
Computer Abstractions and Technology

A. Carini – Digital System Architectures



Introduction

In the last decades, there have been a number of new computers whose introduction appeared to 
revolutionize the computing industry; these revolutions were cut short only because someone else built 
an even better computer.
This  race  to  innovate  has  led  to  unprecedented  progress  since  the  inception  of electronic 
computing in the late 1940s. 
Had the transportation industry kept pace with the computer industry, for example, today we could travel 
from New York to London in a second for a penny.
Each time the cost of computing improves by another factor of 10, the opportunities for computers 
multiply. Applications that were economically infeasible suddenly become practical.
In the recent past, the following applications were “computer science fiction”:
• Computers in automobiles
• Cell phones
• Human genome project
• World Wide Web
• Search Engines
• AI Engines
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Traditional Classes of Computing Applications

Computers are used in three dissimilar classes of applications:
• Personal computer (PC)  A computer designed for use by  an individual, usually incorporating a 

graphics display, a keyboard, and a mouse.
• Server A computer used for running larger programs for multiple users, often simultaneously, and 

typically accessed only via a network. Have high capacity, performance, reliability. Range from small 
servers to building sized.

• Supercomputer A class of computers with the highest performance and cost; they are configured as 
servers and typically cost tens to hundreds of millions of dollars. They represent a small fraction of the 
overall computer market.

• Embedded computer A computer inside another device used for running one predetermined 
application or collection of software.
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The PostPC Era
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The PostPC Era

• Personal mobile devices (PMDs)  are  small wireless devices to connect to the Internet; they rely on 
batteries for power, and software is installed by downloading apps. Conventional examples are smart 
phones and tablets.

• Cloud Computing  refers to large collections of servers (in giant datacenters known as Warehouse 
Scale Computers (WSCs)) that provide services over the Internet; some providers rent dynamically 
varying numbers of servers as a utility.

• Software as a Service (SaaS)  delivers software and data as a service over the Internet, usually via a 
thin program such as a browser that runs on local client devices, instead of binary code that must be  
installed, and runs wholly on that device. Examples include web search and social networking.
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Definitions
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KiBiByte – Kilo Binary Byte



What You Will Learn
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• How  are  programs  written  in  a  high-level  language,  such  as  C  or  Java, translated into the 
machine language, and how does the hardware execute  the  resulting  program.

• What is the interface between the software and the hardware, and how does software instruct the 
hardware to perform needed functions.

• What determines the performance of a program, and how can a programmer improve  the  
performance.

• What techniques can be used by hardware designers to improve performance.
• What  techniques  can  be  used  by  hardware  designers  to  improve energy efficiency. What can the 

programmer do to help or hinder energy efficiency.
• What are the reasons for and the consequences of the recent switch from sequential processing to 

parallel processing.
• Since the first commercial computer in 1951, what great ideas did computer architects come up with 

that lay the foundation of modern computing.



Understanding Performance
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The performance of a program depends on a combination of :
• Algorithm

• Determines number of operations executed
• Programming language, compiler, architecture

• Determine number of machine instructions executed per operation
• Processor and memory system

• Determine how fast instructions are executed
• I/O system (including OS)

• Determines how fast I/O operations are executed



Eight Great Ideas
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• Design for Moore’s Law
• Moore’s Law states that integrated circuit resources double every 18–24 months.
• As computer designs can take years, the resources available per chip can easily double or 

quadruple between the start and finish of the project.
• Computer architects must anticipate where the technology will be when the design finishes 

rather than design for where it starts. 

• Use abstraction to simplify design
• A major productivity technique for hardware and software is to use abstractions to characterize 

the design at different levels of representation; lower-level details are hidden to offer a simpler 
model at higher levels.

• Make the common case fast
• Making  the  common  case  fast  will  tend  to  enhance  performance  better  than optimizing 

the rare case.



Eight Great Ideas
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• Performance via parallelism
• Since the dawn of computing, computer architects have offered designs that get more 

performance by computing operations in parallel. 

• Performance via pipelining
• A particular pattern of parallelism. 
• Divide operations in small stages, e.g. fetch, decode, execute. While instruction i is executed, i+1 

is decoded, i+2 is fetched.

• Performance via prediction
• It can be faster on average  to  guess  and  start  working  rather  than  wait  until  you  know  for  

sure, assuming that the mechanism to recover from a misprediction is not too expensive and 
your prediction is relatively accurate.



Eight Great Ideas
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• Hierarchy of memories
• Programmers want the memory to be fast, large, and cheap, as memory speed often shapes 

performance, capacity limits the size of problems that can be solved, and the cost of memory 
today is often the majority of computer cost. 

• We can  address  these  conflicting  demands  with  a  hierarchy  of  memories, with the fastest, 
smallest, and the most expensive memory per bit at the top of the hierarchy and the slowest, 
largest, and cheapest per bit at the bottom.

• Caches  give  the  illusion  that  main  memory  is almost as fast as the top of the hierarchy and 
nearly as big and cheap as the bottom  of the hierarchy

• Dependability via redundancy
• Computers not only need to be fast; they need to be dependable. 
• Since any physical device can fail, we make systems dependable by including redundant 

components that can take over when a failure occurs and to help detect failures.



Below Your Program
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• Application software
• Millions of code lines                       

• System software
• Software that provides services that are commonly useful, 

including operating systems, compilers, loaders, and assemblers.
• Compiler: translates HLL code to machine code.
• Operating System: Supervising program that  manages the 

resources of a computer for the benefit of the programs that run 
on that computer.

• Handling input/output
• Managing memory and storage
• Scheduling tasks & sharing resources

• Hardware
• Processor, memory, I/O controllers



From a High-Level Language to the Language of Hardware
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• instruction A command that computer hardware understands and obeys.
• assembler A program that translates a symbolic version of instructions into 

the binary version.
• assembly language A symbolic representation of machine instructions.
• machine language A binary representation of machine instructions.

• High-level language
• Level of abstraction closer to problem domain
• Provides for productivity and portability 

• Assembly language
• Textual representation of instructions

• Hardware representation
• Binary digits (bits)
• Encoded instructions and data



Components of a Computer
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• The  five  classic  components  of  a  computer  are  
input,  output,  memory,  datapath, and control, 
with the last two sometimes combined and called 
the processor, or central processing unit CPU. 

• This organization is independent of hardware 
technology: you can place every  piece  of  every 
computer, past and  present,  into  one  of  these  
five categories.

• central processor unit (CPU)  Also called processor. 
The active part of the computer, which contains the 
datapath and control and which adds numbers, 
tests numbers, signals I/O devices to activate, and 
so on.



Inside the Processor (CPU)
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• datapath
• The component of the processor that performs arithmetic operations.

• control  
• The component of the processor that commands the datapath, memory, and I/O devices 

according to the instructions of the program.



Memory
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• memory  
• The storage area in which programs are kept when they are running and that contains the data 

needed by the running programs.
• dynamic random access  memory (DRAM)

• Memory built as an integrated circuit; it provides random access to any location. Access times 
are 50 nanoseconds

• cache memory  
• A small, fast memory that acts as a buffer for a slower, larger memory. Typically SRAM.

• static random access memory (SRAM)  
• Also memory built as an integrated circuit, but faster and less dense than DRAM.

• SRAM and DRAM are volatile memories:  they are used to hold data and programs while they are 
running; but we need nonvolatile memory used to store programs and data between runs.



Primary and Secondary memories
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• We will distinguish between 
• main memory (also called primary memory) memory used to hold programs while they are 

running; typically consists of DRAM in today’s computers.
• secondary memory Nonvolatile memory used to store programs and data between runs; 

typically consists of flash memory in PMDs and SSDs and magnetic disks in servers.

• magnetic disk  Also called hard disk. A form of nonvolatile secondary memory composed of rotating 
platters coated with a magnetic recording material. Because they are rotating mechanical devices, 
access times are about 5 to 20 milliseconds. 

• flash memory A nonvolatile semiconductor memory. It is cheaper and slower than DRAM but more 
expensive per bit and faster than magnetic disks. Access times are about 5 to 50 microseconds.



Abstractions
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• One of the most important abstractions is the interface between the hardware and  the  lowest-level  
software: the  instruction  set  architecture (ISA),  or  simply  architecture,  of  a  computer. 

• The instruction set architecture includes anything programmers need to know to make a binary 
machine language program work correctly, including instructions, I/O  devices,  and  so  on.

• Typically, the operating system will encapsulate  the  details  of  doing  I/O,  allocating  memory,  and 
other low-level system functions. 

• application binary interface (ABI)  The user portion of the instruction set plus the operating system 
interfaces used by application programmers. (ISA + system SW interface). It defines a standard for 
binary portability across computers.

• Note that we distinguish the instruction set architecture from an implementation of the architecture: 
an implementation is hardware that obeys the architecture abstraction.

• This  abstract interface enables many implementations of varying cost and performance to run 
identical software.



Technologies for building processors and memories
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DRAM capacity



Technologies for building processors and memories
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https://www.researchgate.net/figure/Scaling-of-DRAM-capacity-bandwidth-and-latency-between-1999-and-2017-normalized-to-the_fig1_346701407



Technologies for building processors and memories
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https://www.semianalysis.com/p/the-memory-wall



Technologies for building processors and memories
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• Yeld the percentage of good dies from the total number of dies on the wafer.



Technologies for building processors and memories
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• Intel Core i7 wafer (2012)
• 300mm wafer, 280 chips, 32nm technology
• Each chip is 20.7 x 10.5mm



Technologies for building processors and memories
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• Intel-Raptor-Lake-Core-i9-13900K (2022)
• 24 core
• 23.8 x 10.8mm or 257.04mm
• 12-inch wafer 
• 10 nm Enhanced SuperFin
• 227 (?) chips  



Technologies for building processors and memories
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• Nonlinear relation to area and defect rate
• Wafer cost and area are fixed
• Defect rate determined by manufacturing process
• Die area determined by architecture and circuit design



Defining performance
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• When  we  say  one  computer  has  better  performance  than  another,  what  do  we mean?
• Which of the following airplanes has the best performance?
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Response Time and Throughput
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• If you were running a program on two different desktop computers, you’d say that the faster one is the 
desktop computer that gets the job done first. 

• If you were running a datacenter that had several servers running jobs submitted by many users, you’d 
say that the faster computer was the one that completed the most jobs during a day. 

• response time Also called execution time.  
• The total time required for the computer to complete a task, including disk accesses, memory 

accesses, I/O activities, operating system overhead, CPU execution time, and so on.
• throughput Also called  bandwidth. 

• Another measure of performance, it is the number of tasks completed per unit time.

• How are response time and throughput affected by
1. Replacing the processor with a faster version?
2. Adding more processors?

• We’ll focus on response time for now…



Relative performance
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• Define performance as

• With two computers

• “X is n time faster than Y” if



Example of relative performance
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• Time taken to run a program
• 10s on A, 15s on B

• Execution TimeB / Execution TimeA = 15s / 10s = 1.5 

• So A is 1.5 times faster than B



Measuring Performance

A. Carini – Digital System Architectures

• Time is the measure of computer performance: the computer that performs the same amount of work 
in the least time is the fastest. 

• However, time can be defined in different ways, depending on what we count.
• wall clock time, response time, or elapsed time.

• total time to complete a task, including disk accesses, memory accesses, input/output (I/O) 
activities, operating system overhead—everything.

• CPU execution  time Also called CPU time. 
• The actual time the CPU spends computing for a specific task.
• Does not include time spent waiting for I/O or running other programs. 

• CPU time can be further divided into 
• user CPU time The CPU time spent in a program itself.
• system CPU time The CPU time spent in the operating system performing tasks on behalf of the 

program.
• Different programs are affected differently by CPU and system performance.



CPU Clocking
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• All computers are constructed using a clock that determines when events take place in the hardware.
• clock period is the time for a complete clock cycle (e.g., 250 picoseconds, or 250 ps). 
• clock frequency or clock rate is the inverse of the clock period (e.g., 4 gigahertz, or 4 GHz).
• A simple formula relates the clock cycles and clock cycle time to CPU time:

• This formula makes it clear that the hardware designer can improve performance by reducing the 
number of clock cycles required for a program or the length of the clock cycle.

• Hardware designer must often trade off clock rate against cycle count.



CPU Time Example
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• Computer A: 2GHz clock, 10s CPU time
• Designing Computer B

• Aim for 6s CPU time
• Can do faster clock, but causes 1.2 × clock cycles

• How fast must Computer B clock be?



Instruction Performance
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• The previous performance equations did not include any reference to the number of instructions 
needed for the program. The execution time must depend on the number of instructions in a program.

• One way to think about execution time is that it equals the number of instructions executed multiplied 
by the average time per instruction. 

• clock cycles per instruction (CPI)
• Average number of clock cycles per instruction for a program or program fragment.

• Since different instructions may take different amounts of time depending on what they do, CPI is an 
average of all the instructions executed in the program.



CPI in More Detail
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• If different instruction classes take different numbers of cycles

• Weighted average CPI
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CPI Example

A. Carini – Digital System Architectures

• Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program. 
• Computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. 
• Which computer is faster for this program and by how much?

1.2
500psI

600psI

A
Time CPU

B
Time CPU

600psI500ps1.2I

B
Time Cycle

B
CPICount nInstructio

B
Time CPU

500psI250ps2.0I

A
Time Cycle

A
CPICount nInstructio

A
Time CPU

=



=

==

=

==

=

A is faster…

… by this 

much



Classic CPU Performance Equation
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• We can now write the basic performance equation in terms of instruction count (the number of 
instructions executed by the program), CPI, and clock cycle time:

• or, since the clock rate is the inverse of clock cycle time:



Example: comparing code segments
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• A  compiler  designer  is  trying  to  decide  between  two  code  sequences  for  a computer.

5 instructions
6 instructions



Performance Summary
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• Performance depends on
• Algorithm

• Determines the number of source program instructions executed and hence the number of 
processor instructions executed. May also affect the CPI favoring slower or faster instructions. 

• Programming language
• Affects the instruction count, since statements in the language are translated to processor 

instructions, which determine instruction count. May also affect the CPI because of its features, 
e.g. heavy support data abstraction requires indirect calls, which use higher CPI instructions.

• Compiler
• Affects both the instruction count and average cycles per instruction, since it determines the 

translation of the source language instructions into computer instructions.
• Instruction set architecture

• Affects all three aspects of CPU performance, since it affects the instructions needed for a 
function, the cost in cycles of each instruction, and the overall clock rate of the processor.



The power wall
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Power dissipation in CMOS
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• For CMOS, the primary source of energy consumption is so-called dynamic energy—that is, energy 
that is consumed when gates switch  states  from  0  to  1  and  vice  versa.

• For 0 -> 1 -> 0:

• For a single transition:

• The power required per gate is just the product of energy of a transition and the frequency of 
transitions, which depends on the clock frequency:

• How could clock rates grow by a factor of 1000 while power increased by only a factor of 30? 
• Energy and power have been reduced by lowering the voltage, which occurred with each new 

generation of technology, passing from 5V till values below 1V.



Modern problems in power dissipation
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• The modern problem is that further lowering of the voltage appears to make the transistors too leaky.
• Although dynamic energy is the primary source of energy consumption in CMOS, static energy 

consumption occurs because of leakage current that flows even when a transistor is off. 
• In servers, leakage is typically responsible for 40% of the energy consumption. 
• Increasing the number of transistors increases power dissipation, even if the transistors are always off. 
• A variety of design techniques and technology innovations are being deployed to control leakage, but 

it’s hard to lower voltage further.



The Switch from Uniprocessors to Multiprocessors
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Constrained by power, instruction-level parallelism, memory latency



The Switch from Uniprocessors to Multiprocessors
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“Dennard scaling,” stating 
that as transistor density 
increased, power 
consumption per 
transistor would drop, so 
the power per mm2 of 
silicon would be near 
constant.
“Amdahl’s Law,” meaning 
here that the speedup 
from a parallel computer 
is limited by the portion 
of a computation that is 
sequential. 
“End of Moore’s Law” !?



Multiprocessors
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• Multicore microprocessors
• More than one processor per chip
• Benefit more on throughput than on response time

• Requires explicitly parallel programming
• Compare with instruction level parallelism (pipeline)  where:

• Hardware executes multiple instructions at once
• Hidden from the programmer

• Hard to do
• Programming for performance
• Load balancing
• Optimizing communication and synchronization



SPEC CPU Benchmark
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• Performance of processors is measured using benchmark programs supposedly typical of actual 
workload.

• SPEC  (Standard Performance Evaluation Corporation) is  an  effort  funded  and supported by a 
number of computer vendors to create standard sets of benchmarks for  modern  computer  systems.

• Develops benchmarks for CPU, I/O, Web, …
• SPEC CPU2006 consists of a set of 12 integer benchmarks (CINT2006) and 17 floating-point 

benchmarks (CFP2006).
• Elapsed time to execute a selection of programs
• Negligible I/O, so focuses on CPU performance
• Normalize relative to reference machine
• Summarize as geometric mean of performance ratios



CINT2006 for Intel Core i7 920
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SPEC Power Benchmark
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• It reports power consumption of servers at different workload levels, divided into 10% increments, 
over a period of time.

• SPECpower started with another SPEC benchmark for Java business applications
• exercises the processors, caches, main memory, Java virtual machine, compiler, garbage 

collector, and pieces of the operating system.
• Performance  is  measured  in  throughput, as business operations per second.
• Power is measured in Watts.
• overall ssj_ops per watt:



SPECpower_ssj2008 for Xeon X5650
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Pitfall: Amdahl’s Law
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• A common pitfall: Improving an aspect of a computer and expecting a proportional improvement in 
overall performance.

• The Amdahl’s Law states that execution time of the program after making the improvement is

• Example: multiply accounts for 80s of program running in 100s.
• How much improvement in multiply performance to get 5× improvement overall?

unaffected
affected

improved T
factor timprovemen

T
T +=

20
80

20 +=
n

Can’t be done!



Fallacy: Low Power at Idle
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• Look back at Xeon power benchmark
• At 100% load: 258W
• At 50% load: 170W (66%)
• At 10% load: 121W (47%)

• Google data center
• Mostly operates at 10% – 50% load 
• At 10% load the power is 33% of the peak power
• At 100% load less than 1% of the time

• We should design hardware to achieve “energy-proportional computing.” 
• If future servers used, say, 10% of peak power at 10% workload, we could reduce the electricity bill of 

datacenters and CO2  emissions.



Pitfall: MIPS as a Performance Metric
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• MIPS: Millions of Instructions Per Second
• Doesn’t account for

• Differences in ISAs between computers
• Differences in complexity between instructions

• CPI varies between programs on a given CPU
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