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Introduction

In the last decades, there have been a number of new computers whose introduction appeared to
revolutionize the computing industry; these revolutions were cut short only because someone else built
an even better computer.

This race to innovate has led to unprecedented progress since the inception of electronic
computing in the late 1940s.

Had the transportation industry kept pace with the computer industry, for example, today we could travel
from New York to London in a second for a penny.

Each time the cost of computing improves by another factor of 10, the opportunities for computers
multiply. Applications that were economically infeasible suddenly become practical.

In the recent past, the following applications were “computer science fiction”:

* Computers in automobiles

* Cell phones

* Human genome project

*  World Wide Web

* Search Engines

* Al Engines
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Traditional Classes of Computing Applications

Computers are used in three dissimilar classes of applications:

* Personal computer (PC) A computer designed for use by an individual, usually incorporating a
graphics display, a keyboard, and a mouse.

* Server A computer used for running larger programs for multiple users, often simultaneously, and
typically accessed only via a network. Have high capacity, performance, reliability. Range from small
servers to building sized.

*  Supercomputer A class of computers with the highest performance and cost; they are configured as
servers and typically cost tens to hundreds of millions of dollars. They represent a small fraction of the
overall computer market.

*  Embedded computer A computer inside another device used for running one predetermined
application or collection of software.
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The PostPC Era
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The PostPC Era

* Personal mobile devices (PMDs) are small wireless devices to connect to the Internet; they rely on
batteries for power, and software is installed by downloading apps. Conventional examples are smart
phones and tablets.

* Cloud Computing refers to large collections of servers (in giant datacenters known as Warehouse
Scale Computers (WSCs)) that provide services over the Internet; some providers rent dynamically
varying numbers of servers as a utility.

* Software as a Service (SaaS) delivers software and data as a service over the Internet, usually via a
thin program such as a browser that runs on local client devices, instead of binary code that must be
installed, and runs wholly on that device. Examples include web search and social networking.
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Definitions

Decimal Binary
term Abbreviation term

KiBiByte — Kilo Binary Byte

m

Abbreviation

Kilobyte Kibibyte 2%
megabyte MB 106 mebibyte MiB 220 5%
gigabyte GB 10° gibibyte GiB 230 7%
terabyte B 10+ tebibyte TiB 240 10%
petabyte PB 10 pebibyte PiB 250 13%

exabyte EB 108 exbibyte EiB 7 15%
zettabyte ZB 102t zebibyte ZiB 2% 18%
yottabyte YB 102 yobibyte YiB 288 21%
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What You Will Learn

* How are programs written in a high-level language, such as C or Java, translated into the
machine language, and how does the hardware execute the resulting program.

* What is the interface between the software and the hardware, and how does software instruct the
hardware to perform needed functions.

*  What determines the performance of a program, and how can a programmer improve the
performance.

*  What techniques can be used by hardware designers to improve performance.

* What techniques can be used by hardware designers to improve energy efficiency. What can the
programmer do to help or hinder energy efficiency.

* What are the reasons for and the consequences of the recent switch from sequential processing to
parallel processing.

* Since the first commercial computer in 1951, what great ideas did computer architects come up with
that lay the foundation of modern computing.
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Understanding Performance

The performance of a program depends on a combination of :
* Algorithm

* Determines number of operations executed
*  Programming language, compiler, architecture

* Determine number of machine instructions executed per operation
*  Processor and memory system

* Determine how fast instructions are executed
* 1/0 system (including 0S)

* Determines how fast I/O operations are executed
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Eight Great Ideas

* Design for Moore’s Law
* Moore’s Law states that integrated circuit resources double every 18-24 months.
* As computer designs can take years, the resources available per chip can easily double or
guadruple between the start and finish of the project.
* Computer architects must anticipate where the technology will be when the design finishes moemes AN
rather than design for where it starts.

* Use abstraction to simplify design
* A major productivity technique for hardware and software is to use abstractions to characterize
the design at different levels of representation; lower-level details are hidden to offer a simpler
model at higher levels.

e Make the common case fast

* Making the common case fast will tend to enhance performance better than optimizing E
the rare case.

COMMON CASE FAST
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Eight Great Ideas

* Performance via parallelism

* Since the dawn of computing, computer architects have offered designs that get more
performance by computing operations in parallel.

PARALLELISM

* Performance via pipelining

* A particular pattern of parallelism. ‘.
* Divide operations in small stages, e.g. fetch, decode, execute. While instruction i is executed, i+1 ||
is decoded, i+2 is fetched. .'

LININ

sure, assuming that the mechanism to recover from a misprediction is not too expensive and

*  Performance via prediction
* |t can be faster on average to guess and start working rather than wait until you know for Q
your prediction is relatively accurate.

PIPE G
PREDICTION
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Eight Great Ideas

* Hierarchy of memories
* Programmers want the memory to be fast, large, and cheap, as memory speed often shapes
performance, capacity limits the size of problems that can be solved, and the cost of memory
today is often the majority of computer cost.
* We can address these conflicting demands with a hierarchy of memories, with the fastest,
smallest, and the most expensive memory per bit at the top of the hierarchy and the slowest, /A
largest, and cheapest per bit at the bottom. HIERARCHY
* Caches give the illusion that main memory is almost as fast as the top of the hierarchy and
nearly as big and cheap as the bottom of the hierarchy

* Dependability via redundancy

* Computers not only need to be fast; they need to be dependable. 'OGLH
e Since any physical device can fail, we make systems dependable by including redundant .

components that can take over when a failure occurs and to help detect failures.
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Below Your Program

* Application software
* Millions of code lines

System software

* Software that provides services that are commonly useful,
including operating systems, compilers, loaders, and assemblers.

*  Compiler: translates HLL code to machine code.

* Operating System: Supervising program that manages the
resources of a computer for the benefit of the programs that run
on that computer.

* Handling input/output

* Managing memory and storage

* Scheduling tasks & sharing resources
* Hardware
*  Processor, memory, I/O controllers
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From a High-Level Language to the Language of Hardware

High-level swap({int v[1, int k)

language [int temp:

program temp = vlkl;

(inC) VvLk]l = vlk+1l1;
VLk+11 = temp;

* instruction A command that computer hardware understands and obeys. 1
* assembler A program that translates a symbolic version of instructions into

the binary version. @

* assembly language A symbolic representation of machine instructions.

* machine language A binary representation of machine instructions. Assembly swap:
language LSL  X10, X1,3
program ADD X100, X0,X10
. (for ARMvB) LDUR X9, [X10,01
* High-level language LDUR X11,[X10,8]
. . STUR X11,[x10,01
* Level of abstraction closer to problem domain STUR X9, [X10.8]
. .. o BR X10
*  Provides for productivity and portability
* Assembly language
e Textual representation of instructions
* Hardware representation
* Binary digits (bits) Binary machine  00000000101000100000000100011000
. . language 00000000100000100001000000100001
* Encoded instructions and data program 10001101111000100000000000000000
(for ARMvB) 10001110000100100000000000000100

10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000
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Components of a Computer

Compiler
9 * The five classic components of a computer are
o m |n.put, output, memory, datapath, and control,
—— with the last two sometimes combined and called
the processor, or central processing unit CPU.
Computer

* This organization is independent of hardware
technology: you can place every piece of every
computer, past and present, into one of these
five categories.

i ‘. . i dQ Datapath ] e central processor unit (CPU) Also called processor.
valuating i ! . . .
performance 1 ‘htu !I The active part of the computer, which contains the

] datapath and control and which adds numbers,
Processor c‘)ry < tests numbers, signals I/O devices to activate, and
- - so on.

¢ Output
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Inside the Processor (CPU)

* datapath
* The component of the processor that performs arithmetic operations.

e control
* The component of the processor that commands the datapath, memory, and I/O devices
according to the instructions of the program.
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Memory

°*  memory
* The storage area in which programs are kept when they are running and that contains the data
needed by the running programs.
* dynamic random access memory (DRAM)
*  Memory built as an integrated circuit; it provides random access to any location. Access times
are 50 nanoseconds
* cache memory
* Asmall, fast memory that acts as a buffer for a slower, larger memory. Typically SRAM.
* staticrandom access memory (SRAM)
* Also memory built as an integrated circuit, but faster and less dense than DRAM.

* SRAM and DRAM are volatile memories: they are used to hold data and programs while they are
running; but we need nonvolatile memory used to store programs and data between runs.

S UNIVERSITA 5 Diperinento o )
@J prrmesres | 1AL st A. Carini — Digital System Architectures



Primary and Secondary memories

*  We will distinguish between
* main memory (also called primary memory) memory used to hold programs while they are
running; typically consists of DRAM in today’s computers.
* secondary memory Nonvolatile memory used to store programs and data between runs;
typically consists of flash memory in PMDs and SSDs and magnetic disks in servers.

* magnetic disk Also called hard disk. A form of nonvolatile secondary memory composed of rotating
platters coated with a magnetic recording material. Because they are rotating mechanical devices,
access times are about 5 to 20 milliseconds.

* flash memory A nonvolatile semiconductor memory. It is cheaper and slower than DRAM but more
expensive per bit and faster than magnetic disks. Access times are about 5 to 50 microseconds.
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Abstractions

* One of the most important abstractions is the interface between the hardware and the lowest-level
software: the instruction set architecture (ISA), or simply architecture, of a computer.

* Theinstruction set architecture includes anything programmers need to know to make a binary
machine language program work correctly, including instructions, I/O devices, and so on.

* Typically, the operating system will encapsulate the details of doing 1/0, allocating memory, and
other low-level system functions.

* application binary interface (ABI) The user portion of the instruction set plus the operating system
interfaces used by application programmers. (ISA + system SW interface). It defines a standard for
binary portability across computers.

* Note that we distinguish the instruction set architecture from an implementation of the architecture:
an implementation is hardware that obeys the architecture abstraction.

* This abstract interface enables many implementations of varying cost and performance to run
identical software.
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Technologies for building processors and memories

Year | Technology Relative performance/cost
1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit (IC) 900
1995 | Very large scale IC (VLSI) 2,400,000
2013 Ultra large scale IC 250,000,000,000
10,000,000 -
4G
1,000,000 - 2G
1G
% 100,000 o >Tze 256M  912M
§ 10,000 am DRAM capacity
B ™
<1000 256K_2
100 4 64K
16K
10

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
Year of introduction
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Technologies for building processors and memories

DRAM Capacity, Bandwidth & Latency

#Capacity  #Bandwidth  ®@Latency 128x
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Technologies for building processors and memories

DRAM Cost Per Gigabyte

$1,000,000,000.00
$100,000,000.00
$10,000,000.00
$1,000,000.00

$100,000.00

analysis

$10,000.00
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$100.00
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e’ »\\\ -
$1.00 -
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https://www.semianalysis.com/p/the-memory-wall
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Technologies for building processors and memories

Blank

Silicon ingot wafers
processing steps
Tested dies Tested Patterned wafers

0O wafer AT
Bond die t laialiin i Waf P
ond die to , afer 17
package OOxXOO ezl Q b tester pannmnn
OO AL ( 1
l oo )
\_‘__
Packaged dies Tested packaged dies

... Part .. O)X Ship to
... tester .. customers

* Yeld the percentage of good dies from the total number of dies on the wafer.
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Technologies for building processors and memories

* Intel Core i7 wafer (2012)
*  300mm wafer, 280 chips, 32nm technology
* Each chipis 20.7 x 10.5mm
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Technologies for building processors and memories

* Intel-Raptor-Lake-Core-i9-13900K (2022)
* 24 core

e 23.8x10.8mm or 257.04mm

* 12-inch wafer

* 10 nm Enhanced SuperFin

e 227 (?) chips
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Technologies for building processors and memories

Cost per wafer
Dies per wafer x Yield

Cost per die =

Dies per wafer ~ Wafer area/Die area

1

Yield = : >
(1+ (Defects per areaxDie area/2))

Nonlinear relation to area and defect rate
Wafer cost and area are fixed
Defect rate determined by manufacturing process
Die area determined by architecture and circuit design
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Defining performance

*  When we say one computer has better performance than another, what do we mean?
*  Which of the following airplanes has the best performance?

I I I
Boeing 777 ] Boeing 777
Boeing 747 Boeing 747
BAC/Sud BAC/Sud |
Concorde Concorde |
Douglas Douglas DC- |
DC-8-50 8-50 T T T T
0 100 200 300 400 500 0 2000 4000 6000 8000 10000
O Passenger Capacity | 0O Cruising Range (miles) |
Boeing 777 Boeing 777
Boeing 747 Boeing 747 ]
BAC/Sud BAC/Sud —‘—‘
Concorde Concorde
Douglas Douglas DC-
DC-8-50 :‘,] sso N
0 500 1000 1500 0 100000 200000 300000 400000
|El Cruising Speed (mph) | O Passengers x mph
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Response Time and Throughput

* |If you were running a program on two different desktop computers, you’d say that the faster one is the
desktop computer that gets the job done first.
* If you were running a datacenter that had several servers running jobs submitted by many users, you'd
say that the faster computer was the one that completed the most jobs during a day.
* response time Also called execution time.
* The total time required for the computer to complete a task, including disk accesses, memory
accesses, |/0 activities, operating system overhead, CPU execution time, and so on.
* throughput Also called bandwidth.
* Another measure of performance, it is the number of tasks completed per unit time.

* How are response time and throughput affected by
1. Replacing the processor with a faster version?
2. Adding more processors?

We’ll focus on response time for now...
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Relative performance

1

* Define performance as PerformanceX = B
xecution time
X

*  With two computers
Performancey > Performancey

1 1
>

Executiontimey  Executiontimey

Execution timey > Execution timey

e “Xisntime faster than Y” if

Performancey  Execution timey

= = n
Performancey,  Execution timey
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Example of relative performance

* Time taken to run a program
* 10sonA, 15s0nB

* Execution TimeB / Execution TimeA =15s/10s = 1.5

e SoAis 1.5 times faster than B
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Measuring Performance

Time is the measure of computer performance: the computer that performs the same amount of work
in the least time is the fastest.

* However, time can be defined in different ways, depending on what we count.
* wall clock time, response time, or elapsed time.

* total time to complete a task, including disk accesses, memory accesses, input/output (1/0)
activities, operating system overhead—everything.
* CPU execution time Also called CPU time.
* The actual time the CPU spends computing for a specific task.

* Does not include time spent waiting for I/O or running other programs.
* CPU time can be further divided into

* user CPU time The CPU time spent in a program itself.

* system CPU time The CPU time spent in the operating system performing tasks on behalf of the
program.

* Different programs are affected differently by CPU and system performance.
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CPU Clocking

* All computers are constructed using a clock that determines when events take place in the hardware.
* clock period is the time for a complete clock cycle (e.g., 250 picoseconds, or 250 ps).

* clock frequency or clock rate is the inverse of the clock period (e.g., 4 gigahertz, or 4 GHz).

* Asimple formula relates the clock cycles and clock cycle time to CPU time:

CPU execution time  CPU clock cycles _
foraprogram = foraprogram X Clockcycletime

CPUexecutiontime  CPU clock cycles fora program
fora program Clockrate

* This formula makes it clear that the hardware designer can improve performance by reducing the
number of clock cycles required for a program or the length of the clock cycle.
* Hardware designer must often trade off clock rate against cycle count.
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CPU Time Example

* Computer A: 2GHz clock, 10s CPU time
* Designing Computer B

* Aim for 6s CPU time

* Can do faster clock, but causes 1.2 x clock cycles
*  How fast must Computer B clock be?

_ ~ CPUclock cycles  10seconds = CPU clock cycles ,
CPUtime, = > S oydles
Clockrate , 2% 10° Vs
second

o cycles

CPU clock cycles, = 10seconds X 2 X 10 = 20 X 10’ cycles

second

1.2 X CPU clock cycles , 6 seconds = 1.2 X 20 X 10 cycles
Clock ratey Clock ratey

CPU timey =

1.2 X 20 X 10° cycles 0.2 X 20 X 10° cycles 4 X 10° cycles
6 seconds second second

= 4 GHz

Clock rateg =
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Instruction Performance

The previous performance equations did not include any reference to the number of instructions
needed for the program. The execution time must depend on the number of instructions in a program.
One way to think about execution time is that it equals the number of instructions executed multiplied
by the average time per instruction.

Average clock cycles

CPU clock cycles = Instructions fora program X per instruction

clock cycles per instruction (CPI)

* Average number of clock cycles per instruction for a program or program fragment.
Since different instructions may take different amounts of time depending on what they do, CPl is an
average of all the instructions executed in the program.
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CPIl in More Detail

* |f different instruction classes take different numbers of cycles

n

Clock Cycles= ) (CPI, xInstruction Count,)

i=1
*  Weighted average CPI

— CIock_CycIes _ (CPIix
Instruction Count <3

Instruction Count,
Instruction Count

— _/
v

Relative frequency
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CPl Example

* Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program.
* Computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program.
*  Which computer is faster for this program and by how much?

CPU T|meA = Instruction Count x CPIA x Cycle TlmeA

=1x2.0x250ps =1x500ps <+ A is faster...
CPU TimeB = Instruction Count x CPIB x Cycle TimeB

=1x1.2x500ps =1x600ps
CPUTimeg _ 1x600ps
CPU Time

= =12 :
|x500ps : ... by this

much

A
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Classic CPU Performance Equation

* We can now write the basic performance equation in terms of instruction count (the number of
instructions executed by the program), CPI, and clock cycle time:

CPU time = Instructioncount X CPI X Clock cycle time

* or,since the clock rate is the inverse of clock cycle time:

Instruction count X CPI

Clock rate

CPU time =
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Example: comparing code segments

* A compiler designer is trying to decide between two code sequences for a computer.

- CPI for each instruction class

Instruction counts for each instruction class
Code sequence

A | B [ Cc |
2 1 2 === 5 jnstructions
2 4 1 1 === 6 instructions

CPUclockcycles; = (2 X 1)+ (1X2)+(2X3)=2+2+6 = 10cycles
CPUclockcycles, = (4 X1)+(1X2)+(1X3)=4+2+3 = 9cycles

CPU clock cycles; _ 10 _ 20 CPI, — CPU clock cycles,

Instruction count, 5 Instruction count,
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Performance Summary

Instructions o Clock cycles o Seconds

Program Instruction  Clockcycle

Time = Seconds/Program =

* Performance depends on
* Algorithm
* Determines the number of source program instructions executed and hence the number of
processor instructions executed. May also affect the CPI favoring slower or faster instructions.
*  Programming language
* Affects the instruction count, since statements in the language are translated to processor
instructions, which determine instruction count. May also affect the CPI because of its features,
e.g. heavy support data abstraction requires indirect calls, which use higher CPI instructions.
* Compiler
* Affects both the instruction count and average cycles per instruction, since it determines the
translation of the source language instructions into computer instructions.
* Instruction set architecture
* Affects all three aspects of CPU performance, since it affects the instructions needed for a
function, the cost in cycles of each instruction, and the overall clock rate of the processor.
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The power wall
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FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over eight generations
and 30 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The
Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler
pipeline with lower clock rates and multiple processors per chip. The Core i5 pipelines follow in its footsteps.

(@) BCEIS | R e
't- ingegneria oS ) .
[\\??2\/}] DITRIESTE |a Sk A. Carini — Digital System Architectures



Power dissipation in CMOS

*  For CMOS, the primary source of energy consumption is so-called dynamic energy—that is, energy
that is consumed when gates switch states from 0 to 1 and vice versa.
* For0->1->0:
Energy o Capacitive load X Voltage®

* Forasingle transition:
Energy o 1/2 X Capacitive load X Voltage®

* The power required per gate is just the product of energy of a transition and the frequency of
transitions, which depends on the clock frequency:

Power o< 1/2 X Capacitiveload X Voltage® X Frequency switched

*  How could clock rates grow by a factor of 1000 while power increased by only a factor of 307
* Energy and power have been reduced by lowering the voltage, which occurred with each new
generation of technology, passing from 5V till values below 1V.
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Modern problems in power dissipation

* The modern problem is that further lowering of the voltage appears to make the transistors too leaky.

* Although dynamic energy is the primary source of energy consumption in CMOS, static energy
consumption occurs because of leakage current that flows even when a transistor is off.

* Inservers, leakage is typically responsible for 40% of the energy consumption.

* Increasing the number of transistors increases power dissipation, even if the transistors are always off.

* Avariety of design techniques and technology innovations are being deployed to control leakage, but
it’s hard to lower voltage further.
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The Switch from Uniprocessors to Multiprocessors
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The Switch from Uniprocessors to Multiprocessors

End of the Line = 2X/20 years (3%/yr) o
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constant.
“Amdahl’s Law,” meaning
here that the speedup
from a parallel computer
is limited by the portion
of a computation that is
sequential.
“End of Moore’s Law” !I?

“Dennard scaling,” stating

100,000

10,000

1,000

100

Performance vs. VAX11-780

10

1880 1985 1990 RIS 2000 2005 2010 2015

) BB 13 s —_— :
g,/yj BHEL A Ia facia A. Carini — Digital System Architectures



Multiprocessors

*  Multicore microprocessors

* More than one processor per chip

* Benefit more on throughput than on response time
* Requires explicitly parallel programming

*  Compare with instruction level parallelism (pipeline) where:

* Hardware executes multiple instructions at once
* Hidden from the programmer
* Hardtodo
*  Programming for performance
* Load balancing
*  Optimizing communication and synchronization
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SPEC CPU Benchmark

* Performance of processors is measured using benchmark programs supposedly typical of actual
workload.
* SPEC (Standard Performance Evaluation Corporation) is an effort funded and supported by a
number of computer vendors to create standard sets of benchmarks for modern computer systems.
* Develops benchmarks for CPU, I/0O, Web, ...
* SPEC CPU2006 consists of a set of 12 integer benchmarks (CINT2006) and 17 floating-point
benchmarks (CFP2006).
* Elapsed time to execute a selection of programs
* Negligible I/0, so focuses on CPU performance
* Normalize relative to reference machine
* Summarize as geometric mean of performance ratios

n
Q/H Execution time ratio,
=1
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CINT2006 for Intel Core i7 920

Execution | Reference

Instruction Clock cycle time Time Time

Description Count x 10° (seconds x 10-9) | (seconds) | (seconds) | SPECratio
Interpreted string processing | perl 2252 0.60 0.376 508 9770 19.2
Block-sorting bzip2 2390 0.70 0.376 629 9650 15.4
compression
GNU C compiler gcc 794 1.20 0.376 358 8050 225
Combinatorial optimization mcf 221 2.66 0.376 221 9120 41.2
Go game (Al) go 1274 1.10 0.376 527 10490 19.9
Search gene sequence hmmer 2616 0.60 0.376 590 9330 15.8
Chess game (Al) sjeng 1948 0.80 0.376 586 12100 20.7
Quantum computer libquantum 659 0.44 0.376 109 20720 190.0
simulation
Video compression h264avc 3793 0.50 0.376 713 22130 31.0
Discrete event omnetpp 367 2.10 0.376 290 6250 21.5
simulation library
Games/path finding astar 1250 1.00 0.376 470 7020 14.9
XML parsing xalanchmk 1045 0.70 0.376 275 6900 25.1
Geometric mean - - - - - - 25.7

FIGURE 1.18 SPECINTC2006 benchmarks running on a 2.66 GHz Intel Core i7 920. As the equation on page 36 explains,
execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and clock cycle time in
nanoseconds. SPECratio is simply the reference time, which is supplied by SPEC, divided by the measured execution time. The single number
quoted as SPECINTC2006 is the geometric mean of the SPECratios.
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SPEC Power Benchmark

* It reports power consumption of servers at different workload levels, divided into 10% increments,
over a period of time.
* SPECpower started with another SPEC benchmark for Java business applications
* exercises the processors, caches, main memory, Java virtual machine, compiler, garbage
collector, and pieces of the operating system.
* Performance is measured in throughput, as business operations per second.
* Power is measured in Watts.
* overall ssj_ops per watt:

10 10
overall ssj_opsper watt = E $Sj_Ops; E power;
i=0 =0
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SPECpower_ssj2008 for Xeon X5650

Performance Average Power
Target Load % (ssj_ops) (watts)

UNIVERSITA
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DITRIESTE
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100% 865,618 258

90% 786,688 242

80% 698,051 224

70% 607,826 204

60% 521,391 185

50% 436,757 170

40% 345,919 157

30% 262,071 146

20% 176,061 135

10% 86,784 121

0% 0 80

Overall Sum 4,787,166 1922
Zssj_ops / Zpower = 2490

FIGURE 1.19 SPECpower_ssj2008 running on a dual socket 2.66 GHz Intel Xeon X5650
with 16 GB of DRAM and one 100GB SSD disk.
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Pitfall: Amdahl’s Law

* A common pitfall: Improving an aspect of a computer and expecting a proportional improvement in
overall performance.

* The Amdahl’s Law states that execution time of the program after making the improvement is

T . Taffected + T
i d = . ff d
TPOE T improvement factor  MC¢

* Example: multiply accounts for 80s of program running in 100s.
*  How much improvement in multiply performance to get 5x improvement overall?

80

20 = ? +20 Can’t be done!
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Fallacy: Low Power at Idle

Look back at Xeon power benchmark
* At 100% load: 258W
* At 50% load: 170W (66%)
e At 10% load: 121W (47%)
* Google data center
*  Mostly operates at 10% — 50% load
* At 10% load the power is 33% of the peak power
* At 100% load less than 1% of the time

*  We should design hardware to achieve “energy-proportional computing.”
* If future servers used, say, 10% of peak power at 10% workload, we could reduce the electricity bill of
datacenters and CO2 emissions.
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Pitfall: MIPS as a Performance Metric

*  MIPS: Millions of Instructions Per Second
* Doesn’t account for
* Differences in ISAs between computers
* Differences in complexity between instructions

Instruction count

MIPS = — s
Execution time x10
B Instruction count _ Clockrate
" Instruction count x CPI 10° "~ CPIx10°
Clock rate

* CPlvaries between programs on a given CPU
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* David A. Patterson and John L. Hennessy, “Computer organization and design ARM edition: the
hardware software interface,” Morgan Kaufmann, 2016.
* Chapter1

Most of the text has been taken and adapted from “Computer Organization and Design ARM Edition: The
Hardware Software Interface”.

If not differently indicated, all figures have been taken from the book or the material in the companion
website of “Computer Organization and Design ARM Edition: The Hardware Software Interface”.
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