
Computer Abstractions and Technology

A. Carini – Digital System Architectures

Introduction

In the last decades, there have been a number of new computers whose introduction appeared to
revolutionize the computing industry; these revolutions were cut short only because someone else built
an even better computer.
This race to innovate has led to unprecedented progress since the inception of electronic
computing in the late 1940s.
Had the transportation industry kept pace with the computer industry, for example, today we could travel
from New York to London in a second for a penny.
Each time the cost of computing improves by another factor of 10, the opportunities for computers
multiply. Applications that were economically infeasible suddenly become practical.
In the recent past, the following applications were “computer science fiction”:
• Computers in automobiles
• Cell phones
• Human genome project
• World Wide Web
• Search Engines
• AI Engines

A. Carini – Digital System Architectures

Traditional Classes of Computing Applications

Computers are used in three dissimilar classes of applications:
• Personal computer (PC) A computer designed for use by an individual, usually incorporating a

graphics display, a keyboard, and a mouse.
• Server A computer used for running larger programs for multiple users, often simultaneously, and

typically accessed only via a network. Have high capacity, performance, reliability. Range from small
servers to building sized.

• Supercomputer A class of computers with the highest performance and cost; they are configured as
servers and typically cost tens to hundreds of millions of dollars. They represent a small fraction of the
overall computer market.

• Embedded computer A computer inside another device used for running one predetermined
application or collection of software.

A. Carini – Digital System Architectures

The PostPC Era

A. Carini – Digital System Architectures

The PostPC Era

• Personal mobile devices (PMDs) are small wireless devices to connect to the Internet; they rely on
batteries for power, and software is installed by downloading apps. Conventional examples are smart
phones and tablets.

• Cloud Computing refers to large collections of servers (in giant datacenters known as Warehouse
Scale Computers (WSCs)) that provide services over the Internet; some providers rent dynamically
varying numbers of servers as a utility.

• Software as a Service (SaaS) delivers software and data as a service over the Internet, usually via a
thin program such as a browser that runs on local client devices, instead of binary code that must be
installed, and runs wholly on that device. Examples include web search and social networking.

A. Carini – Digital System Architectures

Definitions

A. Carini – Digital System Architectures

KiBiByte – Kilo Binary Byte

What You Will Learn

A. Carini – Digital System Architectures

• How are programs written in a high-level language, such as C or Java, translated into the
machine language, and how does the hardware execute the resulting program.

• What is the interface between the software and the hardware, and how does software instruct the
hardware to perform needed functions.

• What determines the performance of a program, and how can a programmer improve the
performance.

• What techniques can be used by hardware designers to improve performance.
• What techniques can be used by hardware designers to improve energy efficiency. What can the

programmer do to help or hinder energy efficiency.
• What are the reasons for and the consequences of the recent switch from sequential processing to

parallel processing.
• Since the first commercial computer in 1951, what great ideas did computer architects come up with

that lay the foundation of modern computing.

Understanding Performance

A. Carini – Digital System Architectures

The performance of a program depends on a combination of :
• Algorithm

• Determines number of operations executed
• Programming language, compiler, architecture

• Determine number of machine instructions executed per operation
• Processor and memory system

• Determine how fast instructions are executed
• I/O system (including OS)

• Determines how fast I/O operations are executed

Eight Great Ideas

A. Carini – Digital System Architectures

• Design for Moore’s Law
• Moore’s Law states that integrated circuit resources double every 18–24 months.
• As computer designs can take years, the resources available per chip can easily double or

quadruple between the start and finish of the project.
• Computer architects must anticipate where the technology will be when the design finishes

rather than design for where it starts.

• Use abstraction to simplify design
• A major productivity technique for hardware and software is to use abstractions to characterize

the design at different levels of representation; lower-level details are hidden to offer a simpler
model at higher levels.

• Make the common case fast
• Making the common case fast will tend to enhance performance better than optimizing

the rare case.

Eight Great Ideas

A. Carini – Digital System Architectures

• Performance via parallelism
• Since the dawn of computing, computer architects have offered designs that get more

performance by computing operations in parallel.

• Performance via pipelining
• A particular pattern of parallelism.
• Divide operations in small stages, e.g. fetch, decode, execute. While instruction i is executed, i+1

is decoded, i+2 is fetched.

• Performance via prediction
• It can be faster on average to guess and start working rather than wait until you know for

sure, assuming that the mechanism to recover from a misprediction is not too expensive and
your prediction is relatively accurate.

Eight Great Ideas

A. Carini – Digital System Architectures

• Hierarchy of memories
• Programmers want the memory to be fast, large, and cheap, as memory speed often shapes

performance, capacity limits the size of problems that can be solved, and the cost of memory
today is often the majority of computer cost.

• We can address these conflicting demands with a hierarchy of memories, with the fastest,
smallest, and the most expensive memory per bit at the top of the hierarchy and the slowest,
largest, and cheapest per bit at the bottom.

• Caches give the illusion that main memory is almost as fast as the top of the hierarchy and
nearly as big and cheap as the bottom of the hierarchy

• Dependability via redundancy
• Computers not only need to be fast; they need to be dependable.
• Since any physical device can fail, we make systems dependable by including redundant

components that can take over when a failure occurs and to help detect failures.

Below Your Program

A. Carini – Digital System Architectures

• Application software
• Millions of code lines

• System software
• Software that provides services that are commonly useful,

including operating systems, compilers, loaders, and assemblers.
• Compiler: translates HLL code to machine code.
• Operating System: Supervising program that manages the

resources of a computer for the benefit of the programs that run
on that computer.

• Handling input/output
• Managing memory and storage
• Scheduling tasks & sharing resources

• Hardware
• Processor, memory, I/O controllers

From a High-Level Language to the Language of Hardware

A. Carini – Digital System Architectures

• instruction A command that computer hardware understands and obeys.
• assembler A program that translates a symbolic version of instructions into

the binary version.
• assembly language A symbolic representation of machine instructions.
• machine language A binary representation of machine instructions.

• High-level language
• Level of abstraction closer to problem domain
• Provides for productivity and portability

• Assembly language
• Textual representation of instructions

• Hardware representation
• Binary digits (bits)
• Encoded instructions and data

Components of a Computer

A. Carini – Digital System Architectures

• The five classic components of a computer are
input, output, memory, datapath, and control,
with the last two sometimes combined and called
the processor, or central processing unit CPU.

• This organization is independent of hardware
technology: you can place every piece of every
computer, past and present, into one of these
five categories.

• central processor unit (CPU) Also called processor.
The active part of the computer, which contains the
datapath and control and which adds numbers,
tests numbers, signals I/O devices to activate, and
so on.

Inside the Processor (CPU)

A. Carini – Digital System Architectures

• datapath
• The component of the processor that performs arithmetic operations.

• control
• The component of the processor that commands the datapath, memory, and I/O devices

according to the instructions of the program.

Memory

A. Carini – Digital System Architectures

• memory
• The storage area in which programs are kept when they are running and that contains the data

needed by the running programs.
• dynamic random access memory (DRAM)

• Memory built as an integrated circuit; it provides random access to any location. Access times
are 50 nanoseconds

• cache memory
• A small, fast memory that acts as a buffer for a slower, larger memory. Typically SRAM.

• static random access memory (SRAM)
• Also memory built as an integrated circuit, but faster and less dense than DRAM.

• SRAM and DRAM are volatile memories: they are used to hold data and programs while they are
running; but we need nonvolatile memory used to store programs and data between runs.

Primary and Secondary memories

A. Carini – Digital System Architectures

• We will distinguish between
• main memory (also called primary memory) memory used to hold programs while they are

running; typically consists of DRAM in today’s computers.
• secondary memory Nonvolatile memory used to store programs and data between runs;

typically consists of flash memory in PMDs and SSDs and magnetic disks in servers.

• magnetic disk Also called hard disk. A form of nonvolatile secondary memory composed of rotating
platters coated with a magnetic recording material. Because they are rotating mechanical devices,
access times are about 5 to 20 milliseconds.

• flash memory A nonvolatile semiconductor memory. It is cheaper and slower than DRAM but more
expensive per bit and faster than magnetic disks. Access times are about 5 to 50 microseconds.

Abstractions

A. Carini – Digital System Architectures

• One of the most important abstractions is the interface between the hardware and the lowest-level
software: the instruction set architecture (ISA), or simply architecture, of a computer.

• The instruction set architecture includes anything programmers need to know to make a binary
machine language program work correctly, including instructions, I/O devices, and so on.

• Typically, the operating system will encapsulate the details of doing I/O, allocating memory, and
other low-level system functions.

• application binary interface (ABI) The user portion of the instruction set plus the operating system
interfaces used by application programmers. (ISA + system SW interface). It defines a standard for
binary portability across computers.

• Note that we distinguish the instruction set architecture from an implementation of the architecture:
an implementation is hardware that obeys the architecture abstraction.

• This abstract interface enables many implementations of varying cost and performance to run
identical software.

Technologies for building processors and memories

A. Carini – Digital System Architectures

DRAM capacity

Technologies for building processors and memories

A. Carini – Digital System Architectures

https://www.researchgate.net/figure/Scaling-of-DRAM-capacity-bandwidth-and-latency-between-1999-and-2017-normalized-to-the_fig1_346701407

Technologies for building processors and memories

A. Carini – Digital System Architectures

https://www.semianalysis.com/p/the-memory-wall

Technologies for building processors and memories

A. Carini – Digital System Architectures

• Yeld the percentage of good dies from the total number of dies on the wafer.

Technologies for building processors and memories

A. Carini – Digital System Architectures

• Intel Core i7 wafer (2012)
• 300mm wafer, 280 chips, 32nm technology
• Each chip is 20.7 x 10.5mm

Technologies for building processors and memories

A. Carini – Digital System Architectures

• Intel-Raptor-Lake-Core-i9-13900K (2022)
• 24 core
• 23.8 x 10.8mm or 257.04mm
• 12-inch wafer
• 10 nm Enhanced SuperFin
• 227 (?) chips

Technologies for building processors and memories

A. Carini – Digital System Architectures

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost

+
=

=

• Nonlinear relation to area and defect rate
• Wafer cost and area are fixed
• Defect rate determined by manufacturing process
• Die area determined by architecture and circuit design

Defining performance

A. Carini – Digital System Architectures

• When we say one computer has better performance than another, what do we mean?
• Which of the following airplanes has the best performance?

0 100 200 300 400 500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passengers x mph

Response Time and Throughput

A. Carini – Digital System Architectures

• If you were running a program on two different desktop computers, you’d say that the faster one is the
desktop computer that gets the job done first.

• If you were running a datacenter that had several servers running jobs submitted by many users, you’d
say that the faster computer was the one that completed the most jobs during a day.

• response time Also called execution time.
• The total time required for the computer to complete a task, including disk accesses, memory

accesses, I/O activities, operating system overhead, CPU execution time, and so on.
• throughput Also called bandwidth.

• Another measure of performance, it is the number of tasks completed per unit time.

• How are response time and throughput affected by
1. Replacing the processor with a faster version?
2. Adding more processors?

• We’ll focus on response time for now…

Relative performance

A. Carini – Digital System Architectures

• Define performance as

• With two computers

• “X is n time faster than Y” if

Example of relative performance

A. Carini – Digital System Architectures

• Time taken to run a program
• 10s on A, 15s on B

• Execution TimeB / Execution TimeA = 15s / 10s = 1.5

• So A is 1.5 times faster than B

Measuring Performance

A. Carini – Digital System Architectures

• Time is the measure of computer performance: the computer that performs the same amount of work
in the least time is the fastest.

• However, time can be defined in different ways, depending on what we count.
• wall clock time, response time, or elapsed time.

• total time to complete a task, including disk accesses, memory accesses, input/output (I/O)
activities, operating system overhead—everything.

• CPU execution time Also called CPU time.
• The actual time the CPU spends computing for a specific task.
• Does not include time spent waiting for I/O or running other programs.

• CPU time can be further divided into
• user CPU time The CPU time spent in a program itself.
• system CPU time The CPU time spent in the operating system performing tasks on behalf of the

program.
• Different programs are affected differently by CPU and system performance.

CPU Clocking

A. Carini – Digital System Architectures

• All computers are constructed using a clock that determines when events take place in the hardware.
• clock period is the time for a complete clock cycle (e.g., 250 picoseconds, or 250 ps).
• clock frequency or clock rate is the inverse of the clock period (e.g., 4 gigahertz, or 4 GHz).
• A simple formula relates the clock cycles and clock cycle time to CPU time:

• This formula makes it clear that the hardware designer can improve performance by reducing the
number of clock cycles required for a program or the length of the clock cycle.

• Hardware designer must often trade off clock rate against cycle count.

CPU Time Example

A. Carini – Digital System Architectures

• Computer A: 2GHz clock, 10s CPU time
• Designing Computer B

• Aim for 6s CPU time
• Can do faster clock, but causes 1.2 × clock cycles

• How fast must Computer B clock be?

Instruction Performance

A. Carini – Digital System Architectures

• The previous performance equations did not include any reference to the number of instructions
needed for the program. The execution time must depend on the number of instructions in a program.

• One way to think about execution time is that it equals the number of instructions executed multiplied
by the average time per instruction.

• clock cycles per instruction (CPI)
• Average number of clock cycles per instruction for a program or program fragment.

• Since different instructions may take different amounts of time depending on what they do, CPI is an
average of all the instructions executed in the program.

CPI in More Detail

A. Carini – Digital System Architectures

• If different instruction classes take different numbers of cycles

• Weighted average CPI

=

=
n

1i

ii)Count nInstructio(CPICycles Clock

=

==

n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency

CPI Example

A. Carini – Digital System Architectures

• Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program.
• Computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program.
• Which computer is faster for this program and by how much?

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU

=

=

==

=

==

=

A is faster…

… by this

much

Classic CPU Performance Equation

A. Carini – Digital System Architectures

• We can now write the basic performance equation in terms of instruction count (the number of
instructions executed by the program), CPI, and clock cycle time:

• or, since the clock rate is the inverse of clock cycle time:

Example: comparing code segments

A. Carini – Digital System Architectures

• A compiler designer is trying to decide between two code sequences for a computer.

5 instructions
6 instructions

Performance Summary

A. Carini – Digital System Architectures

• Performance depends on
• Algorithm

• Determines the number of source program instructions executed and hence the number of
processor instructions executed. May also affect the CPI favoring slower or faster instructions.

• Programming language
• Affects the instruction count, since statements in the language are translated to processor

instructions, which determine instruction count. May also affect the CPI because of its features,
e.g. heavy support data abstraction requires indirect calls, which use higher CPI instructions.

• Compiler
• Affects both the instruction count and average cycles per instruction, since it determines the

translation of the source language instructions into computer instructions.
• Instruction set architecture

• Affects all three aspects of CPU performance, since it affects the instructions needed for a
function, the cost in cycles of each instruction, and the overall clock rate of the processor.

The power wall

A. Carini – Digital System Architectures

Power dissipation in CMOS

A. Carini – Digital System Architectures

• For CMOS, the primary source of energy consumption is so-called dynamic energy—that is, energy
that is consumed when gates switch states from 0 to 1 and vice versa.

• For 0 -> 1 -> 0:

• For a single transition:

• The power required per gate is just the product of energy of a transition and the frequency of
transitions, which depends on the clock frequency:

• How could clock rates grow by a factor of 1000 while power increased by only a factor of 30?
• Energy and power have been reduced by lowering the voltage, which occurred with each new

generation of technology, passing from 5V till values below 1V.

Modern problems in power dissipation

A. Carini – Digital System Architectures

• The modern problem is that further lowering of the voltage appears to make the transistors too leaky.
• Although dynamic energy is the primary source of energy consumption in CMOS, static energy

consumption occurs because of leakage current that flows even when a transistor is off.
• In servers, leakage is typically responsible for 40% of the energy consumption.
• Increasing the number of transistors increases power dissipation, even if the transistors are always off.
• A variety of design techniques and technology innovations are being deployed to control leakage, but

it’s hard to lower voltage further.

The Switch from Uniprocessors to Multiprocessors

A. Carini – Digital System Architectures

Constrained by power, instruction-level parallelism, memory latency

The Switch from Uniprocessors to Multiprocessors

A. Carini – Digital System Architectures

“Dennard scaling,” stating
that as transistor density
increased, power
consumption per
transistor would drop, so
the power per mm2 of
silicon would be near
constant.
“Amdahl’s Law,” meaning
here that the speedup
from a parallel computer
is limited by the portion
of a computation that is
sequential.
“End of Moore’s Law” !?

Multiprocessors

A. Carini – Digital System Architectures

• Multicore microprocessors
• More than one processor per chip
• Benefit more on throughput than on response time

• Requires explicitly parallel programming
• Compare with instruction level parallelism (pipeline) where:

• Hardware executes multiple instructions at once
• Hidden from the programmer

• Hard to do
• Programming for performance
• Load balancing
• Optimizing communication and synchronization

SPEC CPU Benchmark

A. Carini – Digital System Architectures

• Performance of processors is measured using benchmark programs supposedly typical of actual
workload.

• SPEC (Standard Performance Evaluation Corporation) is an effort funded and supported by a
number of computer vendors to create standard sets of benchmarks for modern computer systems.

• Develops benchmarks for CPU, I/O, Web, …
• SPEC CPU2006 consists of a set of 12 integer benchmarks (CINT2006) and 17 floating-point

benchmarks (CFP2006).
• Elapsed time to execute a selection of programs
• Negligible I/O, so focuses on CPU performance
• Normalize relative to reference machine
• Summarize as geometric mean of performance ratios

CINT2006 for Intel Core i7 920

A. Carini – Digital System Architectures

SPEC Power Benchmark

A. Carini – Digital System Architectures

• It reports power consumption of servers at different workload levels, divided into 10% increments,
over a period of time.

• SPECpower started with another SPEC benchmark for Java business applications
• exercises the processors, caches, main memory, Java virtual machine, compiler, garbage

collector, and pieces of the operating system.
• Performance is measured in throughput, as business operations per second.
• Power is measured in Watts.
• overall ssj_ops per watt:

SPECpower_ssj2008 for Xeon X5650

A. Carini – Digital System Architectures

Pitfall: Amdahl’s Law

A. Carini – Digital System Architectures

• A common pitfall: Improving an aspect of a computer and expecting a proportional improvement in
overall performance.

• The Amdahl’s Law states that execution time of the program after making the improvement is

• Example: multiply accounts for 80s of program running in 100s.
• How much improvement in multiply performance to get 5× improvement overall?

unaffected
affected

improved T
factor timprovemen

T
T +=

20
80

20 +=
n

Can’t be done!

Fallacy: Low Power at Idle

A. Carini – Digital System Architectures

• Look back at Xeon power benchmark
• At 100% load: 258W
• At 50% load: 170W (66%)
• At 10% load: 121W (47%)

• Google data center
• Mostly operates at 10% – 50% load
• At 10% load the power is 33% of the peak power
• At 100% load less than 1% of the time

• We should design hardware to achieve “energy-proportional computing.”
• If future servers used, say, 10% of peak power at 10% workload, we could reduce the electricity bill of

datacenters and CO2 emissions.

Pitfall: MIPS as a Performance Metric

A. Carini – Digital System Architectures

• MIPS: Millions of Instructions Per Second
• Doesn’t account for

• Differences in ISAs between computers
• Differences in complexity between instructions

• CPI varies between programs on a given CPU

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution

count nInstructio
MIPS

=

=

=

References

• David A. Patterson and John L. Hennessy, “Computer organization and design ARM edition: the
hardware software interface,” Morgan Kaufmann, 2016.

• Chapter 1

Most of the text has been taken and adapted from “Computer Organization and Design ARM Edition: The
Hardware Software Interface”.
If not differently indicated, all figures have been taken from the book or the material in the companion
website of “Computer Organization and Design ARM Edition: The Hardware Software Interface”.

A. Carini – Digital System Architectures

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

