

Corso Impianti Termotecnici di bordo

UNI EN ISO 7547

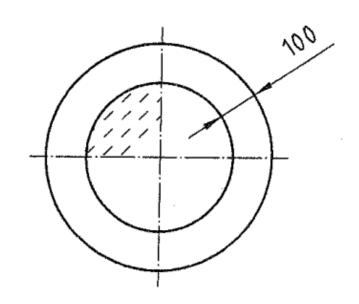
Costruzioni navali - Condizionamento dell'aria e ventilazione degli spazi abitativi - Condizioni di progettazione e basi per i relativi calcoli

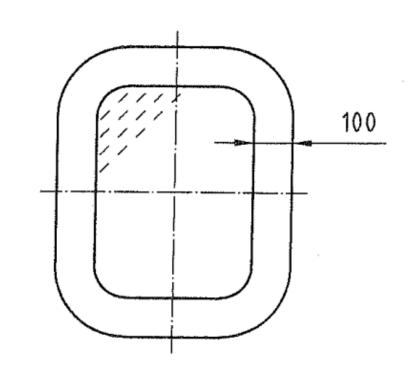
Scopo

- Costruzioni navali Condizionamento dell'aria e ventilazione degli spazi abitativi - Condizioni di progettazione e basi per i relativi calcoli
- La presente norma è la versione ufficiale della norma europea EN ISO 7547 (edizione dicembre 2004).
- Ships and marine technology Air-conditioning and ventilation of accommodation spaces - Design conditions and basis of calculations
- La norma specifica le condizioni di progettazione e i metodi di calcolo per il condizionamento dell'aria e la ventilazione degli spazi abitativi e la cabina radio a bordo di navi mercantili in tutte le condizioni eccetto quelle incontrate in climi estremamente freddi o caldi.

Temperature, umidità, ventilzione

- Estate
 - Outdoor 35 °C 70%
 - Indoor 27 °C 50%
- Inverno
 - Outdoor -20 °C
 - Indoor 22 °C
 - No values for humidity
- Portata di esterna non può essere inferiore al 40% della totale portata immessa


Occupazione

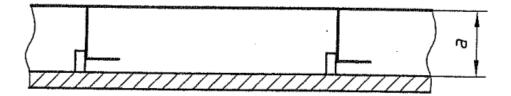

- Cabine
 - Massimo numero previsto
- Spazi pubblici
 - Numero di persone sedute o, se non specificato
 - Una persona ogni 2 m²
 - Una persona per 1.5 m² per sale da pranzo
 - Una persona per 5 m² per spazi ricreativi
- Comandante e chief engineer's spazi diurni
 - 4 persone
- Altri spazi diurni
 - 3 persone

Trasmissione del calore

- Per ciascuna superficie
- A_v aree delle superfici senza aperture
- A_q aree delle aperture

Differenze di temperatura

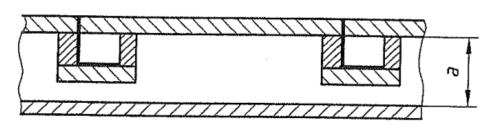
	ΔT , K	
Deck or bulkhead	Summer	Winter
Deck against tank provided with heating	43	
Deck with bulkhead against boiler-room	28	17
Deck and bulkhead against engine-room and against non-air-conditioned gallery	18	
Deck and bulkhead against non-heated tanks, cargo spaces and equivalent	13	42
Deck and bulkhead against laundry	11	17
Deck and bulkhead against public sanitary space	6	0
Deck and bulkhead against private sanitary space		
a) with any part against exposed external surface	2	0
b) not exposed	1	0
c) with any part against engine/boiler-room	6	0
Bulkhead against alleyway	2	5
NOTE It is understood that means of heating are provided in exposed sanitary spaces.		



Coefficiente globale di scambio termico

$$\frac{1}{k} = \sum \frac{1}{\alpha} + \frac{\sum \frac{d}{\lambda} + M_L + M_b}{\mu}$$

- lpha coefficiente scambio termico con l'aria
 - $\alpha = 80 \frac{W}{m^2 \cdot K}$ per superfici esterne
 - $\alpha = 8 \frac{W}{m^2 \cdot K}$ per superfici interne


 $\mu = 1,2$

- M_L resistenza intercapedini
- M_b resistenza termica tra strati

 $\mu = 1,45$

Coefficiente totale scambio termico

Surfaces	Total heat transfer coefficient, kW/(m ² ·K)
Weather deck not exposed to sun's radiation and ship side and external bulkheads	0,9
Deck and bulkhead against engine-room, cargo space or other non-air-conditioned spaces	8,0
Deck and bulkhead against boiler-room or boiler in engine-room	0,7
Deck against open air or weather deck exposed to sun's radiation and deck against hot tanks	0,6
Side scuttles and rectangular windows, single glazing	6,5
Side scuttles and rectangular windows, double glazing	3,5
Bulkhead against alleyway, non-sound reducing	· 2,5
Bulkhead against alleyway, sound reducing	0,9

Resistenza di intercapedini

Boundary surfaces of air gap	Air gap thickness, a^{a}	Thermal insulance ^b m ^{2.} K/W
	5 0,11	0,11
Both surfaces having high emissivity	20	0,15
200	0,16	
	5	5 0,17
One surface having high emissivity, other surface low emissivity	other surface low emissivity 20 0,43	
	200	0,47
	5	0,18
Both surfaces having low emissivity	20	0,47
	200	0,51
High emissivity surfaces in contact ^c	0	0,9

a See Figures 3 and 4

b The term "thermal insulance" is used according to the definition given in ISO 31-4. In many countries this term is known as "thermal resistance" with a symbol R.

c Aluminium foil and other polished surfaces are assumed to have low emmisivity (0,2). All other surfaces are assumed to have high emissivity (0,9).

Calcolo coefficiente convettivo intercapedini

• 10 < H/b < 40, $1 < Pr < 2 10^4$, $10^4 < Ra_H < 10^7$

$$\overline{Nu} = 0.42 \cdot Ra_d^{\frac{1}{4}} \cdot Pr^{0.012} \cdot \left(\frac{H}{b}\right)^{-0.3}$$

• H/b > 40 si usa H/b = 40

Apporti solari

$$\Phi_S = \sum A_v \cdot K \cdot \Delta T_r + \sum A_g \cdot G_S$$

- A_v superficie esposta alla radiazione solare
- ΔT_r eccesso di temperatura dovuta all'irraggiamento solare
 - $\Delta T_r = 12$ K superfici verticali chiare
 - $\Delta T_r = 29$ K superfici verticali scure
 - $\Delta T_r = 16$ K superfici orizzontali chiare
 - $\Delta T_r = 32$ K superfici orizzontali scure
- A_g superfici vetrate esposte al sole
- G_s 350 W/m² superfici vetrate chiare
- G_s 240 W/m² superfici vetrate chiare con schermature interne
- Se i vetri sono a controllo solare G può essere ridotto

Persone

• I carichi dovuti alle persone sono relativi ad una temperatura di 27 °C

Activity	Type of heat	Em	ission W
Seat at rest	Sensible heat Latent heat	70 50	} 120
Medium/heavy work	Sensible heat Latent heat	85 150	} 235

Carichi interni - luci

• Se l'ambiente è illuminato naturalmente il carico è posto a 0

Space	Heat gain from general lighting W/m²	
	Incandescent	Fluorescent
Cabins, etc.	15	8
Mess- or dining-rooms	20	10
Gymnasiums, etc.	40	20

Carichi interni e altre condizioni

- Frigoriferi 0,3 W/litro di contenuto, se non specificato
- Altre sorgenti solo se specificate in accordo con i produttori
- Non sono da inserire carichi da sorgenti saltuarie: TV ecc...
- I carichi per la cabina radio è pari a 2,5 kW se non specificato altrimenti
- I ventilatori sono da considerare con un incremento di temperatura pari a 1 °C/kPa di prevalenza
- L'incremento di temperatura nei condotti deve essere limitato a +2 °C

Ventilazione

- L'arredamento non deve essere detratto dal volume delle cabine
- la portata deve essere impostata in modo tale che sia la massima tra quelle che garantiscono:
 - Temperature e umidità estive
 - Temperature invernali
 - Una portata esterna non inferiore di 0,008 m³/s per persona, facendo riferimento alla destinazione d'uso
- l'aria fornita alle cabine con bagni privati deve essere almeno maggiore del 10 % dell'aria aspirata dal bagno

Particolari situazioni

- La portata fornita agli spazi di ventilazione deve essere diretta o di trasferimento di aria meno viziata da spazi adiacenti
- Deve essere superiore all'aria di estrazione relativa
 - servizi pubblici (bagni, wc, docce..)
 - Lavanderie
 - Stirerie
 - Spogliatoi
 - ripostigli

Temperatura di mandata

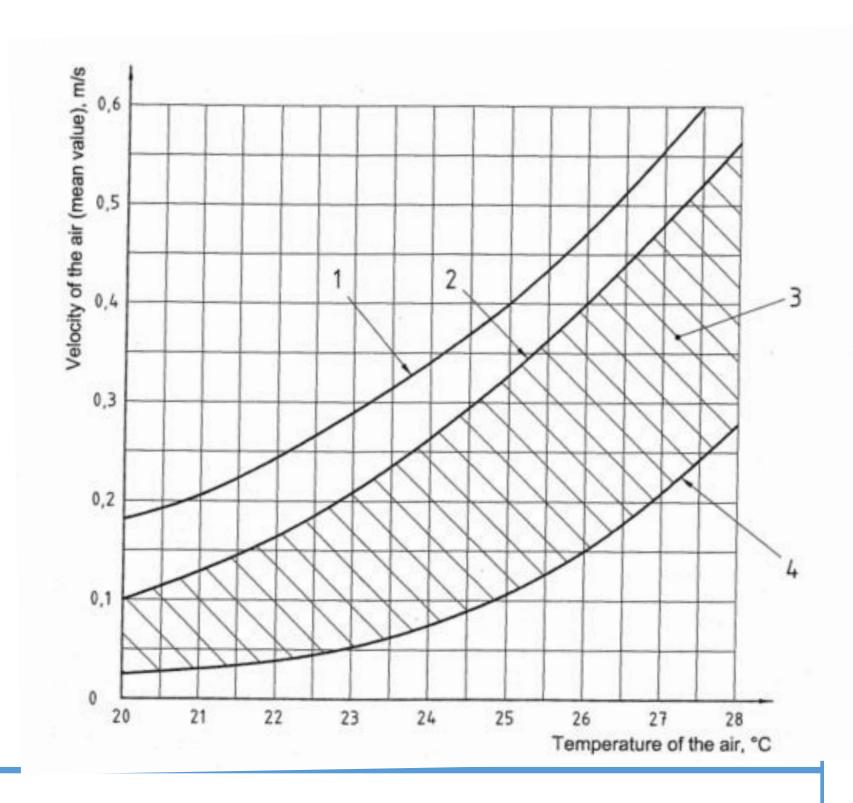
- La temperatura fornita deve essere
- Non inferiore di 10 K rispetto alla temperatura dell'ambiente in condizionamento
- Non superiore di 23 K nel riscaldamento

Estrazione dell'aria

- Nelle sale comuni, sale da pranzo la portata di estrazione è uguale a quella di mandata
- Negli spazi sanitari e nelle dispense deve essere almeno il 20 % maggiore della mandata (ambiente in depressione)
- Nei servizi privati (bagni, docce, WC) deve essere almeno 0.02 m³/s o almeno 10 ach, da prendere il valore più alto
- nei servizi comuni, lavanderie, stenditoi, stirerie deve essere almeno 15 ach
- Negli spogliatoi, toilette, ripostigli almeno 10 ach
- Nei servizi delle navi passeggeri: 15 ach o 0.3 m³/h, da prendere il valore massimi

Sistema di espulsione

- L'espulsione deve avvenire direttamente all'esterno per spazi particolari
- Deve essere separata rispetto agli altri ambienti
- Ospedali
- Servizi igienici, lavanderie, dispense


Bilanciamento dei flussi

- Il sistema deve essere bilanciato positivamente
- Deve esserlo per ogni ponte
- Ospedali e dispense devono essere bilanciate negativamente

Velocità aria

- La velocità dell'aria deve soddisfare il diagramma a lato
- Il limite superiore è permesso solo quando le persone sono in movimento
- Le aree occupate sono definite come lo spazio che si ottiene considerando una distanza di 0.15 m dalle superfici per un'altezza di 1.8 m dal pavimento
- La differenza di temperatura nello spazio non deve eccedere 2 K

refrigerazione

- Il condensatore dei chiller deve essere dimensionato con una temperatura di ingresso acqua di 32 °C
- Per sistemi con potenza superiore di 7.5 kW il motore del compressore deve funzionare con una temperatura dell'acqua di 35 °C o avere una capacità in percentuale corrispondente ad un incremento di temperatura da 32 °C a 35 °C
- Per un sistema di refrigerazione indiretto, il condensatore deve essere progettato per una temperatura dell'acqua di 36 °C ed il compressore per una temperatura si 38 °C
- Per calcolare il coefficiente di scambio termico per il condensatore si deve considerare uno sporcamento di 0.000 09 (m² K)/W