code must run out of SARAM. When we finally run the program from Flash and the
F2833x reaches this line, all code is still located in Flash. This means that before we
can call “InitFlash()”, the F2833x has to copy it from FLASH into SARAM. Standard
ANSI-C provides a memory copy function “memcpy(*dest,*source, number)” for this
purpose, the function prototype being in the file “string.h”.

 Lab Exercise 14: Standalone Project

F2833x - Flash Programming 14 - 19

What do we use for “dest” (destination address), “source” (source address) and
“number” (number of elements to copy)?

Again, the solution can be found in the file “DSP2833x_SysCtrl.c”. Open it and look
at the beginning of this file. You will find a “#pragma CODE_SECTION” – line that
defines the dedicated code section “ramfuncs” and connects the function “InitFlash()”
to it. The symbol “ramfuncs” is used in the file “F28335.cmd” to connect it to physical
memory “FLASHD” as load-address and to memory “RAML0” as execution address.
The task of the linker command file “F28335.cmd” is it to provide the physical
addresses for the rest of the project. The symbols “LOAD_START”, “LOAD_END”
and “RUN_START” are used to define these addresses symbolically as
“_RamfuncsLoadStart”, “_RamfuncsLoadEnd” and “_RamfuncsRunStart”.

Add the following line to your code:

memcpy(&RamfuncsRunStart, &RamfuncsLoadStart,
&RamfuncsLoadEnd - &RamfuncsLoadStart);

Add a call to the function “InitFlash()”, now available in RAML0:

InitFlash();

At the beginning of Lab14.c, add a function prototype for “InitFlash()”. Also declare
the symbols used as parameters for “memcpy()” as externals:

 extern unsigned int RamfuncsLoadStart;

extern unsigned int RamfuncsLoadEnd;

extern unsigned int RamfuncsRunStart;

Build project
8. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild Active Project (Alt +Shift + P)

If the build was successful you should get 0 Errors, 0 Warnings and 0 Infos:

Lab Exercise 14: Standalone Project

14 - 20 F2833x - Flash Programming

Verify Linker Results: The “.map” - File
9. Before we actually start the Flash programming, it is always good practice to verify

the used sections of the project. This is done by inspecting the linker output file
“lab14.map”.

10. Open file “lab14.map” in the sub-folder “..\Debug”

 In ‘MEMORY CONFIGURATION’ column ‘used’ you will find the amount of
physical memory that is used by your project.

 Verify that only the following five lines from PAGE 0 are used:
Name origin length used unused attr
RAML0 00008000 00001000 0000001f 00000fe1 RWIX
FLASHD 00320000 00008000 0000001f 00007fe1 RWIX
FLASHA 00338000 00007f80 00000729 00007857 RWIX
BEGIN 0033fff6 00000002 00000002 00000000 RWIX
ADC_CAL 00380080 00000009 00000007 00000002 RWIX

The number of addresses used in FLASHA might be different in your lab session.
Depending on how efficient your code was programmed by yourself, you will end up
with more or less words in this section.

In the SECTION ALLOCATION MAP, you can see how the different portions of our
projects code files are distributed throughout the physical memory sections. For
example, the “.text” - entry shows all the objects that were concatenated into section
“FLASHA”.

The entry-point “codestart” connects the object “CodeStartBranch.obj” to physical
address 0x3F FFF6 and occupies two words.

Use CCS integrated Flash Programming
11. The next step is to program the machine code into the internal Flash. As mentioned in

this lesson there are different ways to accomplish this step. The easiest way is to use
the “Debug Active Project” feature of Code Composer Studio.

If there are FLASH based sections part of the project, they will be erased and
programmed automatically!

Perform:  Target  Debug Active Project

If everything went as expected you should see these status messages:

 Lab Exercise 14: Standalone Project

F2833x - Flash Programming 14 - 21

Congratulations!

Your code has been stored into FLASH – memory!

In the “Debug” – Perspective open the disassembly window and enable “Show Source”

The blue arrow points the beginning of main. The address in the first column shows that the
code has been loaded into a physical FLASH section (in the example above to address
0x33840B).

Shut down CCS and Restart FLASH - Code
12. Close your Code Composer Studio session.

13. Disconnect the power from the Peripheral Explorer Board.

14. Verify that Peripheral Explorer Board jumper J3 (“SCI-BOOT GPIO84”) is open.

15. Reconnect Peripheral Explorer Board to power supply.

Your code should be executed immediately out of Flash, showing the
LED - binary counter at LEDs LD1…LD4.

Lab Exercise 14: Standalone Project

14 - 22 F2833x - Flash Programming

Blank page.

	F2833x Flash Programming
	Introduction
	Module Topics
	F2833x Start-up Sequences
	F2833x Flash Memory Sectors
	Flash Speed Initialization
	Flash Configuration Registers
	Flash Programming Procedure
	CCS Flash Plug-In
	Code Security Mode
	Lab Exercise 14: Standalone Project
	Objective
	Procedure
	Open Files, Create Project File
	Project Build Options
	Add Additional Source Code Files
	Modify Source Code to Speed up Flash memory
	Build project
	Verify Linker Results: The “.map” - File
	Use CCS integrated Flash Programming
	Shut down CCS and Restart FLASH - Code

