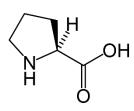
ORGANOCATALISI

"an organic compound of relatively low molecular weight and simple structure capable of promoting a given transformation in substoichiometric quantity."

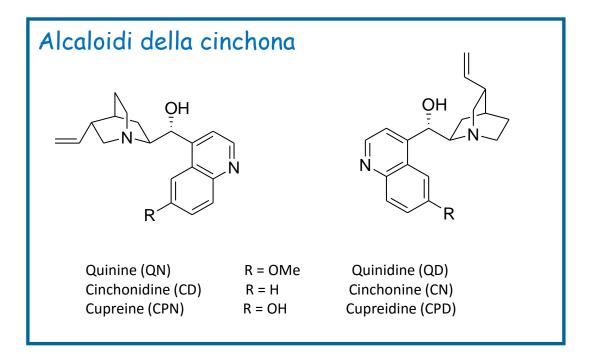
Organocatalizzatori= molecole organiche composte da C, H, N, S e P

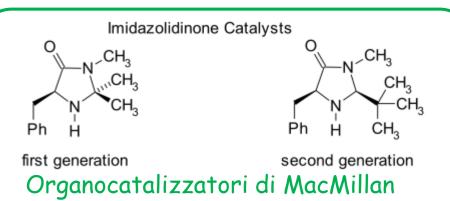
Vantaggi: * robusti

* poco costosi


* facilmente disponibili

* non tossici

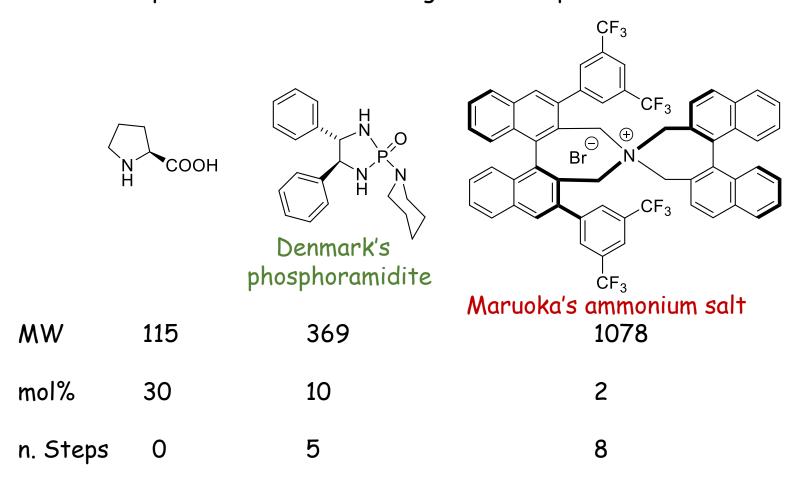
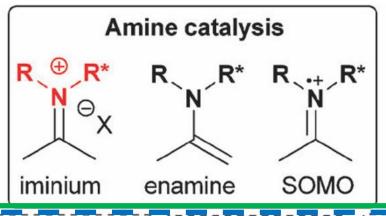
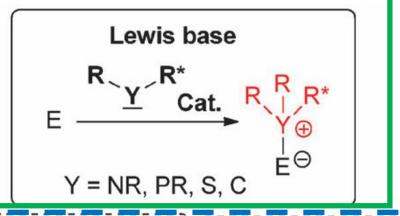

* inerti rispetto umidità e ossigeno

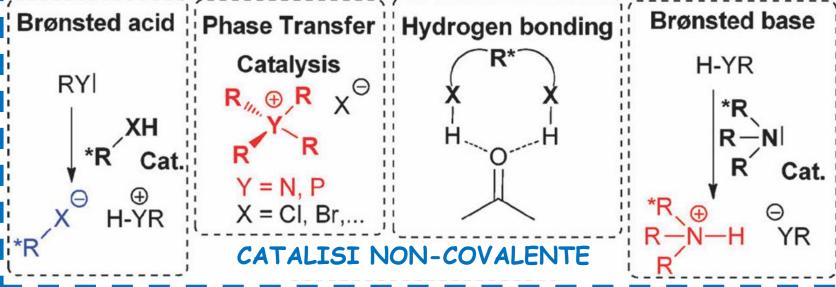

OK per la preparazione di composti che non tollerano contaminazione di metalli

ESEMPI di ORGANOCATALIZZATORI

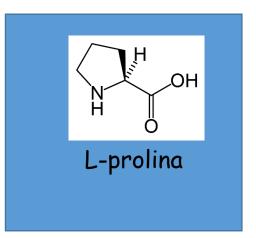
L-prolina

"simple structure" si riferisce al numero di passaggi ("steps") di sintesi necessary per ottenere l'organocatalizzatore a partire da materiali di partenza economici e largamente disponibili


Fig. Confrontro tra organocatalizzatori usati nelle reazioni aldoliche

Organocatalizzatori: modi di azione

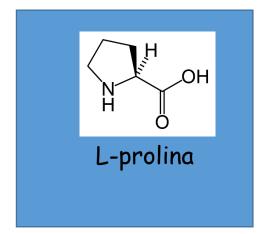

ESEMPI di ORGANOCATALIZZATORI

L-prolina

Hajos, Parrish, Eder, Sauer, Wiechert 1971

ciclodisidratazione aldolica intramolecolare

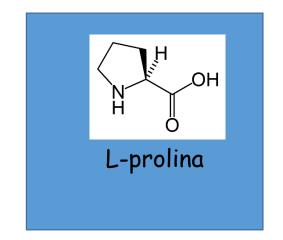
Angew. Chem. Int. Ed. 1971, 10, 496-497

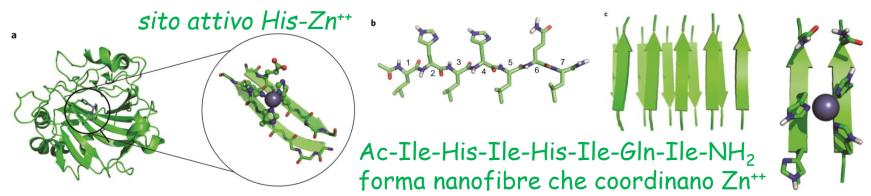


Hajos, Parrish, Eder, Sauer, Wiechert 1971

ciclodisidratazione aldolica intramolecolare

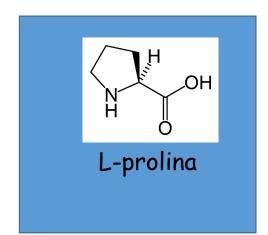
Angew. Chem. Int. Ed. 1971, 10, 496-497


- * Amminoacidi o dipeptidi, es. Prolina
- * Lunghi peptidi con specifica struttura


Hajos, Parrish, Eder, Sauer, Wiechert 1971

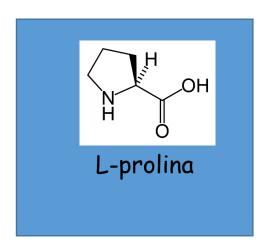
ciclodisidratazione aldolica intramolecolare

Angew. Chem. Int. Ed. 1971, 10, 496-497


- * Amminoacidi o dipeptidi, es. Prolina
- * Lunghi peptidi con specifica struttura
- * di recente piccoli peptidi che formano fibre supramolecolari che mimano enzimi (es. esterasi)

Nat. Chem. 2014, 6, 303

Perché la prolina?

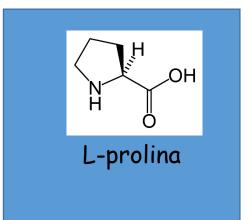

Derivato chirale della pirrolidina

Perché la prolina?

· Derivato chirale della pirrolidina

reazione aldolica NON stereoselettiva

Perché la prolina?


Derivato chirale della pirrolidina

reazione aldolica NON stereoselettiva

reazione aldolica STEREOSELETTIVA (93 % ee)

Come funziona?

reazione aldolica STEREOSELETTIVA (93 % ee)

catalisi metallica

catalizza reazioni via ione imminio

catalizza reazioni via enanmmina

Come funziona?

reazione aldolica STEREOSELETTIVA (93 % ee)

ŌН

 $-H_2O^{16}$

stereocontrollo dipende dalla formazione legame a H

CO2

Enaminium-catalyzed mechanism

U.I. Tafida et al., J. Adv. Res. 2018, 12, 11.

Н ОН L-prolina

Anellazione Robinson* STEREOSELETTIVA

Hajos, Z.G.; Parrish, D.R. J. Org. Chem. 1974, 39, 1615

Sintesi del Taxol (Danishefsky, 1996)

Danishefsky, S. et al. J. Am. Chem. Soc. 1996, 118, 2843

Baccatin III

^{*} L'anellazione di Robinson è costituita da un'addizione di Michael seguita da una condensazione aldolica intramolecolare ed è un metodo per ottenere anelli condensati.

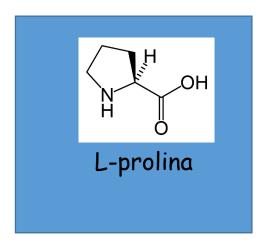
Reazione di Mannich STEREOSELETTIVA

O OH
$$k_{Aldol}$$
 O H^2 R^2 R^1-NH_2 H^2 R^2 R^2 R^2 R^3 R^4 R^2 R^4 R^2 R^4 R^4

2 requisiti importanti:

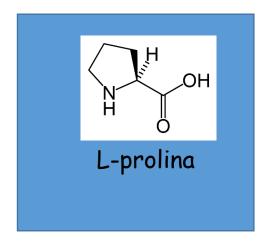
- * l'attacco Nu cella prolina enammina verso l'immina (Mannich) deve essere più veloce di quello verso l'aldeide (aldol)
- * L'aldeide deve formare preferenzialmente l'immina (Mannich) piuttosto che reagire nella aldol

Reazione di Mannich STEREOSELETTIVA vs. Sharpless AA


R =	Yield %	dr	%ee	
p-NO ₂ C ₆ H ₄	92	20:1	>99	
C ₆ H ₅	83	9:1	93	
P-MeOC ₆ H ₄	88	3:1	61	

List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827-833.

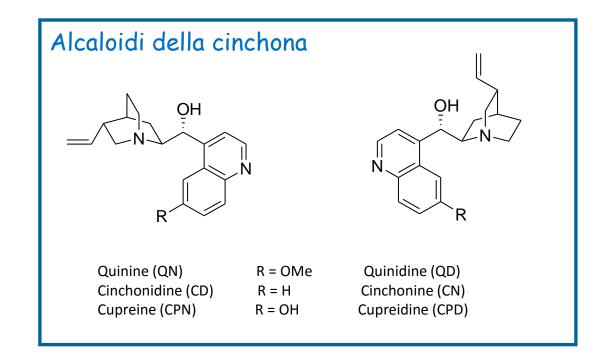
Reazione di Michael


Nu = active methylene center, e.g., malonic acid ester β -keto esters, nitroalkanes, etc.

based catalyzed mechanism of Michael addition

Reazione di Michael

Nu = active methylene center, e.g., malonic acid ester β -keto esters, nitroalkanes, etc.


Role of chiral amine in previous catalytic asymmetric Michael reaction:

- ❖ activate the Michael acceptor via formation of an iminium species (I)
- ❖ act as a base forming a complex with enolate to react with the acceptor (II)
- * activation of ketone donors through formation of an enamine intermediate (III)

$$\bigoplus_{\substack{NR_2\\R'}}\bigoplus_{\substack{NR_2\\R'}}\bigoplus_{\substack{EWG}}$$

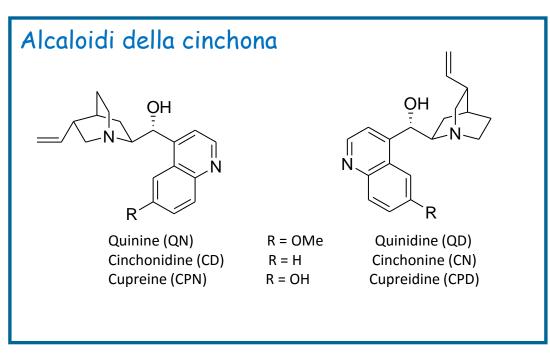
Betancort, J. M.; Sakthivel, R. T.; Barbas, C. F. Tetrahedron Lett. 2001, 42, 4441–4444.

ESEMPI di ORGANOCATALIZZATORI

ALCALOIDI DELLA CINCHONA

Quinine isolata da Pelletier in 1820.

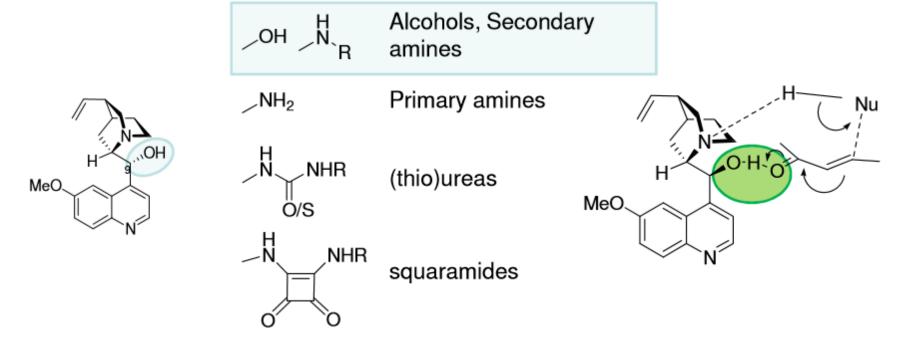
Usata da Pasteur per la risoluzione di un racemato (1853)

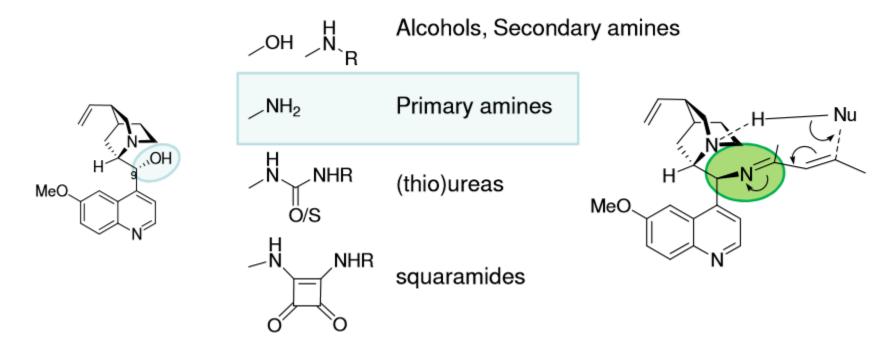

Chinina e derivati come antimalarici

Bifunzionali (β -aminoalcol)

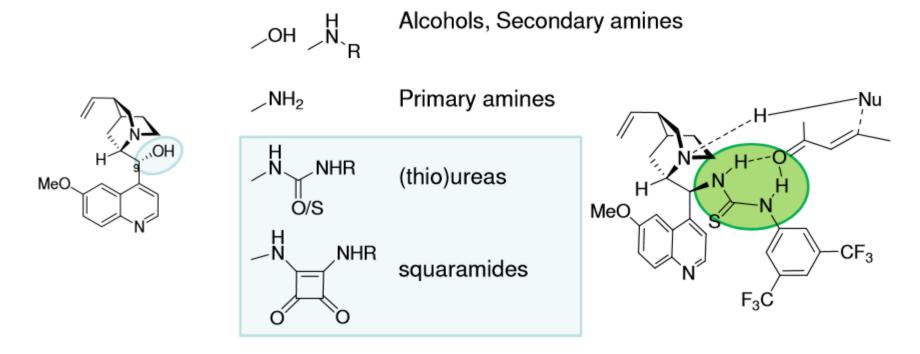
Economici

Facili da funzionalizzare

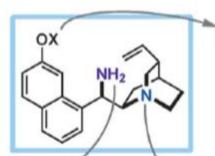

Disponibilità di pseudoenantiomeri


«pseudoenantiomeri»

(diastereoisomeri)


C9-Derivatizations and mechanistic considerations

C9-Derivatizations and mechanistic considerations

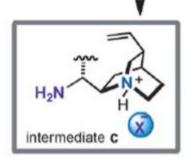

C9-Derivatizations and mechanistic considerations

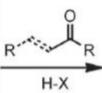
CHIRAL AMINE

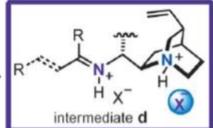
Structural modification by

- Solvent change
- Protonation of the tertiary amine

additional stereocontrol element


- X = Me for steric reasons
- X = OH via H-bonding interactions


handle for covalent catalysis


■ Iminium ion / enamine formation

- Easily forms a tertiary ammonium ion
- May direct nucleophile/electrophile approach

Monoprotonated DIAMINE

- Favour imine formation by internal acid catalysis
- Electrostatic perturbation of the primary amine

ION PAIR ASSEMBLY

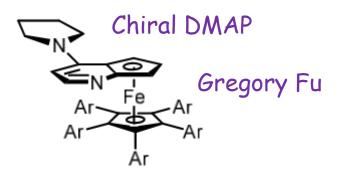
Tuning of the steric shielding by modulation of the anion structure

Cinchona Alkaloids Are Versatile Catalysts

■ These are just a few of the reactions that can be performed asymmetrically.

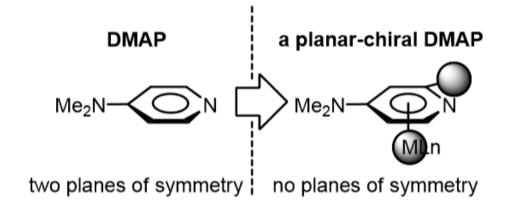
C-C Bond Forming
Alkylation
Aldol
Darzens
Michael Addition
Diels-Alder

Claisen Rearrangement

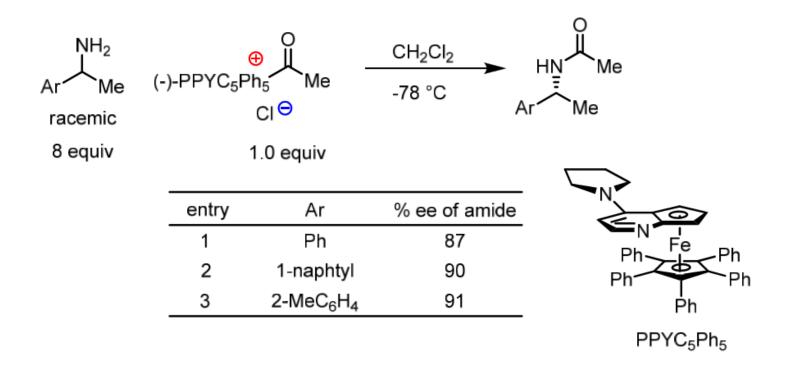

Miscellaneous Reactions
Hydrogenation
Desymmetrization
Decarboxylation

C-O Bond Forming
Epoxidation of Enones
Epoxidation of *cis*-Olefins
Asymmetric Dihydroxylation
Asymmetric Aminohydroxylation
α-Hydroxylation of Ketones

C-X Bond Forming
Aziridination
Azirination
Formation of α-Hydroxyphosphonate Esters
Addition of Thiols to Cyclic Enones


1984: Asymmetric alkylations promoted by modified chincona alkaloids

ESEMPI di ORGANOCATALIZZATORI



Scoperta del DMAP

Planar-Chiral Catalysts by Fu

Enantioselective Acylation of Amines by (-)-PPYC₅Ph₅

