

F2833x - Boot ROM 15 - 1

Introduction
In Chapter 14 we discussed the option of starting our embedded control program directly
from the internal Flash memory of the F2833x. We also looked briefly into other options for
starting the code execution. We saw that it is also possible to start up from M0 - SARAM,
OTP and that we can select a ‘boot load’ operating mode that engages a serial or parallel
download of the control code before it is actually executed.

In Chapter 15 we will take a closer look into what is going on in these different modes and
into the sequence of activities that are performed by the F2833x boot firmware before the
first instruction of your program is reached. This chapter will help you to understand the
start-up procedures of the F2833x and the power-on problems of an embedded system in
general.

We start with a summary of the 16 options to start the F2833x after a RESET, followed by a
look into the firmware structure inside the F2833x Boot-ROM. This includes some lookup
tables for mathematical operations, a generic interrupt vector table and the code that is used
to select one of the six start options.

Because we have already dealt with the Flash start option in Chapter 14, we can now focus
on the serial boot loader options. Five options are available: Serial Communication Interface
(SCI), Serial Peripheral Interface (SPI), Inter Integrated Circuit (I2C), Controller Area
Network (CAN) used for motor vehicles and Multi Channel Buffered Serial Port (McBSP).
All five interfaces were discussed in detail in Chapters 9, 10, 11, 12 and 13. If you have
finished the lab exercises of some of these five modules successfully, you should be able to
develop your own code to download code from a PC as host into the SARAM of the F2833x
and start it from there.

A typical application for the serial download of new code into the F2833x is a field update of
the internal Flash memory that contains the control code for the embedded system. It would
be much too expensive to use the JTAG - Emulator to download the new code. Instead,
Texas Instruments offers a Flash API that uses exactly the same SCI boot load option to
transmit the new code and/or data into the F2833x. This API - a portion of code that will be
part of your project will take care of the code update. For more details refer to
“TMS320F2833xFlash API v2.10”, document number: SPRC539 on TI’s website.

Another typical application is the use of the SPI boot load option. In this case, an external
serial SPI-EEPROM of Flash holds the actual code. Before it is executed on the F2833x, it is
downloaded into the F2833x. This is a useful option for members of the TMS320C34x -
family, which do not have any internal non-volatile memory at all.

Finally, we will discuss a parallel boot load option that uses some GPIO lines to download
code and/or data into the F2833x.

 F2833x Boot ROM

Module Topics

15 - 2 F2833x - Boot ROM

Module Topics
F2833x Boot ROM ... 15-1

Introduction ... 15-1

Module Topics ... 15-2

F2833x Memory Map .. 15-3
Direct start of code execution ... 15-3
Start of a boot loader protocol... 15-3

F2833x Reset Boot Loader .. 15-4

Timeline for Boot Loader .. 15-5

Boot - ROM Memory Map ... 15-7
SINE / COSINE Lookup Tables ... 15-7
Normalized Square Root Table ... 15-10
Normalized ArcTan Table .. 15-10
Rounding and Saturation Table... 15-10
Min / Max Table ... 15-10
Exp(x) Table ... 15-10
Floating-point normalized ArcTan Table .. 15-10
Floating-point Exp(x) Table ... 15-10
Boot Loader Code ... 15-10
F2833x Vector Table .. 15-11

Boot Loader Data Stream ... 15-12
Boot Loader Data Stream Example .. 15-13
Boot Loader Transfer Function ... 15-14

Init Boot Assembly Function ... 15-15

SCI Boot Load ... 15-16
SCI Hardware Connection .. 15-16
SCI Boot Loader Function .. 15-17

Parallel Boot Loader ... 15-18
Hardware Connection ... 15-18
F2833x Software Flow .. 15-19
Host Software Flow .. 15-20

SPI Boot Loader .. 15-21
SPI Boot Loader Data Stream ... 15-22
SPI Boot Loader Flowchart .. 15-22

Lab 15_1: Serial Boot Loader SCI-A ... 15-25
Objective ... 15-25
Procedure .. 15-25
Open Project ... 15-25
Build, Load and Run ... 15-26
Change Hardware set up ... 15-26
Generate download data stream .. 15-27
Download Image into the target .. 15-29

 F2833x Memory Map

F2833x - Boot ROM 15 - 3

F2833x Memory Map
To begin with, let us recall the F2833x memory map.

Direct start of code execution
We have a choice of directly starting our program from fixed code entry points in the
following memory sections:

• FLASH
• OTP
• M0-SARAM or
• XINTF - Zone 6

15 - 2

XINTF Zone 6 (1Mw)

XINTF Zone 7 (1Mw)

0x000000
0x000400
0x000800

M1 SARAM (1Kw)
M0 SARAM (1Kw)
Data Program

PIE Vectors
(256 w)

PF 0 (6Kw)

XINTF Zone 0 (4Kw)

reserved

PF 1 (4Kw)
PF 2 (4Kw)

PF 3 (4Kw)

L0 SARAM (4Kw)

L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

L4 SARAM (4Kw)
L5 SARAM (4Kw)
L6 SARAM (4Kw)
L7 SARAM (4Kw)

reserved

0x000D00

0x002000

0x006000
0x007000
0x008000
0x009000
0x00A000

0x00C000

0x000E00

0x005000

0x00B000

0x00D000
0x00E000
0x00F000

0x004000

0x010000

0x010000
0x100000

0x200000

reserved

Data Program

FLASH (256Kw)

0x300000

0x33FFF8
0x340000

PASSWORDS (8w)
reserved

User OTP (1Kw)
0x380800

ADC calibration data0x380080
0x380090 reserved
0x380400

reserved
0x3F8000

Boot ROM (8Kw)

L0 SARAM (4Kw)
L1 SARAM (4Kw)
L2 SARAM (4Kw)
L3 SARAM (4Kw)

reserved

0x3F9000
0x3FA000
0x3FB000
0x3FC000
0x3FE000

0x3FFFFF

DMA Accessible:
L4, L5, L6, L7,

XINTF Zone 0, 6, 7

Dual Mapped:
L0, L1, L2, L3

CSM Protected:
L0, L1, L2, L3,

FLASH, ADC CAL,
OTP

0x3FFFC0 BROM Vectors (64w)

TMS320F2833x Memory Map

The options are hard-coded by 4 GPIO-lines (87, 86, 85 and 84). The 4 pins are always
sampled during power-on. Depending on the status one of the options is selected and the
code is executed immediately.

Start of a boot loader protocol
Instead of starting customer code directly after reset, we can engage a serial or parallel
communication protocol between the F2833x and a host (e.g. a PC) or between the F2833x
and an external non-volatile memory device. Such a communication link can be used (a) to
download the control code before it is actually executed or (b) to update the control code by
a new revision.

In addition to the 4 direct start options for code execution, we have 7 more options to open a
serial or parallel communication protocol after power-on as shown on Slide 15-3:

F2833x Reset Boot Loader

15 - 4 F2833x - Boot ROM

 15 - 3

Boot Loader Options

GPIO pins
87 86 85 84
1 1 1 1 jump to FLASH address 0x33 FFF6
0 1 0 0 jump to M0 SARAM address 0x00 0000
0 1 1 1 jump to OTP address 0x38 0400
1 0 0 1 jump to XINTF 16 address 0x10 0000
1 0 0 0 jump to XINTF 32 address 0x10 0000
1 1 1 0 boot load code to on-chip memory via SCI - A port
1 1 0 1 boot load code to on-chip memory via SPI - A port
1 1 0 0 boot load code to on-chip memory via I2C - A port
1 0 1 1 boot load code to on-chip memory via eCAN - A port
1 0 1 0 boot load code to on-chip memory via McBSP - A port
0 1 1 0 boot load code to on-chip memory via GPIO (parallel)
0 1 0 1 boot load code to on-chip memory via XINTF (parallel)

Boot Mode

F2833x Reset Boot Loader
The next two slides summarize the RESET options of the F2833x.

15 - 4

Reset
OBJMODE = 0 AMODE = 0

ENPIE = 0 INTM = 1

Boot determined by
state of GPIO pins

GPIO 87, 86, 85, 84Reset vector fetched from
Boot ROM
0x3F FFC0

Boot loader sets:
OBJMODE = 1

AMODE = 0

Reset – Bootloader

M0SARAM 0x000000
FLASH 0x33FFF6
OTP 0x380400
XINTF 0x100000

Direct Code Entry Points
SCI - A SPI - A
I2C - A eCAN - A
McBSP - A
XINTF (parallel)GPIO (parallel)

Start Boot loader code

0x3FF9CE:

 Timeline for Boot Loader

F2833x - Boot ROM 15 - 5

Timeline for Boot Loader
1. RESET-address is always 0x3F FFC0. This is part of Texas Instruments internal

ROM.

Before we continue, let us inspect this part of the memory. In Code Composer
Studio, open a memory window and enter the address 0x3F FFC0:

This is a direct view of the ROM-vector table at the end of this memory section.
Address 0x3FFFC0 is loaded with the start address of the RESET-vector
(0x3FF9CE); the following entries are vectors for interrupt INT1 (0x000042), INT2
(0x000044) and so on.

2. The F2833x reads the RESET-vector from the table and loads its program counter
(PC) with this 32-bit value. If you perform a RESET in Code Composer Studio, the
disassembly window will pop up and the green arrow will point to the first machine
code instruction at address 0x3FF9CE, which is the first instruction of the boot code.
Here basic initialization tasks are performed and the type of the boot sequence is
selected.

Timeline for Boot Loader

15 - 6 F2833x - Boot ROM

3. Next, still as part of the boot code function, the execution entry point is determined
by the status of the four pins (GPIO87...84).

In Code Composer Studio, if you use “single step over (F10)” from RESET a few
times, you can inspect the sequence. If all four GPIOs (87...84) are ‘1’ (in case of the
Peripheral Explorer Board leave jumper J3 “SCI-boot 84” open), the FLASH-entry
point is selected. After a few hits of function key F10 you will reach this entry point:

4. If one of the serial or parallel boot loading options is selected, another part of the
boot code function is executed to establish a standard communication protocol for
the pre-selected channel. We will have a closer look into these communication
protocols in later slides. In case of the Peripheral Explorer Board we can close
jumper J3 “SCI-boot 84” to select the “SCI-A boot loader”. But before we will do
that, we need to discuss the part of the communication host side.

Here is a graphical summary of the code flow after a RESET:

15 - 5

Reset Code Flow - Summary

M0 SARAM (1Kw)

FLASH (256Kw)

OTP (1Kw)

0x33 FFF6

0x38 0400

0x30 0000

0x00 0000

0x3F E000

0x3F FFC0

Boot ROM (8Kw)

BROM vector (64w)
0x3F F9CE

Boot Code

•
•

•
•

RESET

Execution Entry
Point Determined

By GPIO Pins

Bootloading
Routines

(SCI-A, SPI-A, I2C,
eCAN-A, McBSP-A

GPIO, XINTF)

0x3F F9CE

XINTF Zone 6
(x16 / x32)
0x10 0000

0x00 0000

 Boot - ROM Memory Map

F2833x - Boot ROM 15 - 7

Boot - ROM Memory Map
Before we go into the boot load options let us have a closer look into the partitioning of the
boot-ROM area. The size of the area is 8k x 16- bit and it is mapped both into code and data
memory, using a unified memory map.

15 - 6

F2833x BOOT-ROM Memory Map
Address Range Function Format
0x3FE000 – 0x3FE501 IQ - Math sine/cosine table 641 x 32 bit; I2Q30
0x3FE502 – 0x3FE711 IQ - Math normalized inverse 264 x 32 bit; I3Q29
0x3FE712 – 0x3FE823 IQ - Math normalized sqrt 137 x 32 bit; I2Q30
0x3FE824 – 0x3FE9E7 IQ - Math normalized arctan 226 x 32 bit; I2Q30
0x3FE9E8 – 0x3FEB4F IQ – Math round / saturation 180 x 32 bit; I2Q30
0x3FEB50 – 0x3FEBC7 IQ – Math min / max table 60 x 32 bit; I31Q1 – I1Q31
0x3FEBC8 – 0x3FEBDB IQ – Math exp(x) table 10 x 32 bit; I1Q31
0x3FEBDC – 0x3FF0DD FPU sine/cosine table 641 x 32 bit; float
0x3FF0DE – 0x3FF261 FPU normalized arctan 194 x 32 bit; float
0x3FF262 – 0x3FF275 FPU exp(x) table 10 x 32 bit; float
0x3FF276 – 0x3FF34B reserved
0x3FF34C – 0x3FF9ED Boot Loader Functions F2833x machine code
0x3FF9EE – 0x3FFFB8 reserved
0x3FFFB9 – 0x3FFFBF ROM version and
0x3FFFC0 – 0x3FFFFF Reset and Interrupt vectors 32 x 32 bit address

SINE / COSINE Lookup Tables

IQ-Math - Table
The ROM offers two different sine/cosine-tables; one for fixed-point math (IQ-numbers) and
one for floating-point numbers (32-bit IEEE float format).

Since the look-up tables for sine and cosine are very useful tools in mathematic
computations, we should inspect them now:

 View  Memory

Let’s begin with the first 1282 addresses (0x3F E000 to 0x3F E501). This area includes an
IQ-Math sine/cosine look-up table and consists of 641 32-bit numbers in I2Q30-format. The
first 512 numbers are for a 360-degrees unit circle with an increment angle of 360/512 =
0.703 degree. The remaining 128 values are a repetition of the first 90-degree quarter.

To visualize the sine/cosine-values open a memory window and set up the properties to 32 -
bit signed integer and Q-value to 30:

Boot - ROM Memory Map

15 - 8 F2833x - Boot ROM

Numbers are in “IQ-Format” with 2 Integer and 30 Fractional Bits. CCS uses the binary
content of the memory to display it in the correct format:

Compare: sin (1* 360/512) = 0.012271538285719926079408261951003

 sin (2* 360/512) = 0.024541228522912288031734529459283

 Boot - ROM Memory Map

F2833x - Boot ROM 15 - 9

Floating-Point sine/cosine - Table
The floating-point look-up table at address 0x3FEBDC consists also of 640 entries for 5
quarters of sine-values, but now in IEEE 754 single precision floating point format. To
inspect this region, change the memory windows start address to 0x3FEBDC and the data
type to “32-bit Float”:

You should always remember that there are these two tables available in the ROM. If you
need to calculate trigonometric numbers, all you have to do is to set a pointer at the
beginning of these memory arrays. In your control code you can then easily access
sine/cosine-values.

Normalized Inverse Table

Another section of the Boot-ROM includes a lookup table for the Newton-Raphson inverse
algorithm. It spans 528 addresses (0x3F E502 to 0x3F E711) and covers 264 32-bit numbers
in I3Q29-Format.

Boot - ROM Memory Map

15 - 10 F2833x - Boot ROM

Normalized Square Root Table
From address 0x3F E712 to 0x3F E823 137 32-bit numbers are stored as a look-up table for
estimates of the Newton-Raphson square root algorithm. Data format is I2Q30.

Normalized ArcTan Table
A lookup table for the iterative estimation of the Normalized Arc Tangent follows from 0x3F
E824 to 0x3F E9E7 in I2Q30-format.

Rounding and Saturation Table
The memory area 0x3F E9E8 to 0x3F EB4F is used for rounding and saturation subroutines
of Texas Instrument library function, like IQ-math or digital motor control libraries (dmclib).
The format is also of I2Q30.

Min / Max Table
A section with minimum and maximum fixed point numbers follows from address 0x3F
EB50 to 0x3F EBC7. This array is used to define the number ranges from I31Q1 to I1Q31.

Exp(x) Table
A table for coefficients to calculate y = exp(x) using a Taylor series follows at address
0x3FEBC8. The numbering system is I1Q31.

Floating-point normalized ArcTan Table
A floating-point normalized arcos-tangents table in 32-bit float format is available from
address 0x3F F0DE.

Floating-point Exp(x) Table
A table for coefficients to calculate y = exp(x) using a Taylor series follows at address
0x3FF262. The numbering system is single precision floating point.

Boot Loader Code
The memory space 0x3FF34C - 0x3FF9ED is used for the boot loader machine code. When
the F2833x is coming out of RESET this code will be executed first. As mentioned earlier it
derives the actual entry point or the boot loader option from the status of four input pins.

 Boot - ROM Memory Map

F2833x - Boot ROM 15 - 11

F2833x Vector Table
The very last 64 addresses are reserved for 32 Entries of 32-bit address information for
interrupt service routine entry points. The layout is shown at the following slide. Each
interrupt core line is hard linked to its individual entry in this memory area. In the case where
an interrupt is acknowledged by the F2833x, the assigned 32-bit-information (shown in the
next slide as “Content”) is used as the entry-point for the dedicated interrupt service routine.
Because we cannot change the content of this TI-ROM, we have to use the fixed entry points
in M0-SARAM (0x00 0042 to 0x00 007F) to place a 32-bit assembly branch instruction into
our dedicated interrupt service routines. If we come out of RESET, all interrupts are
disabled, so we don’t have to do anything. If we decide to use interrupts, which is a wise
decision for embedded control, we can use M0-SARAM as vector table - or better - we use
the Peripheral Interrupt Expansion (PIE) Unit - see Chapter 6.

15 - 7

F2833x BOOT-ROM Vector Table
Vector Address Content

RESET
INT1
INT2
INT3
INT4
INT5
INT6
INT7
INT8
INT9
INT10
INT11
INT12
INT13
INT14
DLOGINT

0x3F FFC0
0x3F FFC2
0x3F FFC4

0x3F FFC6
0x3F FFC8
0x3F FFCA
0x3F FFCC
0x3F FFCE
0x3F FFD0
0x3F FFD2
0x3F FFD4
0x3F FFD6
0x3F FFD8
0x3F FFDA
0x3F FFDC
0x3F FFDE

0x3F FC00
0x00 0042
0x00 0044
0x00 0046
0x00 0048
0x00 004A
0x00 004C
0x00 004E
0x00 0050
0x00 0052
0x00 0054
0x00 0056
0x00 0058
0x00 005A
0x00 005C
0x00 005E

Vector
RTOSINT
reserved
NMI
ILLEGAL
USER 1
USER 2
USER 3
USER 4
USER 5
USER 6
USER 7
USER 8
USER 9
USER 10
USER 11
USER 12

Address
0x3F FFE0
0x3F FFE2
0x3F FFE4

0x3F FFE6
0x3F FFE8
0x3F FFEA
0x3F FFEC
0x3F FFEE
0x3F FFF0
0x3F FFF2
0x3F FFF4
0x3F FFF6
0x3F FFF8
0x3F FFFA
0x3F FFFC
0x3F FFFE

Content
0x00 0060

0x00 0062
0x00 0064

0x00 0066
0x00 0068
0x00 006A
0x00 006C
0x00 006E
0x00 0070
0x00 0072
0x00 0074
0x00 0076
0x00 0078
0x00 007A
0x00 007C
0x00 007E

Boot Loader Data Stream

15 - 12 F2833x - Boot ROM

Boot Loader Data Stream
The following two slides show the structure of the incoming data stream to the boot loader.
The basic structure is the same for all the boot loaders and is based on the F2833x hex utility
tool. The tool is en executable file called “hex2000.exe
(C:\CCStudio_v3.3\C2000\cgtools\bin)” and is used to convert the project’s out-file from
“COFF”- format to the necessary hex-format.

The first 16-bit word in the data stream is known as the key value. The key value is used to
tell the boot loader the width of the incoming stream: 8 or 16 bits. Note that not all boot
loaders will accept both 8 and 16-bit streams. The SPI boot loader is 8-bit only. Please refer
to the detailed information on each loader for the valid data stream width. For an 8-bit data
stream, the key value is 0x08AA and for a 16-bit stream it is 0x10AA. If a boot loader
receives an invalid key value, then the load is aborted. In this case, the entry point for the
Flash memory will be used.

15 - 8

Boot Loader Data Stream Structure
1 0x10AA : Key for memory width = 16 bit
2-9 Reserved for future use
10 Entry Point PC[22:16]
11 Entry Point PC[15:0]
12 Block Size (words); if 0 then end of transmission
13 Destination Address of block ; Addr[31:16]
14 Destination Address of block ; Addr[15:0]
15 First word of block

N Last word of block
N+1 Block Size (words)
N+2 Destination Address of block ; Addr[31:16]
N+3 Destination Address of block ; Addr[15:0]

The next eight words are used to initialize register values or otherwise enhance the boot
loader by passing values to it. If a boot loader does not use these values then they are
reserved for future use and the boot loader simply reads the value and then discards them.
Currently, only the SPI boot loader uses one word to initialize a register value.

The next 10th and 11th words comprise the 22-bit entry point address. This address is used to
initialize the PC after the boot load is complete. This address is most likely the entry point of
the program downloaded by the boot loader.

 Boot Loader Data Stream

F2833x - Boot ROM 15 - 13

The twelfth word of the data stream is the size of the first data block to be transferred. The
size of the block is defined for both 8 and 16-bit data stream formats as the number of 16-bit
words in the block. For example, to transfer a block of twenty 8-bit data values from an 8-bit
data stream, the block size would be 0x000A to indicate ten 16-bit words.

The next two words tell the loader the destination address of the block of data. Following the
size and address will be the 16-bit words that make up the corresponding block of data.

This pattern of block size/destination address repeats for each block of data to be transferred.
Once all the blocks have been transferred, a block size of 0x0000 signals to the loader that
the transfer is complete. At this point, the loader will return the entry point address to the
calling routine, which in turn will clean up and exit. Execution will then continue at the entry
point address as determined by the input data stream contents.

Boot Loader Data Stream Example
Next is an example of a boot loader data stream that is used to load two blocks of data into
two different memory locations of the F2833x. Five words (1,2,3,4,5) are loaded into address
0x3F 9010 and two words are loaded into address 0x3F 8000.

15 - 9

Boot Loader Data Stream Example
10AA ; Key for 16-Bit memory stream
0000
0000
0000
0000
0000
0000
0000
0000
003F ; PC – starting point after load is complete: 0x3F 8000
8000
0005 ; 5 words in block 1
003F
9010 ; First block is loaded into 0x3F 9010
0001 ; first data word
0002
0003
0004
0005 ; last data
0002 ; Second block is two words long
003F ; Second block is loaded into 0x3F 8000
8000
7700 ; first data
7625 ; last data
0000 ; next block zero length = end of transmission

15 - 14 F2833x - Boot ROM

Boot Loader Transfer Function

The next flowchart illustrates the basic process a boot loader uses to determine whether 8-bit
or 16-bit data stream has been selected, transfer that data, and start program execution. This
process occurs after the boot loader detects the valid boot mode selected by the state of the
GPIO pins.

The loader compares the first value sent by the host against the 16-bit key value of 0x10AA.
If the value fetched does not match then the loader, it will read a second value. This value
will be combined with the first value to form a word. This will then be checked against the 8-
bit key value of 0x08AA. If the loader finds that the header does not match either the 8-bit or
the 16-bit key value, or if the value is not valid for the given boot mode then the load will
abort. In this case the loader will return the entry point address for the flash to the calling
routine.

15 - 10

F2833x Boot Loader Transfer Procedure
Read first word(W1)

W2:W1=
0x08AA?

Read BlockSize(R)

Read Entry Point

16bit data size

R = 0?

Read BlockAddress

Transfer R words from
source to destination

Return and Jump
to Entry Point

Read second word
lower 8 bit

W1 =
0x10AA?

8bit data size

Format Error

No

No

No

Yes

Yes

Yes

 Init Boot Assembly Function

F2833x - Boot ROM 15 - 15

Init Boot Assembly Function
The first routine of the Boot-ROM that is called after RESET is the InitBoot assembly
routine. This routine initializes the device for operation in F2833x object mode. Next it
performs a dummy read of the Code Security Module (CSM) password locations. If the CSM
passwords are erased (all 0xFFFFs), then this has the effect of unlocking the CSM.
Otherwise, the CSM will remain locked and this dummy read of the password locations will
have no effect. This can be useful if you have a new device that you want to boot load.

After the dummy read of the CSM password locations, the InitBoot routine calls the
SelectBootMode function. This function will then determine the type of boot mode desired
by the state of specific GPIO pins. Once the boot is complete, the SelectBootMode function
passes back the EntryAddr to the InitBoot function. InitBoot then calls the ExitBoot routine
that then restores CPU registers to their reset state and exits to the entry address that was
determined by the boot mode.

15 - 11

F2833x Init Boot Function

Init Boot
RESET

Initialize C28x:
OBJMODE = 1
AMODE = 0
M0M1MAP = 1
DP = 0
OVM = 0
SPM = 0
SP = 0x00 0400

Dummy Read
CSM passwords

Call
BootModeSelect

ExitBoot

SCI Boot Load

15 - 16 F2833x - Boot ROM

SCI Boot Load

SCI Hardware Connection

The SCI boot mode asynchronously transfers code from SCI-A to the F2833x. It only
supports an incoming 8-bit data stream and follows the same data flow as outlined before.

Note:
It is important to understand that if you want to connect a PC via its serial COM-port to an
F2833x, you will need to have a RS-232 transceiver interface between the F2833x and the
PC to generate the necessary voltages. Fortunately the F28335ControlCard provides such a
transceiver, a Texas Instruments MAX2332. If you connect the F2833x directly to the two
PC-COM lines you will eventually destroy the F2833x!

If you are not sure about the hardware set up, ask your teacher before you continue with the
laboratory exercise at the end of this chapter!

15 - 12

F2833x SCI Boot Loader Function

F2833x
SCI-A Host/ e.g.

PC‘s COM1

RS 232
e.g.
Texas
Instruments
MAX3221

RS 232

TxD TxD

RxD
RxD

3

2

 SCI Boot Load

F2833x - Boot ROM 15 - 17

SCI Boot Loader Function
The flowchart for the SCI interface is shown in Slide 15-13 (below).

15 - 13

F2833x SCI Boot Function
SCI Boot

Enable SCI-A Clock
Set LSPCLK to /4

Enable SCI-A Tx and
Rx - Pin

Setup SCI-A:
1 stop,8 data ,no parity

No loopback
Disable SCI-A INT

Disable SCI-A FIFO

Prime SCI-A baud rate
register

Enable Autobaud
detection

Autobaud
Lock ?

Echo auto baud
character

Read KeyValue

Valid Key? FLASH

Start Boot Load
Sequence

No

No

Yes

Yes

The F2833x communicates with the external host device by communication through the SCI-
A Peripheral. The auto baud feature of the SCI port is used to lock baud rates to the host. For
this reason, the SCI loader is very flexible and the user can select a number of different baud
rates to communicate with the DSP.

After each data transfer, the DSP will echo back the 8-bit character received to the host. In
this manner, the host can perform checks that each character was received correctly by the
DSP.

At higher baud rates, the slew rate of the incoming data bits can be affected by transceiver
and connector performance. While normal serial communications may work well, this slew
rate may limit reliable auto-baud detection at higher baud rates (typically beyond 100 k
baud) and cause the auto-baud lock feature to fail.

Parallel Boot Loader

15 - 18 F2833x - Boot ROM

Parallel Boot Loader

Hardware Connection
The parallel general purpose I/O (GPIO) boot mode asynchronously transfers code from
GPIO0 to GPIO15 to internal or XINTF memory. Each value can be 16 bits or 8 bits wide
and follows the same data flow as outlined in the data stream structure.

15 - 14

F2833x parallel Boot Loader (GPIO)

C28x
GPIO Host/ e.g.

PC‘s COM1

GPIO - 26

16

GPIO15...GPIO0

GPIO - 27

GPIO26

GPIO27

1 2 3 4 5 6

1: F28x indicates: “ready to receive”
2: Host signals “data active at GPIO-B”
3: F28x indicates “read is complete”
4: Host acknowledges “cycle completed”
5: F28x indicates: “ready for more data”

The F2833x communicates with the external host device by polling/driving the GPIO26 and
GPIO27 lines. The handshake protocol shown in Slide 15-14(above) must be used to
successfully transfer each word via GPIO0...GPIO15. This protocol is very robust and allows
for a slower or faster host to communicate with the F2833x device.

If the 8-bit mode is selected, two consecutive 8-bit words are read to form a single 16-bit
word. The most significant byte (MSB) is read first followed by the least significant byte
(LSB). In this case, data bytes are read from GPIO0...GPIO7 only.

The DSP first signals to the host that the DSP is ready to start a data transfer by pulling the
GPIOD27 pin low. The host load then initiates the data transfer by pulling the GPIOD26 pin
low. The complete protocol is shown in the Slide 15-14 (above).

 Parallel Boot Loader

F2833x - Boot ROM 15 - 19

F2833x Software Flow

Slide 15-15 shows a flowchart for the Parallel GPIO boot loader inside the F2833x. After
parallel boot has been selected at RESET, GPIO0...GPIO15 are initialized as an input port.
The two handshake lines GPIO26 and GPIO27 are initialized as input and output
respectively.

Next, the first character is polled from GPIO0...GPIO15. If it is a valid 8-bit (0x08AA) or
16-bit (0x10AA) key, the procedure continues to read eight more reserved words and
discards them. Next, the code entry point and all following blocks are polled according to the
diagram at Slide 15-14.

If all blocks are received successfully, the routine jumps to the entry point address that was
received during the boot load sequence.

15 - 15

F2833x GPIO Boot Function
GPIO Boot

Read KeyValue
(8 or 16 Bit size)

Initialize GPIO
GPIO0…15 = input

GPIO27 = input
GPOI26 = output

Valid Key?

FLASH

Call Parallel Copy Data

Read Entry Point

Read and discard
8 reserved words

Jump
Entry Point

No

Yes

Parallel Boot Loader

15 - 20 F2833x - Boot ROM

Host Software Flow
Slide 15-16 (below) shows the transfer flow from the Host side. The operating speed of the
F2833x and Host are not critical in this mode as the host will wait for the F2833x and the
F2833x will in turn wait for the host. In this manner the protocol will work with both a host
running faster and a host running slower than the F2833x.

15 - 16

Host GPIO Boot Function
Start Download

F28x ready?
(GPIO26=0)

Deactivate GPIO27 =1
Load data

Signal that data avail.
GPIO27 =0

Yes

F28x ack?
(GPIO26=1)

More Data?

End Download

Yes

Yes

No

No

No

First, the host waits for a handshake signal (GPIO26) to be activated (= 0) by the F2833x.

Next, the host has to load the next character onto its parallel output port. The host then
acknowledges a valid character by activating (=0) the signal that is connected to the F2833x
GPIO27 input line.

The F2833x has now all the time it requires to read the data from GPIO0…GPIO15. Once
this has been performed, the F2833x deactivates its output line GPIO26 to inform the host
that the transfer cycle is completed.

The host acknowledges this situation by deactivating its handshake line (GPIO27). If the
algorithm has more data to transmit to the F2833x, the procedure is repeated once more. If
not, the download is finished.

 SPI Boot Loader

F2833x - Boot ROM 15 - 21

SPI Boot Loader
The SPI loader expects an 8-bit wide SPI-compatible serial EEPROM device to be present
on the SPI pins as shown in Slide 15-17. The SPI boot loader does not support a 16-bit data
stream.

15 - 17

F2833x SPI Boot Loader Function

F2833x
SPI - A

Serial EEPROM
DIN
DOUT
CLK
/CS

SPI – MOSI (GPIO16)

SPI – SOMI (GPIO17)
SPI – CLK (GPIO18)

SPI – STE (GPIO19)

EEPROM – Types:

Atmel: AT25C256; see chapter 13
Xicor: X25256
ST: M95080
and others

Note:
(1) SPI – loader is 8bit only, it

does not support 16bit data
stream

(2) EEPROM data stream must
start at address 0x0000

The SPI boot ROM loader initializes the SPI module to interface to a serial SPI EEPROM.
Devices of this type include, but are not limited to, the Microchip M95080 (1K x 8), the
Xicor X25320 (4Kx8) and Xicor X25256 (32Kx8). At the Peripheral Explorer Board, the
interface SPI-A is used for the control channel of the audio codec AIC23B, so we cannot
experiment directly with the SPI-A boot loader. To do so, we would have to add an external
EEPROM to the hardware. Again, ask you teacher, if your university classroom equipment
has been enhanced.

An SPI boot loader is widely used in real world projects. Therefore let us discuss the
software flow.

The SPI boot ROM loader initializes the SPI with the following settings: FIFO enabled, 8-bit
character, internal SPICLK master mode and talk mode, clock phase = 0, polarity = 0 and
slowest baud rate.

If the download is to be preformed from an SPI port on another device, then that device must
be set up to operate in slave mode and mimic a serial SPI EEPROM. Immediately after
entering the SPI Boot function, the pin functions for the SPI pins are set to primary function
and the SPI is initialized. The initialization is done at the slowest speed possible. Once the

SPI Boot Loader

15 - 22 F2833x - Boot ROM

SPI is initialized and the key value read, the user could specify a change in baud rate or low
speed peripheral clock.

SPI Boot Loader Data Stream

The following slide (Slide 15-18) shows the sequence of 8-bit data expected by the Boot
Loader.

15 - 18

F2833x SPI Boot Loader Data Stream

1 LSB = 0xAA (Key for 8bit transfer)
2 MSB = 0x08 (Key for 8bit transfer)
3 LSB = LSPCLK value
4 MSB = SPIBRR value
5-18 reserved
19 Entry Point [23:16]
20 Entry Point [31:24]
21 Entry Point [7:0]
22 Entry Point [15:8]
23 ... Blocks of data: block size/destination/data as shown

Byte Content

SPI Boot Loader Flowchart
The flowchart is shown in Slide 15-18 and Slide 15-19. The data transfer is performed in
“burst” mode from the serial SPI EEPROM. The transfer is carried out entirely in byte mode
(SPI at 8 bits/character). A step-by step description of the sequence now follows:

1) The SPI-A port is initialized

2) The GPIO19 pin is now used as a chip-select for the serial SPI EEPROM

 SPI Boot Loader

F2833x - Boot ROM 15 - 23

3) The SPI-A outputs a read command to the serial SPI EEPROM

4) The SPI-A interface sends the serial SPI EEPROM address 0x0000; that is,
the host requires that the EEPROM must have the downloadable package
starting at internal address 0x0000 of the EEPROM.

5) The next word fetched must match the key value for an 8-bit data stream
(0x08AA). The most significant byte of this word is the byte read first and
the least significant byte is the next byte fetched. This is true of all word
transfers on the SPI. If the key value does not match then the load is aborted
and the entry point for the Flash (0x3F 7FF6) is returned to the calling
routine.

6) The next two bytes fetched can be used to change the value of the low speed
peripheral clock register (LOSPCP) and the SPI Baud rate register
(SPIBRR). The first byte read is the LOSPCP value and the second byte read
is the SPIBRR value. The next seven words are reserved for future
enhancements. The SPI boot loader reads these seven words and then
discards them.

7) The next two words makeup the 32-bit entry point address where execution
will continue after the boot load process is complete. This is typically the
entry point for the program being downloaded through the SPI port.

8) Multiple blocks of code and data are then copied into memory from the
external serial SPI EEPROM through the SPI port. The blocks of code are
organized in the standard data stream structure presented earlier. This is
done until a block size of 0x0000 is encountered. At that point in time, the
entry point address is returned to the calling routine that then exits the boot
loader and resumes execution at the address specified.

SPI Boot Loader

15 - 24 F2833x - Boot ROM

15 - 19

F2833x SPI Boot Function
SPI - Boot

Valid
Key?
(0x08AA
)

Enable SPI clock
Set LSPCLK to 4

No

Enable SPI pin –
functionality

Setup SPI:
8-bit character
Internal SPI-clock
SPI-Master
Slowest baud rate (0x7F)
Relinquish from RESET

Set chip enable
GPIO-F3 = 1

Send Read Command
To EEPROM
Address = 0x0000

Read KeyValue

Read LSPCLK value

Requested
LSPCLK =
2?

Change LSPCLK

FLASH

C

No

Yes

Yes

15 - 20

F2833x SPI Boot Function (cont.)

Read SPIBRR value

Requested
SPIBRR =

0x7F?

Change SPIBRR

Jump EntryPoint

C

Yes

Read 7 reserved words

Read Entry Point Read Data Blocks

No

 Lab 15_1: Serial Boot Loader SCI-A

F2833x - Boot ROM 15 - 25

Lab 15_1: Serial Boot Loader SCI-A

Objective

The objective of this laboratory exercise is to practice using the F2833x internal serial boot
loader options. In Chapter 9 we discussed the SCI-interface of the F2833x and experimented
with some transmit and receive laboratory examples. Let us now use the SCI-A interface to
download control code on power ON from a host into the internal RAM of the F2833x and
execute this code after the download is completed. This is a typical scenario for distributed
control systems, in which a master-node sends control code to slave-nodes.

15 - 21

• Use Lab6 (“binary counter”) as starting point
• Change the Hardware Boot Sequence from FLASH to

SCI -A (close Jumper J3)

• Use a SCI – connection to your PC:

• Use tool “hex2000.exe” to generate download stream
• Use a PC terminal program to download code

Lab15_1: SCI – A boot loader

Again we will use our solution from Lab 6, the binary counter at LEDs LD1…LD4, as a
starting point.

Procedure

Open Project
1. Open your project “Lab6.pjt” from C:\DSP2833x_V4\Labs\Lab6.

2. Open the file “Lab6.c”, save it in “C:\DSP2833x_V4\Labs\Lab6” as “Lab15.c”.

3. Exclude file “Lab6.c” from Build

4. Open the file “Lab15.c” to edit.

Lab 15_1: Serial Boot Loader SCI-A

15 - 26 F2833x - Boot ROM

Although there is no need to change the control code of Lab15.c, we should generate a
considerably slower frequency for the control code. Remember, that in Lab14 we have
programmed the binary counter code, running at 100 milliseconds time steps into the
FLASH of the F2833x. Now, to be able to distinguish between the FLASH-code
(which should not be active in Lab15) and the RAM-downloaded code, the simplest
way is to change the step size of our control code from 100 milliseconds to 1 second.
Also, recall that the watchdog unit is active. In “main()”, change the code-section to
wait for the next control step into:

while(CpuTimer0.InterruptCount < 10)
{
 EALLOW;
 SysCtrlRegs.WDKEY = 0x55; // service WD #1
 EDIS;
}
CpuTimer0.InterruptCount = 0;

Build, Load and Run
5. Click the “Rebuild Active Project ” button or perform:

 Project  Rebuild All (Alt +B)

6. Load the output file in the debugger session:

 Target  Debug Active Project

and switch into the “Debug” perspective.

7. Perform a real time run.

Target  Run

Verify that the control code (binary counter at LD1…LD4) is now running at a step size of 1
second. If this is true, we have a working code example, which can be used to extract the
necessary download modules.

Verify that the file “Lab6.out” exists in subdirectory ‘\Debug’, and that it is up to date.

Change Hardware set up
8. Close Code Composer Studio and switch off the power supply of the Peripheral

Explorer Board.
9. Close jumper J3 (“SCI-BOOT 84”) at the Peripheral Explorer Board. This will select

the SCI-A boot loader option of the F2833x.

 Lab 15_1: Serial Boot Loader SCI-A

F2833x - Boot ROM 15 - 27

10. Connect the Peripheral Explorer Board SCI-A (header J12) with a serial COM-channel

of your PC. Plug in the serial cable provided to header J12 making sure the red wire
aligns with the Rx pin on the peripheral explorer kit.

11. Re-power ON the Peripheral Explorer Board. The binary counter code at LEDs

LD1…LD4 should not run.

Generate download data stream
12. Texas Instruments provides a very useful tool, called “hex2000.exe”, to convert data

from COFF-format (“Lab6.out”) into any other format, including binary images, Intel-
hex file format and many others. We can use this tool to generate the data stream
accordingly to the serial download format, which we discussed at the beginning of this
chapter. Unfortunately, this tool is available as a command line version only. If you
recall the old days from Microsoft-DOS, you should be familiar with the command
line window control. As a modern-day student, you are probably too young for such
cryptic syntax, so here is an explanation of what to do:

• In Windows-XP or Windows-Vista, open a command line window (“cmd.exe”).
• In this window, enter the path to the location of file “Lab6.out”. The actual path

depends on your PC-installation. Note: use the Windows-Explorer to locate the
location on your PC. On my computer it is:

cd C:\DSP2833x_V4\labs\Lab6\Debug

Lab 15_1: Serial Boot Loader SCI-A

15 - 28 F2833x - Boot ROM

• To start the “hex2000” - tool, first search the harddisk location of the file
“hex2000.exe”

• Next, using the Windows Explorer, copy the file “hex2000.exe” into the direc-
tory of your project, e.g. C:\DSP2833x_V4\labs\Lab6\Debug.

• Now enter the following command as a single line into the command window:

hex2000 -b -boot -sci8 -e=codestart -o=test.bin Lab6.out

Here is an explanation of what we did:

The tool “hex2000.exe” used the input file “Lab6.out” to generate a new output file
“test.bin”. Both the name “test” and extension “bin” are arbitrary and used just as examples.
The switch “-b” told the tool to perform a binary extraction. The switches “-boot” and “-
sci8” have been used to generate a file structure according the boot loader sequence for SCI-
mode. The option “-e =codestart” has been used to specify the start address after the
download sequence is completed. We used the symbol “codestart” from file
“DSP2833x_CodeStartBranch.asm”.

The screenshot above tells us that the tool has generated binary sections for

• the codestart - section (codestart)

 Lab 15_1: Serial Boot Loader SCI-A

F2833x - Boot ROM 15 - 29

• the default machine-code section (.text)
• a section for functions with different Load and Run-addresses (ramfuncs)
• a section for global initialization constants (.cinit)
• a section for constant variables (.econst)

Verify, that you have a new file “test.bin” in your “Debug”-directory!

Download Image into the target
13. For this step we need a serial terminal program running under windows. If you still

use XP, you can use the program “Windows-HyperTerminal”. Under Windows-Vista,
there is no such a tool. However, there are a few similar freeware tools available, such
as “Hercules” (www.HW-group.com)
• Open your terminal program and enter the following initial parameters:

o 9600 bit/s
o 8 data bits
o no parity bit
o 1 stop bit
o no hardware handshake or flow control

Here is an example for “Hercules”:

• Next, send a single character ‘A’, which is used for auto baud rate detection in
the serial boot loader code of the F2833x. The F2833x will immediately respond
with an echo of ‘A’ to indicate successful auto baud rate detection.

http://www.hw-group.com/�

Lab 15_1: Serial Boot Loader SCI-A

15 - 30 F2833x - Boot ROM

• Finally, send the file “test.bin” to the F2833x. Right mouse click in “Hercules”,
select “Send File” and browse to the location of “test.bin”. Do not worry about
the strange output, the F2833x echoes back all bytes and since we are
transmitting a binary image, only a few of them are printable:

• At the end of the download sequence, the boot-loader code will branch directly
into the code entry point “codestart”; our downloaded control code is running!

END of Lab15_1

	F2833x Boot ROM
	Introduction
	Module Topics
	F2833x Memory Map
	Direct start of code execution
	Start of a boot loader protocol

	F2833x Reset Boot Loader
	Timeline for Boot Loader
	Boot - ROM Memory Map
	SINE / COSINE Lookup Tables
	IQ-Math - Table
	Floating-Point sine/cosine - Table

	Normalized Square Root Table
	Normalized ArcTan Table
	Rounding and Saturation Table
	Min / Max Table
	Exp(x) Table
	Floating-point normalized ArcTan Table
	Floating-point Exp(x) Table
	Boot Loader Code
	F2833x Vector Table

	Boot Loader Data Stream
	Boot Loader Data Stream Example
	Boot Loader Transfer Function

	Init Boot Assembly Function
	SCI Boot Load
	SCI Hardware Connection
	SCI Boot Loader Function

	Parallel Boot Loader
	Hardware Connection
	F2833x Software Flow
	Host Software Flow

	SPI Boot Loader
	SPI Boot Loader Data Stream
	SPI Boot Loader Flowchart

	Lab 15_1: Serial Boot Loader SCI-A
	Objective
	Procedure
	Open Project
	Build, Load and Run
	Change Hardware set up
	Generate download data stream
	Download Image into the target

