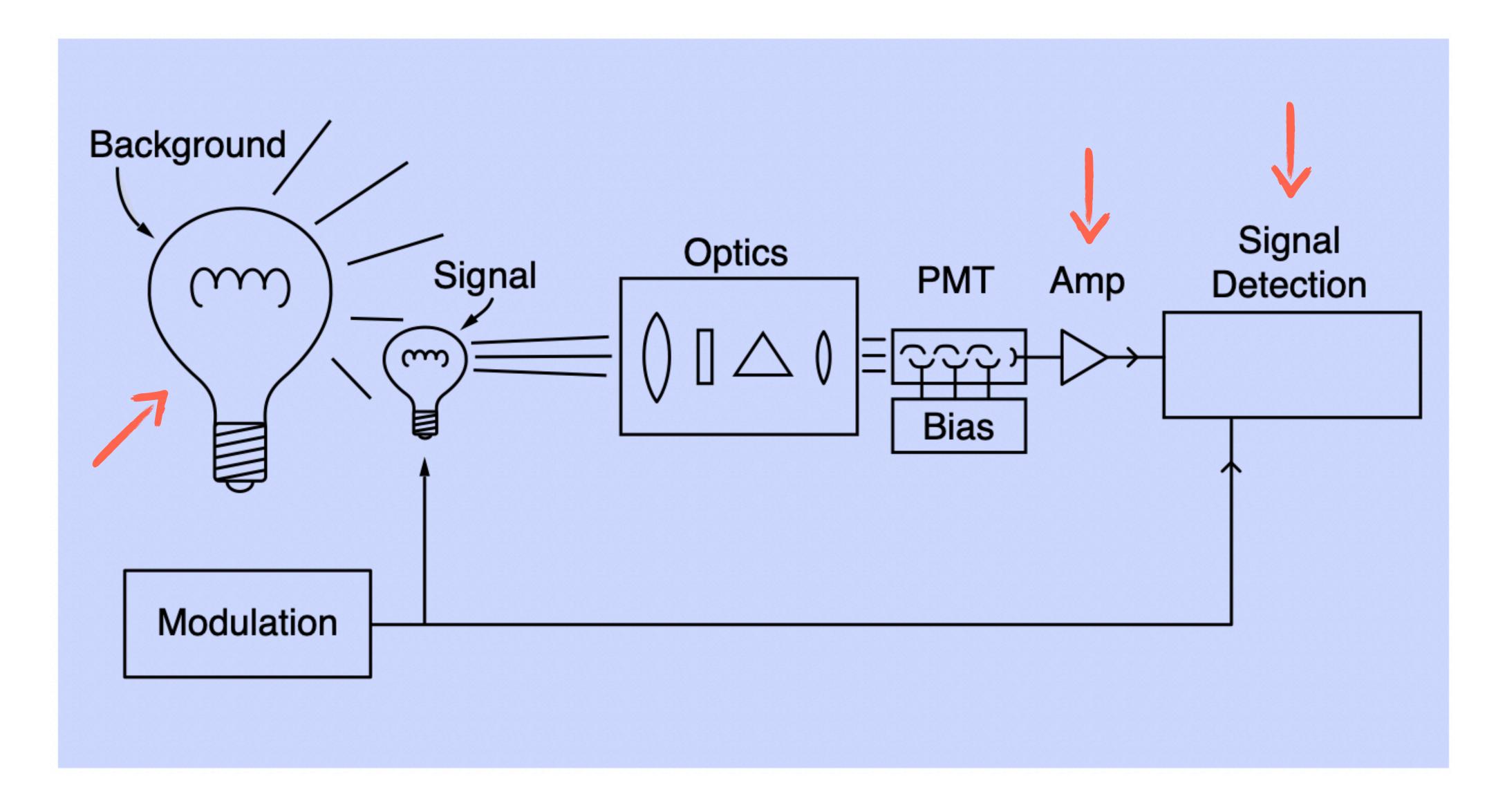
Recovering signals out of noise: the lock-in amplifier

Laboratorio di Fisica della Materia Condensata, a.a. 2024/25

Noise is ubiquitous in experiments!

- * Almost all measurements are done using electronic equipment. This means that experimental techniques rely on the **quantitative measurement of electrons** (voltages, currents, charge etc.)
 - → E.g. measurement of a DC anode current by an ampèremeter, charge counting in the pixels of a charge-coupled device (CCD) camera chip, ...
- * Any electronic signal always shows random, uncorrelated fluctuations: noise
- The signal of interest may be **obscured by noise**! The noise may be fundamental to the process: e.g. discrete charges (as well as discrete light quanta, i.e. photons) are governed by Poisson statistics which gives rise to shot noise.

Prototype experiment



Two types of noise

- * Sometimes noise is **extrinsic** and **"non-essential"**: it can be minimised by good laboratory practice
- * Often noise sources are **intrinsic**, related to the physics (and the statistics) of the system and the probe used in the measurements: this cannot be acted upon

Intrinsic sources of noise:

- Shot noise
- Johnson-Nyqist noise
- Flicker noise (aka 1/f noise)
- ♣ Understanding the noise sources in a measurement is critical to a achieving a satisfactory signal-to-noise performance! → The quality of a measurement may be substantially degraded by a trivial error...

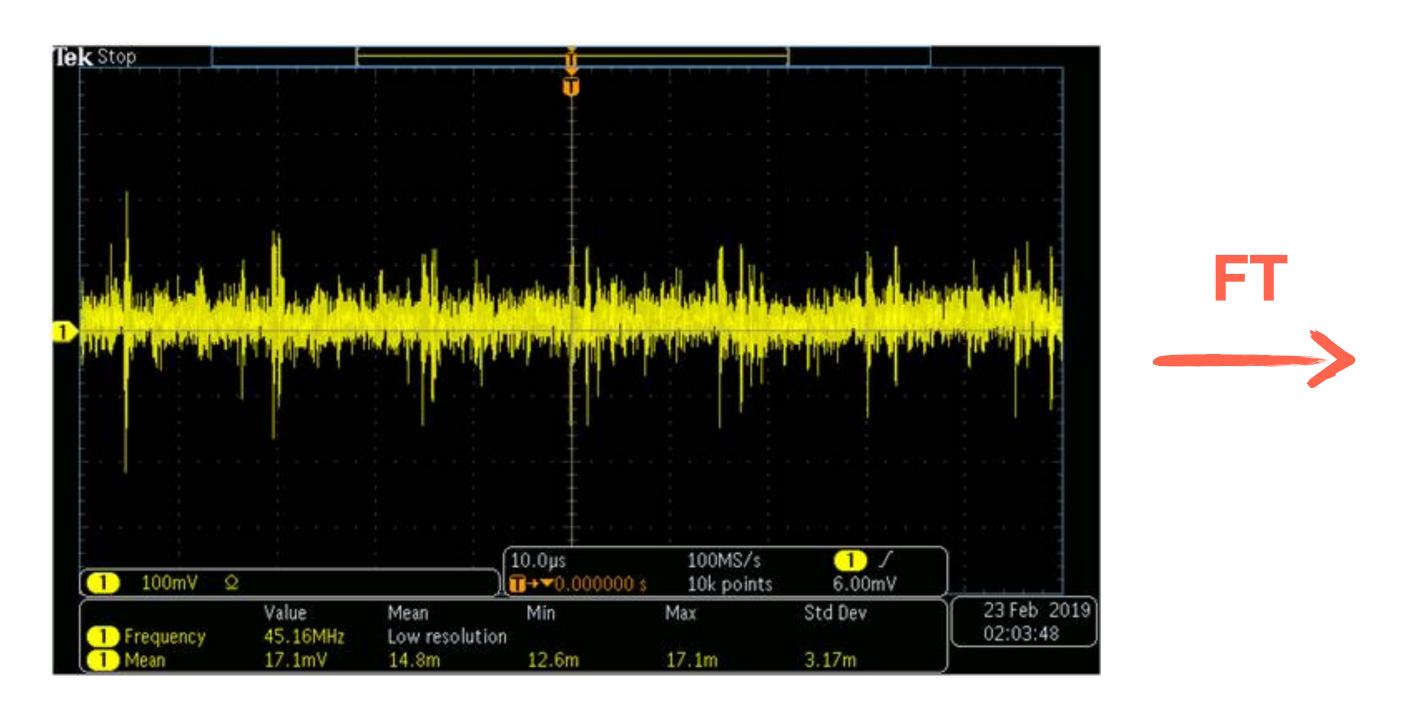
Spectral noise density

- Noise characteristics of a system are often represented by the noise spectral density (PSD)
- Let's consider a quantity of interest X(t): the PSD $S_X(f)$ is defined as the squared modulus of the Fourier transform of X(t)

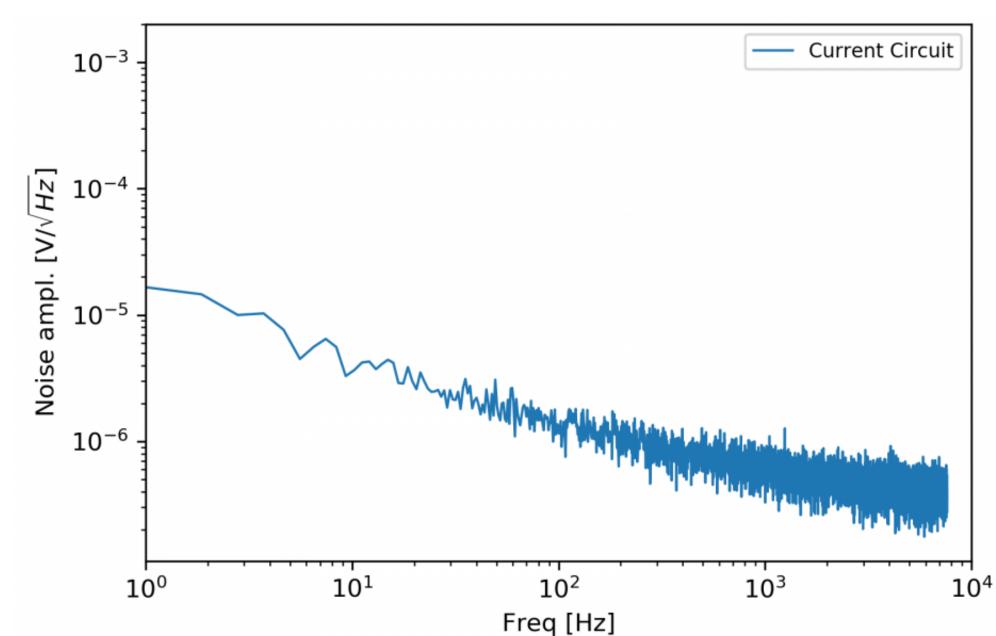
$$S_X(f) = \lim_{T o\infty} rac{1}{T} igg\langle \left| \int\limits_{-T/2}^{+T/2} X(t) \; e^{+i2\pi f t} \; \mathrm{d}t
ight|^2 igg
angle$$

♣ PSDs are statistical measures: they can be estimated from real data by averaging over many measurements → Taking a single measurement trace gives only a rough estimate of the PSD

Noise PSD in practice...



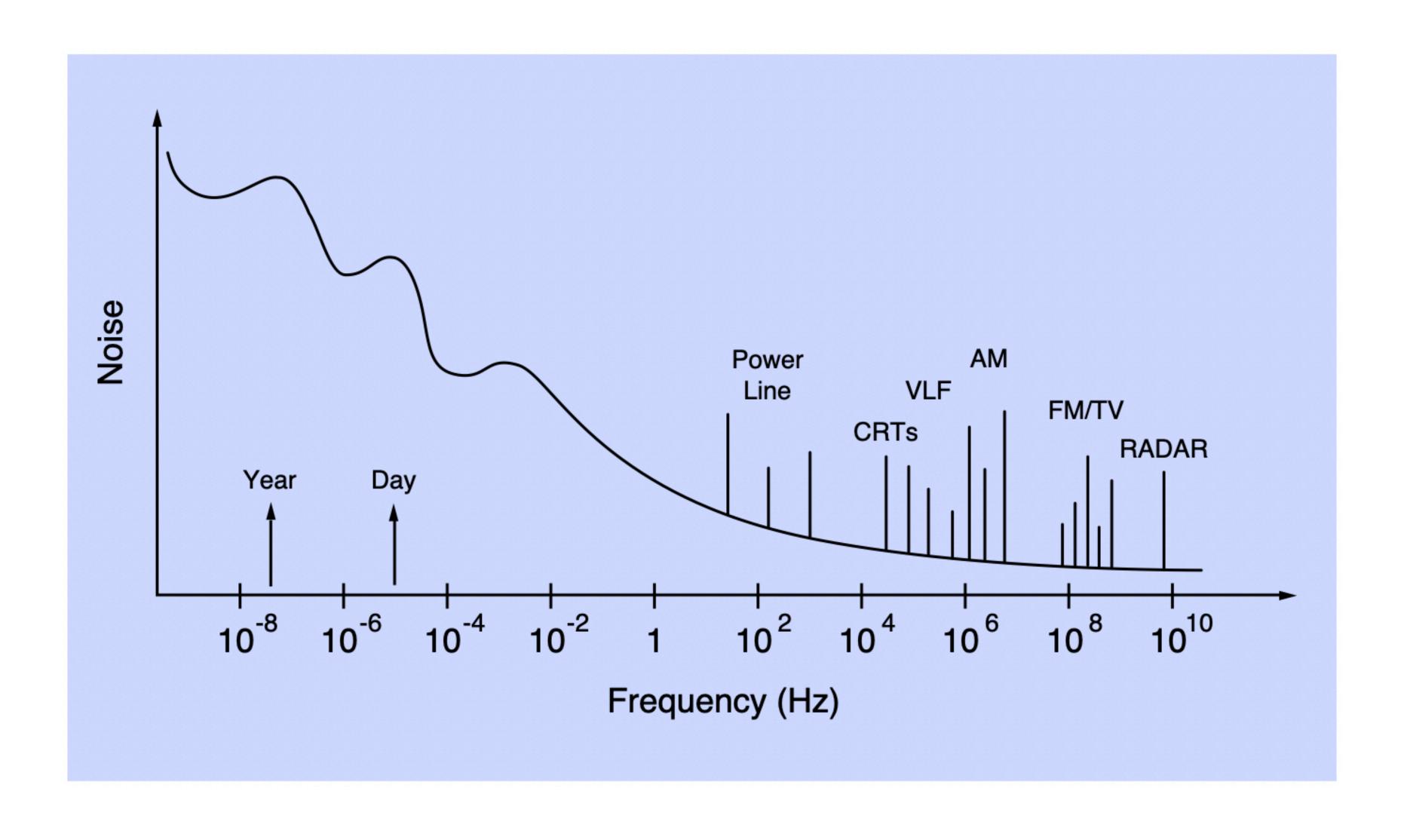
Remove signal mean, only fluctuations around the mean



Units of V/√Hz

An RMS is obtained by integrating the PSD over a chosen frequency window

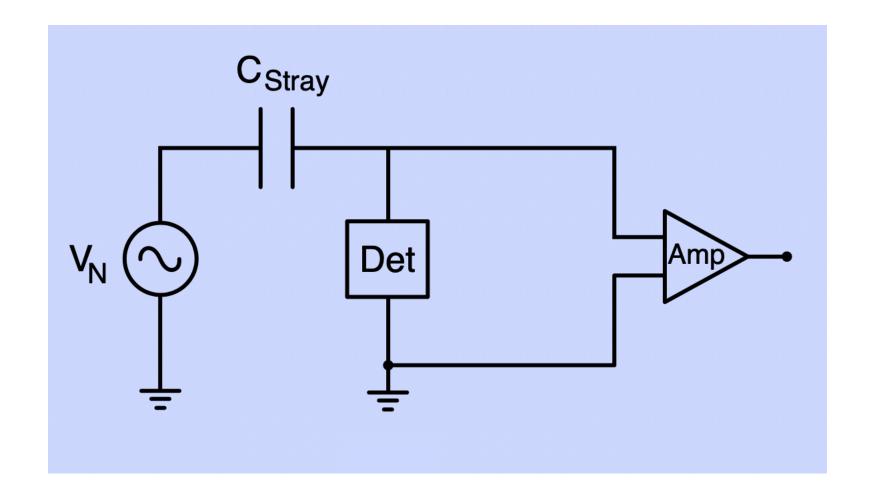
Examples of PSD and noise sources



Examples of extrinsic noise sources

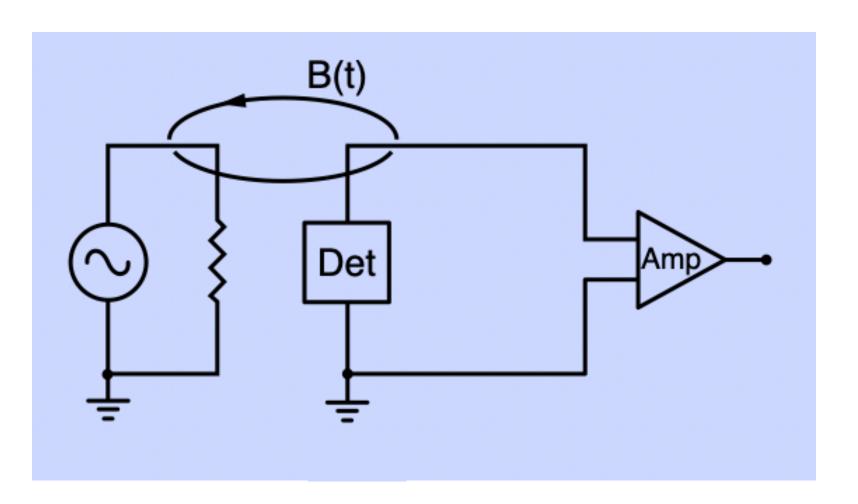
Capacitive and inductive couplings

* Noise can be picked up through the **capacitive coupling** with a nearby apparatus with varying voltage



Cure: shielding the detector

* Noise can be picked up through the **inductive coupling** to a time-varying magnetic field, which induces a e.m.f. in the detection circuit



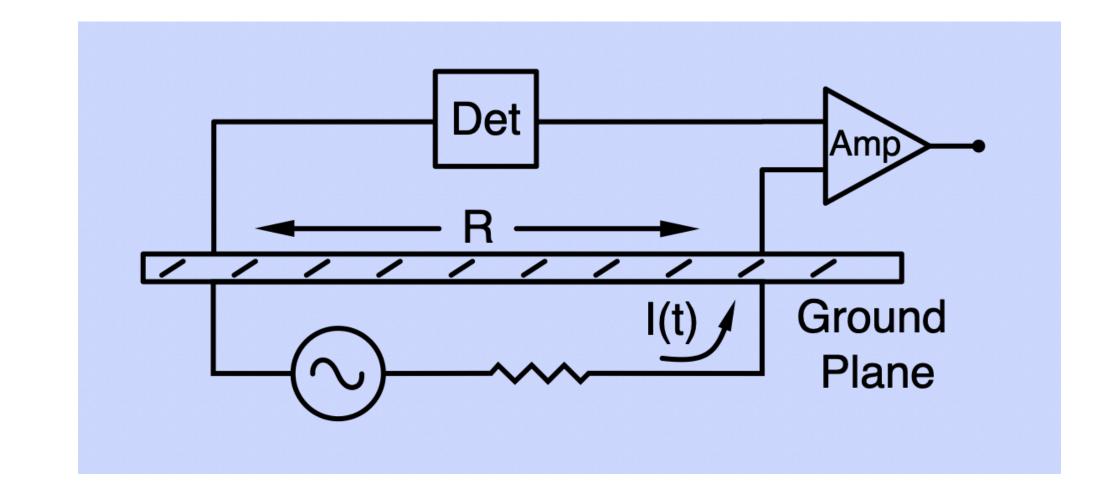
Cure: use twisted pairs or coaxial cables

Examples of extrinsic noise sources

Resistive couplings: ground loops

* Currents through common connections can give rise to noisy voltages. E.g. the detector can be contaminated by the noise on the ground bus.

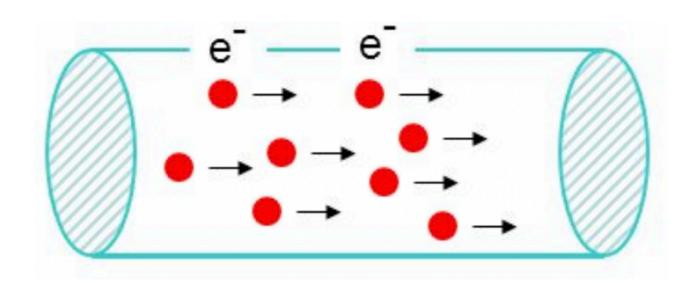
Cure: ground all instruments to the same point, remove sources of large currents from ground wires used for small signals!

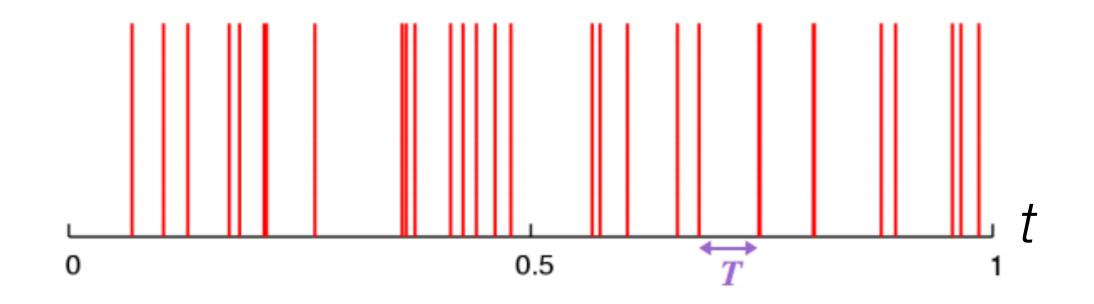


Examples of intrinsic noise sources

Shot noise

* Light and electrical charge are quantized: so the number of photons or electrons which pass a point during a period of time are subject to Possonian statistical fluctuations.





- ightharpoonup if the signal mean is M photons, the standard deviation (noise) will be \sqrt{M} , hence the S/N $= M/\sqrt{M} = \sqrt{M}$.
- *M may be increased by increasing the photon rate (laser power) or increasing the integration time.

Examples of intrinsic noise sources

Johnson-Nyqist noise (or thermal noise)

In a conductor there are a large number of moving electrons. Point-by-point their density shows statistical fluctuations at finite temperature as a function of time, like the local density of air in a given point of a room. These density fluctuations give rise to voltage fluctuations:

$$V_{\rm JN,rms} = 4k_B RT \Delta f$$

where R is resistance of the conductor, k_B is Boltzmann's constant, T is the temperature, and Δf is the bandwidth over which the noise is measured.

* This is a *white* noise, since its PSD does not depend on the frequency, i.e. this noise contains Fourier components at any frequency. Example: for $1 \text{M}\Omega$ resistor the J-N noise is $V_{\text{JN,rms}} \simeq 100 \mu\text{V}$ between 0 and 100 kHz

Examples of intrinsic noise sources

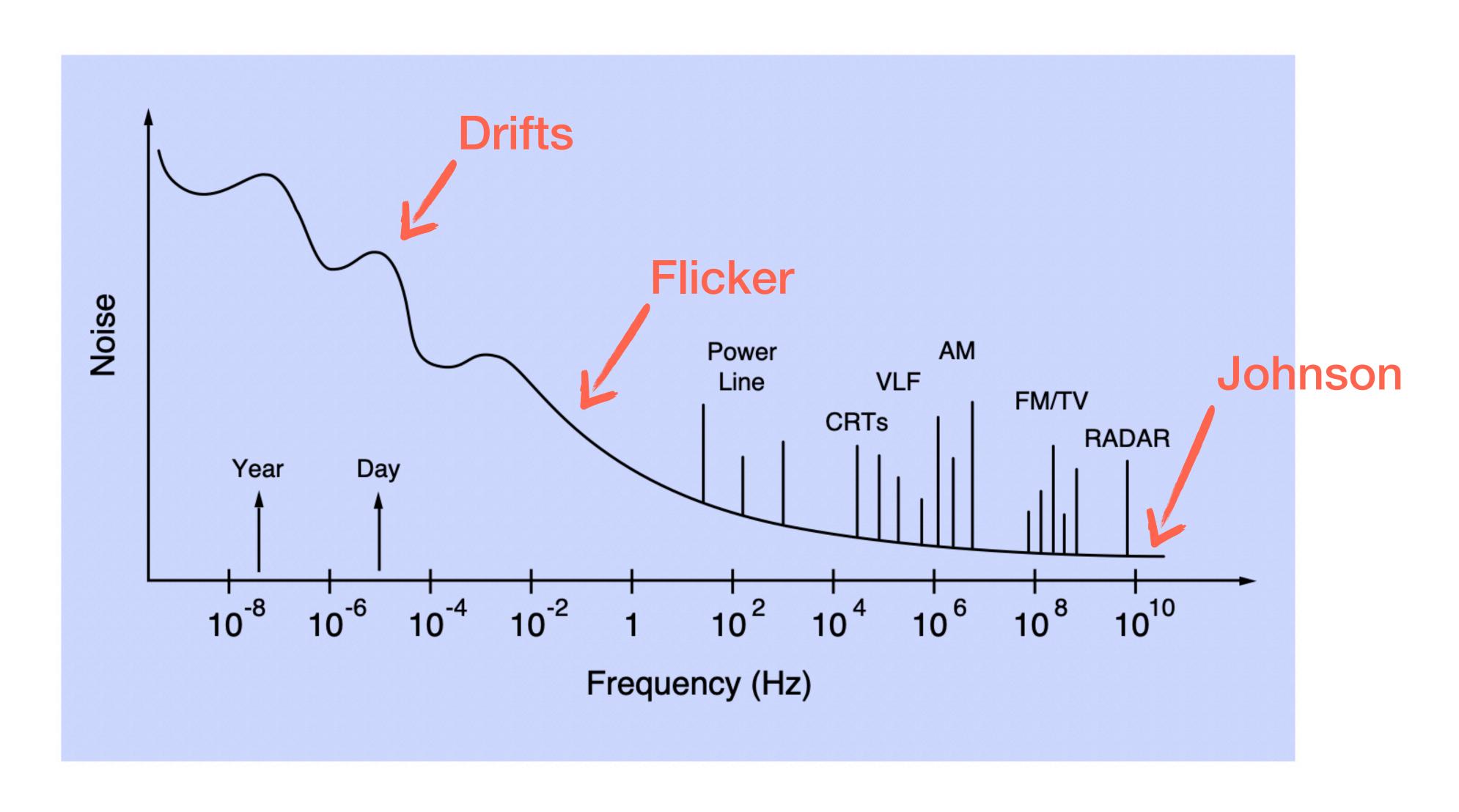
Flicker noise (or 1/f noise)

* The voltage across a resistor carrying a constant current will fluctuate because the resistance of the material used in the resistor fluctuates, giving rise to a frequency-dependent noise. However, there there is no general accepted theory that explains it in all the cases where the 1/f noise is present. It occurs in almost all electronic devices:

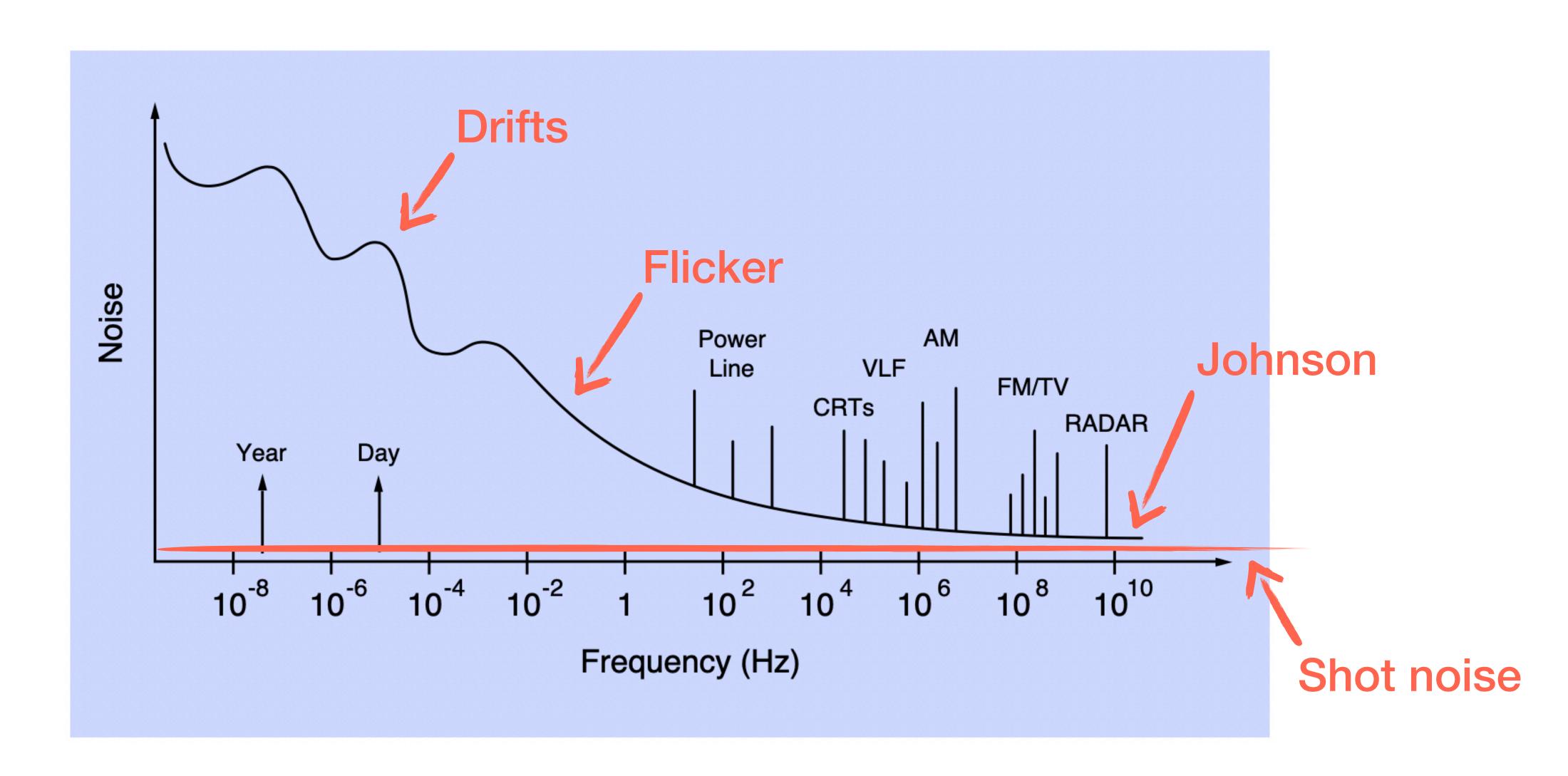
$$V_{\rm pink,rms}^2 \propto \Delta f/f$$

* This is a *pink* noise, and it will impact mostly the low-frequency part of the noise spectral density

Examples of noise sources



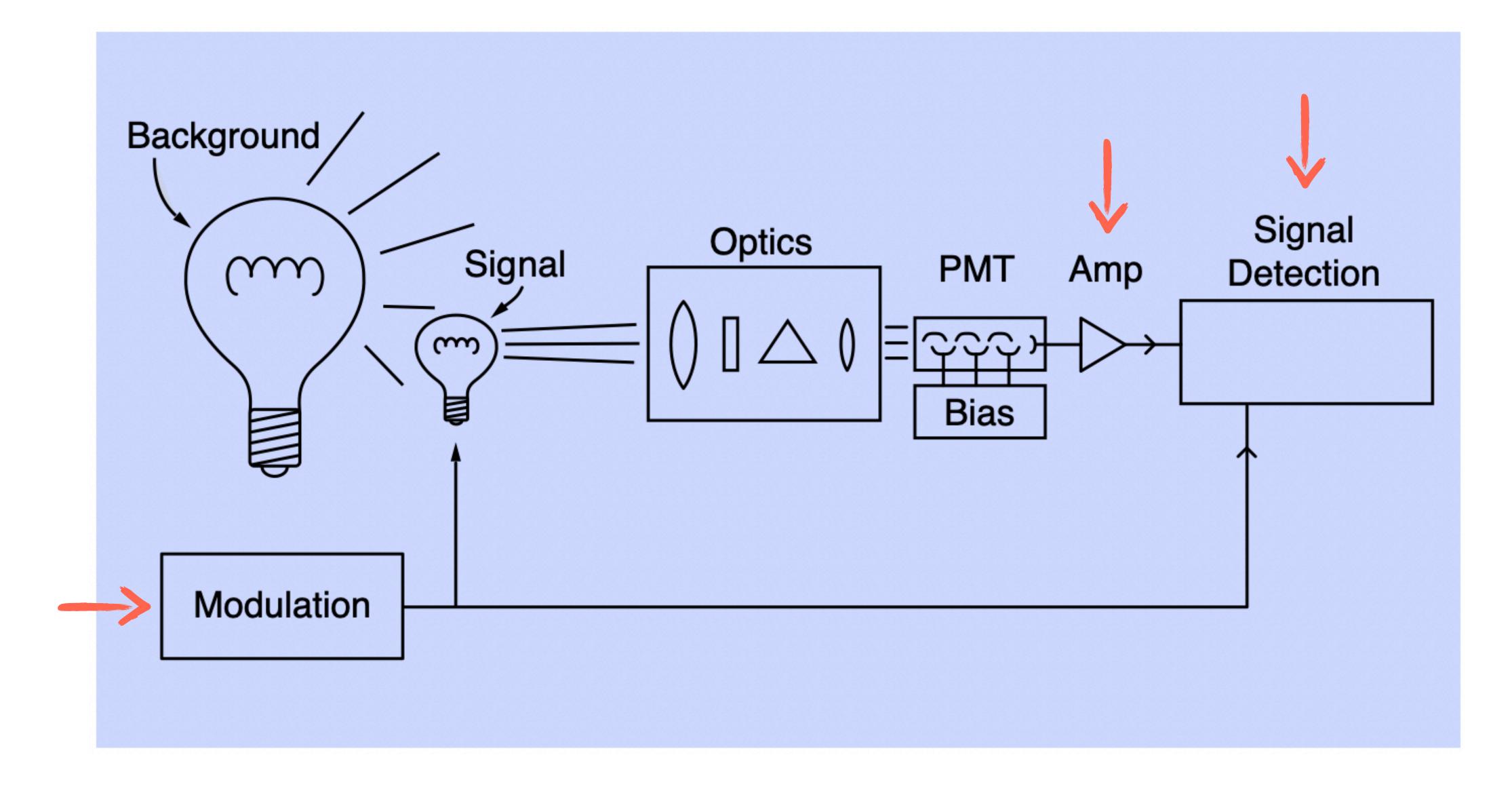
Examples of noise sources



Measuring small signals: amplifiers

- * Several considerations are involved in choosing the correct amplifier for a particular application: bandwidth, gain, impedance, noise characteristics...
- ♣ General technique: perform AC measurements to avoid noise close to DC frequencies → Modulate the source and analyse at the modulation frequency
- * When the source is modulated, one may choose from gated integrators, boxcar averagers, transient digitizers, lock-in amplifiers, spectrum analyzers...We will only use the **lock-in amplifier**
 - → Lock-in amplifiers are used to detect and measure very small AC signals... all the way down to a few nV!

Prototype experiment

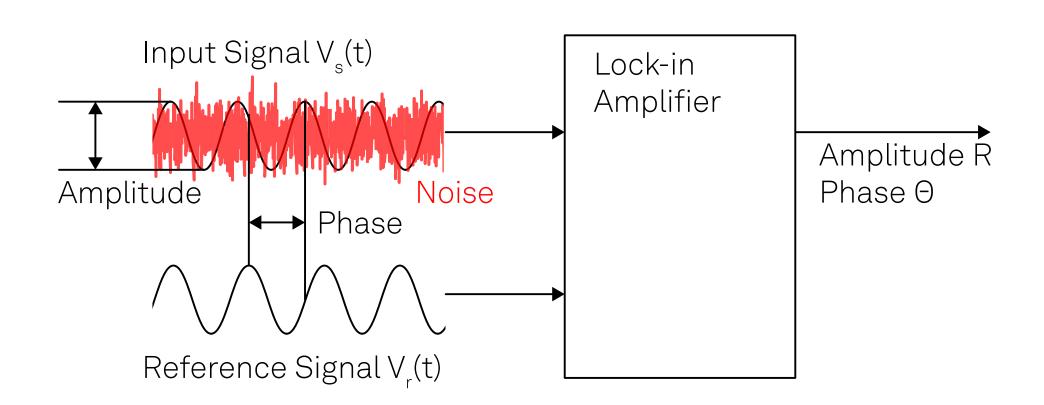


Let's see an example...

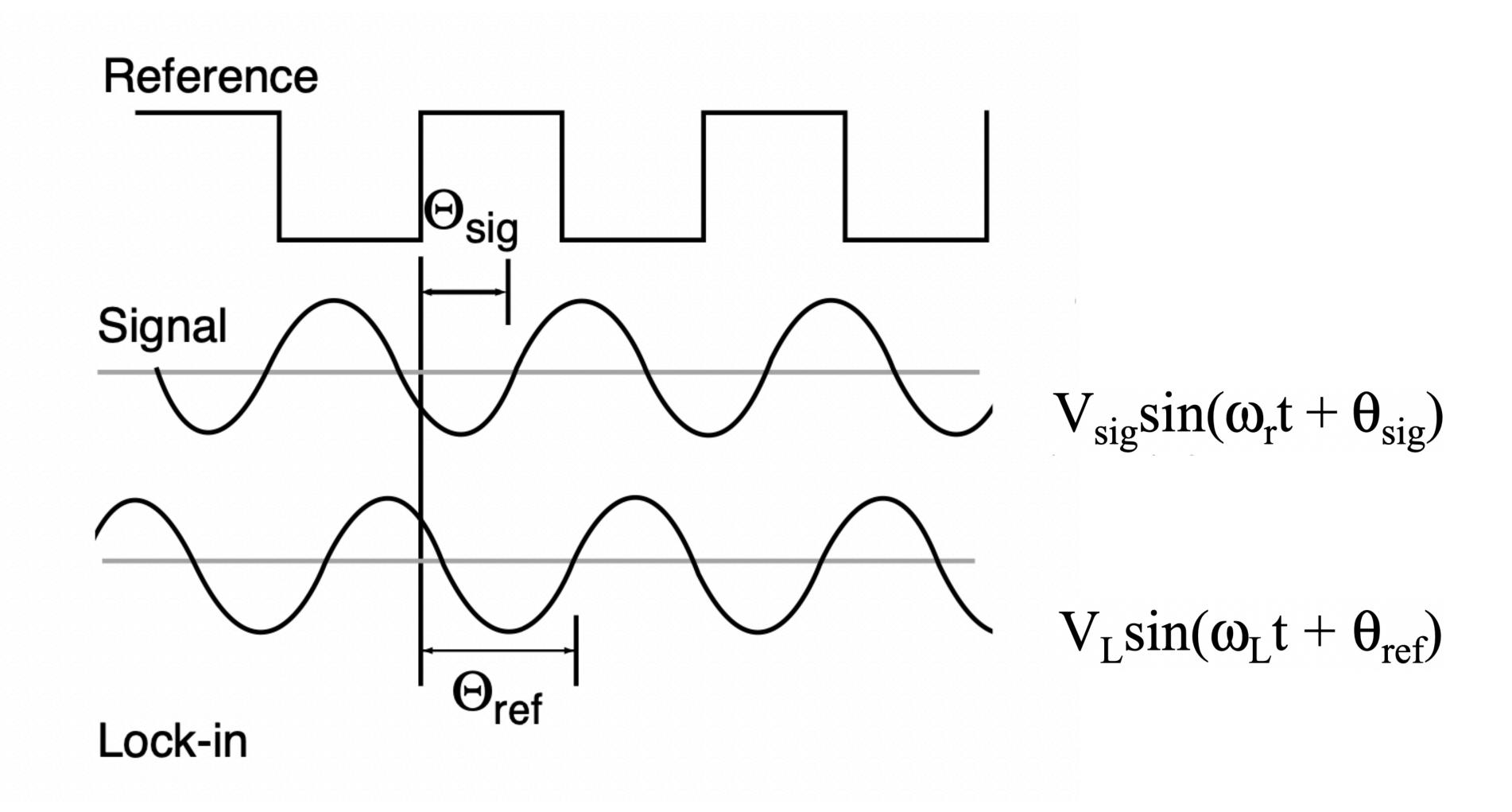
- * Suppose the signal is a 10 nV sine wave at 10 kHz. Clearly some amplification is required to bring the signal above the noise. A very good low-noise amplifier will have about 5 nV/ \sqrt{Hz} of input noise.
- If the amplifier bandwidth is 100 kHz and the gain is 1000, we can expect our output to be 10 μ V of signal (10 nV \times 1000) and 1.6 mV of broadband noise (5 nV/ $\sqrt{\text{Hz}} \times \sqrt{100} \text{ kHz} \times 1000$)
- * Supposing we know the frequency of our signal, we follow the amplifier with a very good band-pass filter with a Q=100 centered at 10 kHz. Any signal in a 100 Hz bandwidth will be detected (10 kHz/Q). The noise in the filter pass band will be 50μ V (5 nV/ $\sqrt{Hz} \times \sqrt{100Hz} \times 1000$), and the signal will still be 10 μ V.
 - → The output noise is much greater than the signal!

Phase-sensitive detection

- * An amplifier with a phase-sensitive detector can detect the signal at 10 kHz with a bandwidth as narrow as 0.01 Hz: in our previous example, the noise in the detection bandwidth will be 0.5 μ V (5 nV/ $\sqrt{Hz} \times \sqrt{0.01}$ Hz \times 1000), while the signal is still 10 μ V! $\stackrel{\triangle}{\omega}$
- * How to achieve this? Lock-in measurements require a **frequency reference**. Typically, an experiment is excited at a fixed modulation frequency, and the lock-in detects the response from the experiment only at the reference frequency.



Phase-sensitive detection



Phase-sensitive detection

* The lock-in amplifies the signal and then multiplies it by the lock-in reference using a phase-sensitive multiplier (a mixer). The output is simply the product of two sine waves:

$$\begin{split} V_{\text{out}} &= V_{\text{sig}} V_{\text{L}} \sin(\omega_{\text{r}} t + \theta_{\text{sig}}) \sin(\omega_{\text{L}} t + \theta_{\text{ref}}) \\ &= \frac{1}{2} V_{\text{sig}} V_{\text{L}} \cos([\omega_{\text{r}} - \omega_{\text{L}}] t + \theta_{\text{sig}} - \theta_{\text{ref}}) - \\ &\frac{1}{2} V_{\text{sig}} V_{\text{L}} \cos([\omega_{\text{r}} + \omega_{\text{L}}] t + \theta_{\text{sig}} + \theta_{\text{ref}}) \end{split}$$

- * The output is composed by two AC signals, one at the difference-frequency $(\omega_r \omega_L)$ and the other at the sum-frequency $(\omega_r + \omega_L)$. If the output is further passed through a low-pass filter, the high-frequency signal (2nd term above) will be removed.
- * What will be left? Let's consider the case in which $\omega_L = \omega_r \dots$

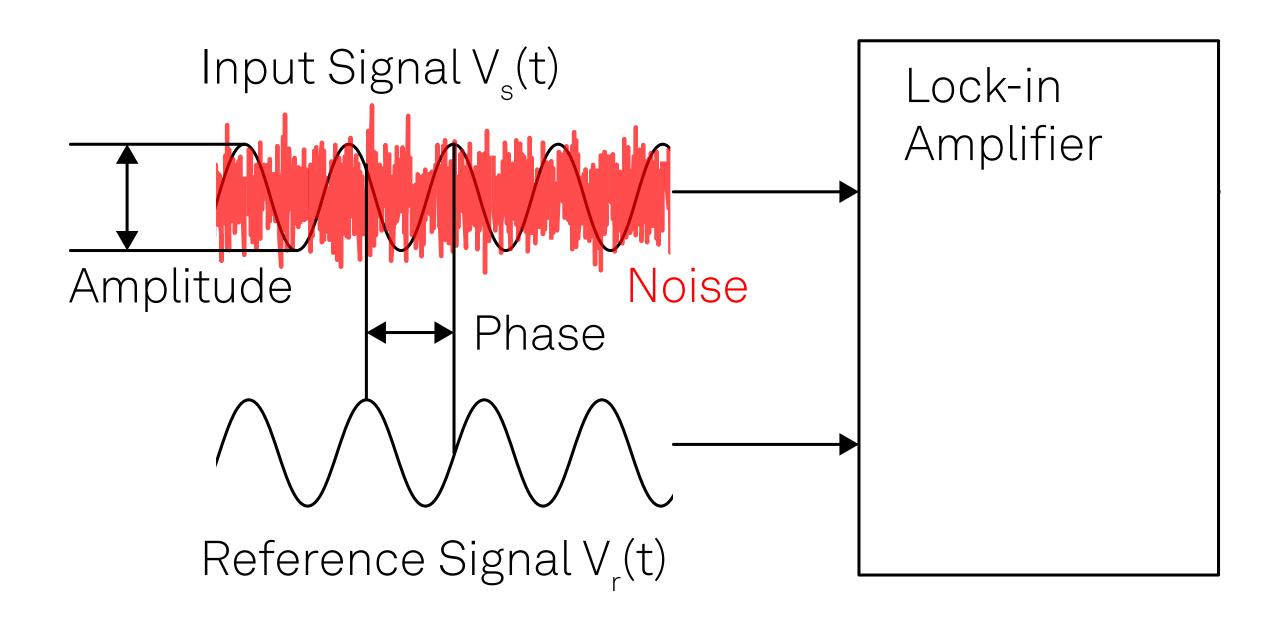
Lock-in amplification

* If ω_L equals ω_r , the difference-frequency component will be a DC signal! In this case, the filtered output will be:

$$V_{\text{out}} = \frac{1}{2} V_{\text{sig}} V_{\text{L}} \cos(\theta_{\text{sig}} - \theta_{\text{ref}})$$

- * This is a very nice output it is a **DC voltage** proportional to the original sinusoidal signal amplitude V_{sig} $\ensuremath{\mu}$
 - We have converted the signal at the modulation frequency ω_L into a DC signal, while signals at <u>any other frequency</u> are attenuated by the filtering.

Lock-in amplification

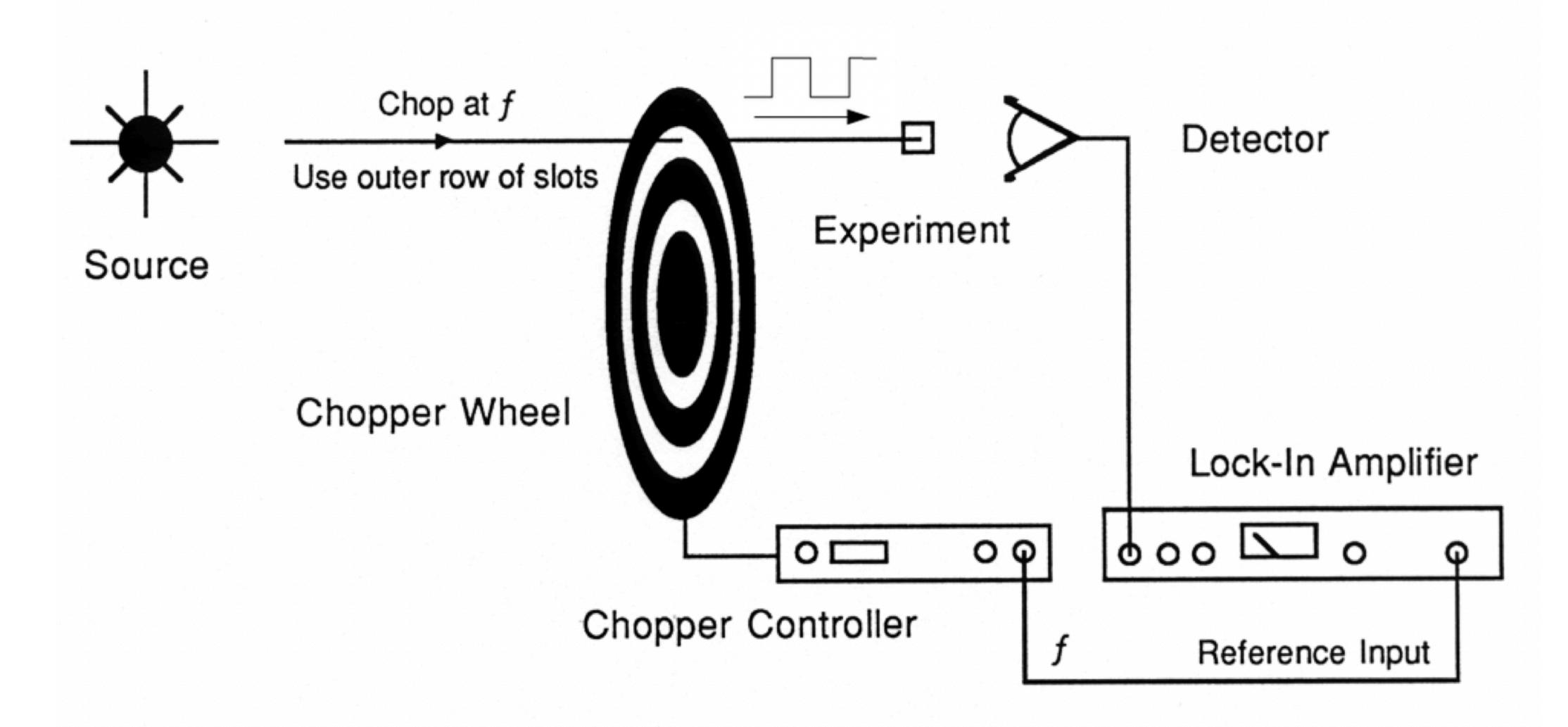


- Let's now take the input signal as composed of signal + noise
- The lock-in and the low-pass filter only detect signals whose frequencies are very close to the lock-in reference frequency
- Noise signals, at frequencies far from the reference, are attenuated by the low pass filter, since $\omega_{\mathrm{noise}} \omega_r$ and $\omega_{\mathrm{noise}} + \omega_r$ are not close to 0.
- * A narrower filter will remove noise sources very close to the reference frequency; a wider bandwidth allows some signals to pass → The low-pass filter bandwidth determines the remaining noise, at the expenses of longer integration

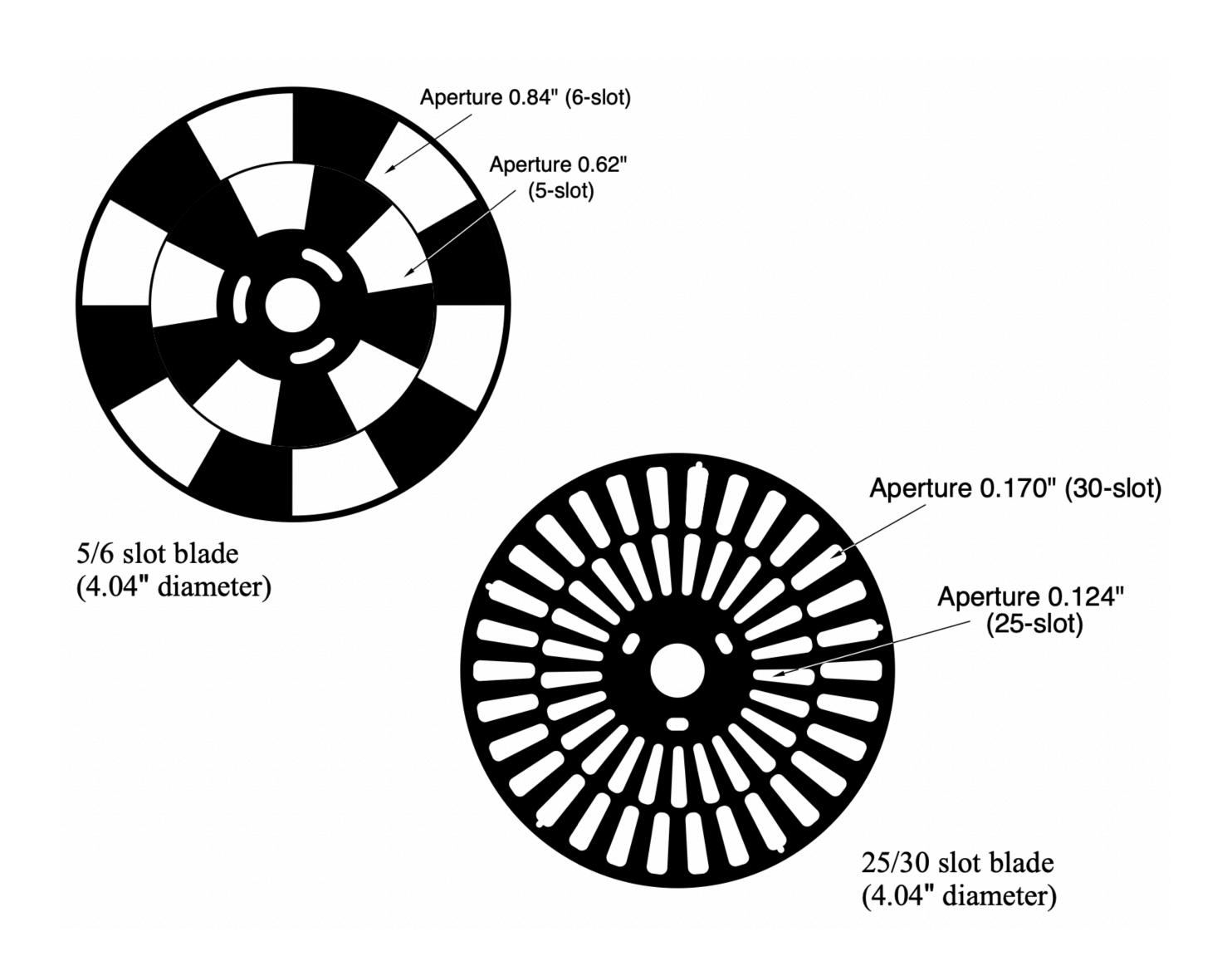
The phase

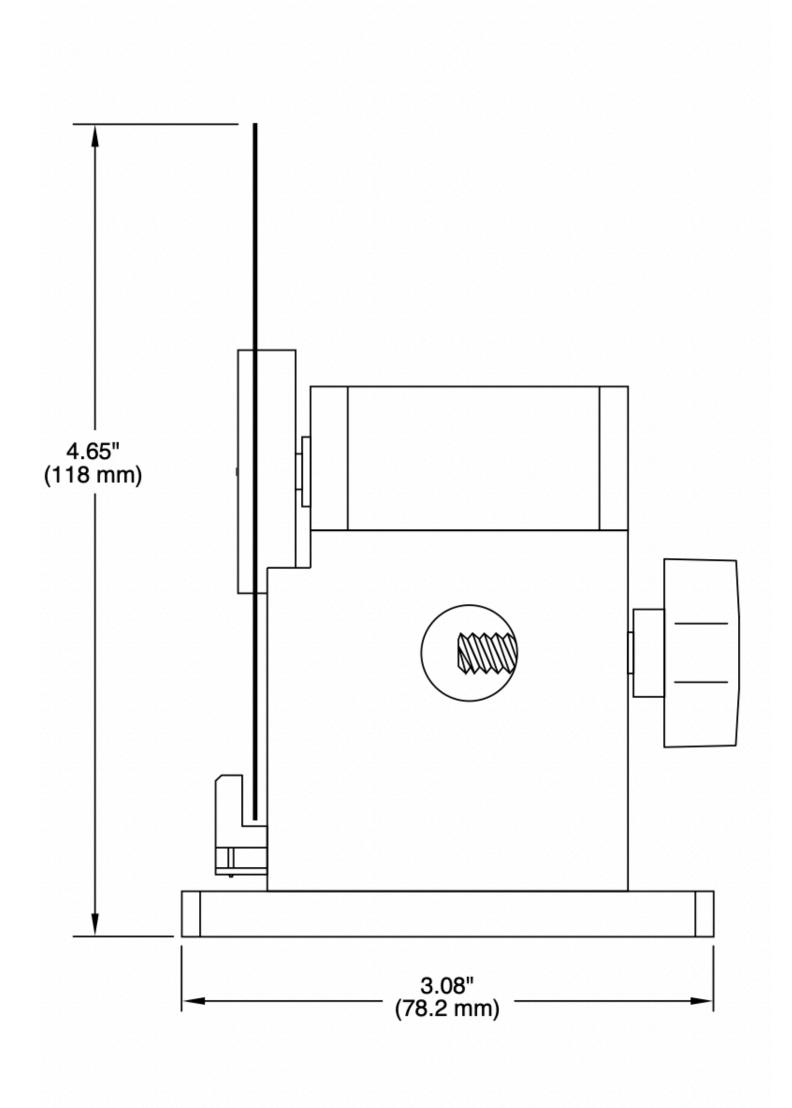
- * We need to make the lock-in reference the same as the signal frequency, i.e. $\omega_L = \omega_r$ Not only the frequencies need to be the same, also **the phase between the signals can not change over time**. Otherwise, $\cos(\theta_{\rm sig} \theta_{\rm ref})$ will change and the output will not be a DC signal.
 - → In other words, the lock-in reference needs to be phase-locked to the signal reference.
- * The lock-in amplifier generates a signal internally, in phase with the frequency reference wave. Let's call θ the phase difference between the signal and the lock-in reference oscillator. By adjusting $\theta_{\rm ref}$ we can have $\theta=0$, in which case we can measure $V_{\rm sig}$, since $\cos\theta=1$. Conversely, if θ is 90°, there will be no output at all.
 - → This fact can be used in practice to tune the lock-in phase.

Experimental scheme

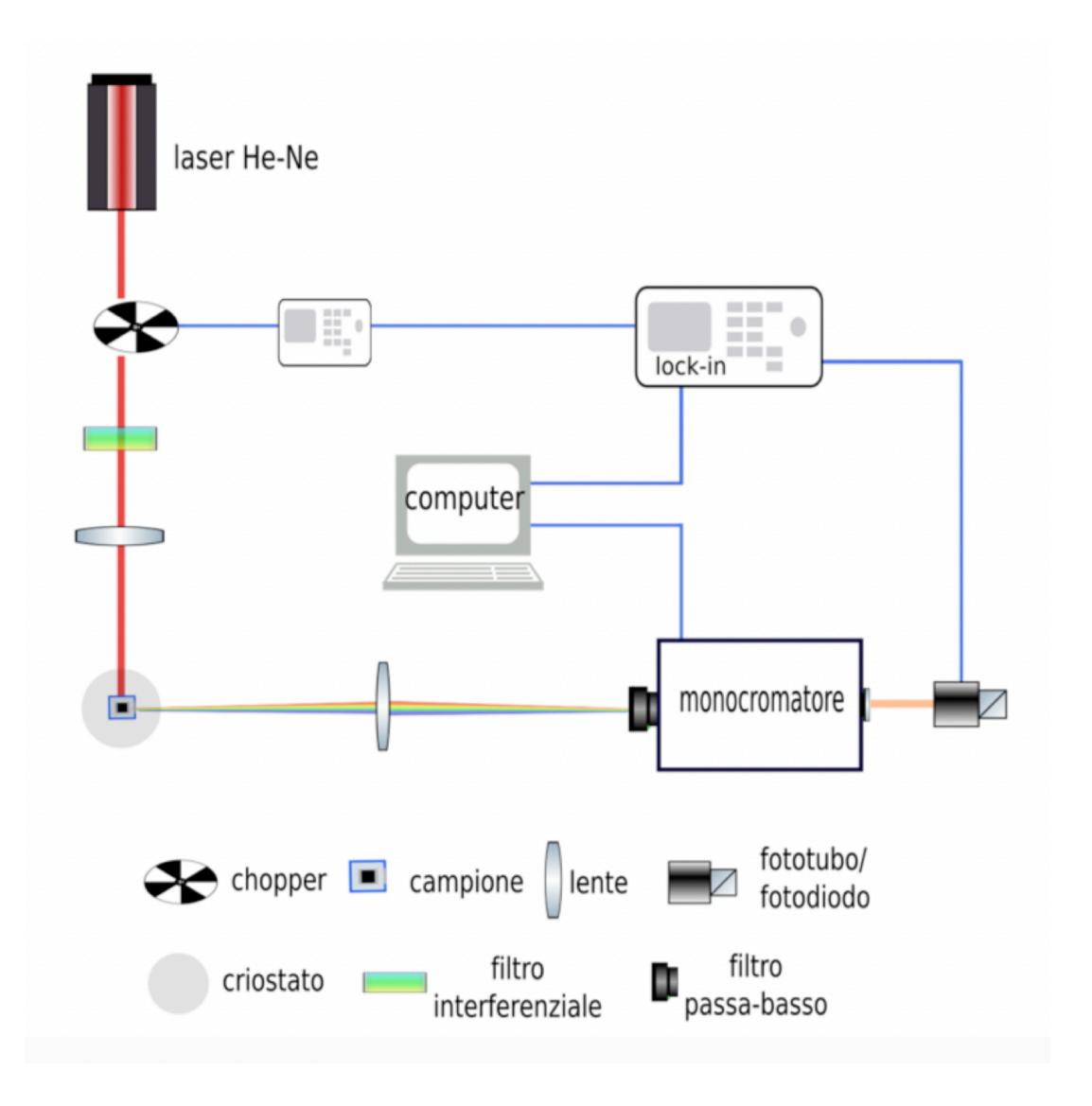


Optical choppers





Apparato sperimentale



- * Laser per eccitazione campione
- * Chopper per modulazione laser
- * Campione
- Lente per collezionare segnale di emissione in fotoluminescenza (modulato a causa della modulazione del laser di eccitazione)
- * Monocromatore
- Rivelatore (phomultiplier tube)
- * Lock-in amplifier
- * Computer