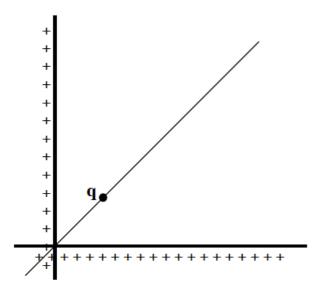

Un disco di raggio \mathbf{R} possiede una densità di carica positiva uniforme σ .

Qual è il campo elettrico nel punto \mathbf{P} a distanza \mathbf{x} dal disco lungo il suo asse?


Una bacchetta di lunghezza l = 14.0 cm, uniformemente carica, è piegata a forma di semicerchio, come mostrato in figura. Se la bacchetta possiede una carica totale $Q = .7.50 \mu C$, trovare modilo, direzione e verso del campo elettrico nel centro del semicerchio.

Un elettrone (massa $m=9.11\times 10^{-31}$ kg, carica $e=-1.6\times 10^{-19}$ C) in moto con velocità \mathbf{v}_0 orizzontale e di modulo $v_0=3\times 10^6$ m/s, entra in una regione in cui è presente un campo elettrostatico uniforme e costante, E, di modulo E=500 N/C, perpendicolare a \mathbf{v}_0 e diretto verso l'alto. Tale regione si estende in direzione orizzontale per un tratto d=5 cm, come mostrato in figura. Si calcoli la velocità dell'elettrone, in modulo, direzione e verso e lo spostamento in direzione verticale subito dall'elettrone, all'uscita dalla regione in cui è presente il campo elettrico.

Due fili isolanti molto lunghi, carichi positivamente con densità di carica uniforme $\lambda = 8nC/m$ si incrociano ad angolo retto. Una particella di carica positiva $q = 2\mu C$ e massa m = 1.2g si trova inizialmente ferma nella posizione $P(x_1 = y_1 = 0.1m)$. Calcolare

- 1. L'intensità del campo elettrico generato dalla coppia di fili nel punto P
- 2. La forza che la particella subisce nel punto P
- 3. La velocità della particella dopo che ha percorso la distanza d = 0.75m

