Chapter 1
The Statistical Operator

We introduce the statistical operator formalism. After defining the statistical operator and its main properties,
we reformulate Quantum Mechanics in this new formalism. Next, we present some of the possible representations
of the statistical operator in the phase space. Examples follow along the way.

1.1 Statistical Operator and Density Matrix

In describing quantum mechanical systems, often for simplicity one assumes that the state of the system is
perfectly known, say in a quantum state |¢)). However, as for classical systems, this is not true in reality.
Usually, we have only a partial knowledge of the system, and the best we can know is represented by a set of
states and corresponding probabilities:

{rpr} with > pe=1, (1.1)
k

where 1), are the possible states of the system, and p; the probabilities for each of them to be the actual state
of the system. This is called a statistical mixture. Note that this mixture reflects a classic ignorance about the
system, that is not related to quantum indeterminism.
Clearly each state v, evolves according to the Schrédinger equation
L d A
in T ), (1.2
dt

with H indicating the system’s Hamiltonian. Here, the usual rules of Quantum Mechanics (QM) apply to each
of the states. In particular, for a system in a state described by the mixture in Eq. (1.1), the probability for
obtaining an outcome o, associated to the eigenstate |o,) of an observable O is

Plo,] = ZPH (onltr) 12, (1.3)
k

which shows a mixing of classical ignorance (determined by p;) and quantum indeterminism (given by
| (on]br) |?). One computes the evolution of each state |iy), i.e. [1x(t)), and obtains the corresponding evo-
lution of the probabilities P¢[o,] = >, pi| (0n|tk(t)) |*. Proceeding this way is possible although not ideal, since
one has to consider each state separately. A more convenient way is provided by the density matrix or statistical
operator formalism. The statistical operator is defined as follows:

p="> prltr) (V- (1.4)
k
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The physical meaning of p can be understood as follows. Let { | a;) }, be a basis of the Hilbert space H, of
dimension N, associated to the quantum system. Then, we can represent the statistical operator on this basis,
and obtain a matrix:
(a1|plar) {as|plaz) ... (a1|plan)
. (az|plar) {az|plaz) ... (az|plan)
p = pij = . : : ) (1.5)

(anlplar) (anlplas) ... (anlflan)

which is called the density matrix. In practice, the density matrix and the statistical operator are often used
as synonymous. However, as a matter of principle, the density matrix is the representation of the statistical
operator with respect to a specific basis.

Example 1.1
Let us consider a system with two degrees of freedom. The associated Hilbert space H is two-dimensional.
Let {|0),|1)} be a basis of H. Let us consider the state

1
+)=—=(0) +|1)).
+) ﬁ(\ )+ 11))
The corresponding statistical operator is
. 1
p = +)(+] = 5 (10){0] +[0) (L] + [1) (O + [1) (1]},

while the density matriz with respect to the chosen basts s

b= (<OI{)IO> <0|;§|1>> 1 (1 1>.
< \(1plo) (1fpl1) ) 2 \11
The elements of the density matrix have specific physical meanings. For the sake of simplicity consider p =
|¥) (¢|. The diagonal elements are

(ar|plar) = (axl¥) (Ylax) = [ar )], (1.6)

which represent the probabilities for the system to be found in state |ak) upon a measurement of the observable
A =3%", ai |ax) (ax|. These are know also as populations. The off-diagonal elements instead are

(akplaj) = (arlt)(Plas), (1.7)

which are different from 0 only if the state |¢)) has components both with respect to the basis states |ay) and
la;). As such, the off-diagonal elements measure the presence of quantum coherence among the different states
of a chosen basis. It is important to remember that the information provided by the density matrix is always
relative to the chosen basis. This fundamental point is made clear by the following example.

Example 1.2
Instead of representing the statistical operator p = |+) (+| in Example|1.1 with respect to the basis {|0), |1)},
we now represent it with respect to the basis {|+),|—)}, where

1 1
=ﬁ(|0>+|1>), |-) =

Then, the corresponding density matriz reads

+) (10) = 1)) -

S

2
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o — <<+|/§|+> <+|p:|—>> _ (1 0),
7 \{=pl+) (=lal=) 00
This means that the system is with certainty in the state |+). Indeed, the corresponding diagonal element

is equal to 1, which is the probability of finding the state in |+). Moreover, there is no quantum coherence
between the two basis states |+) and |—). This is indicated by having null off-diagonal elements.

1.2 The physical meaning of the density matrix elements

From the previous discussion, it is clear that the diagonal elements of the density matrix have a direct physical
interpretation as probabilities of outcomes of suitable measurements, see Eq. . On the other hand, the
off-diagonal elements in general are complex numbers and as such they cannot be directly associated to an
observable. The following two examples provide a better understanding of the physical meaning of the off-
diagonal elements of the density matrix.

Example 1.3
Consider a statistical mizture in which the state of the system is in

|0) with probability 1/2, and |1) with probability 1/2.
The corresponding statistical operator is

p=1(10)(0] + 1) (1]),

and the associated density matriz with respect to the basis {|0),|1)} is:

o _1/10
Pii =35\01)"

The diagonal elements indicate that the probability of finding the system in state |0) or|1) is 1/2, consistently
with the mizture associated to the density matriz. The fact that the off-diagonal elements are null indicates
that no quantum coherence among the two basis states can be observed, since the system is never in a
quantum superposition of |0) and |1).

Example 1.4
Consider the following statistical mizture, which is physically different from that of Example|1.3:

1
5
1

V2

Now, a straightforward calculation shows that the statistical operator is the same as that in Example [1.3:

|+) (|0) + |1)) with probability 1/2,

5

|—) (|0) — |1)) with probability 1/2.

(10)CO + [1) (1)),

ﬁ:

N | =

and therefore also the associated density matriz with respect to the basis {|0),|1)} is the same
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o= (10
Pij = 2\01/"°

Accordingly, the physical interpretation of the diagonal and off-diagonal elements is also the same: no

quantum interference is detected in spite of the fact that each state contributing to the statistical mizture
1S in a superposition.

The physical situations described in the two Examples above are quite different. In Example the system
is not in a superposition of the basis states |0) and |1), while it is in Example Nevertheless, the density
matrix is the same in both cases. These two Examples teach us something important: the statistical operator
formalism is a many-to-one map between the set of statistical mixtures and the set of statistical operators:
different statistical mixtures can be associated to the same statistical operator.

1.3 Propriesties of the Statistical Operator

The statistical operator as defined in Eq. (L.4)), i.e. p = >, pr [x) (¥x|, shares three important properties.

1. Tt is a linear operator; given two vectors |¢) ,|¢) € H and two coefficients a,b € C, one has:

plalv) +b16)) =D prlvw) (Wil (al) +be)),
k

- <a2pk ) (bele) + b pr i) <¢k|¢>> , (18)
k k

= ap |¥) +bp|e)-
2. It is a positive operator:

(Wlply) = Zpk (Wlvw) (Wrltp) = Zpkl (Wlve) %, (1.9)

which is non-negative for every |¢) since pg > 0.
3. The trace is I; given a basis {|¢,)} of the Hilbert space, we have:

Tr[p] = (¢nl <Zpk |t) <1/)k|> |Pn) 5
n k

=Y (Z |<¢n|wk>|2) , (1.10)
k n

= pllvel? =D _pr=1,
k k

where in the last line we used the fact that the vectors [¢) defining the statistical mixture associated to the
statistical operator are normalized, and that the probabilities p sum to 1.

These three conditions turn out to be not only necessary but also sufficient conditions to characterize a
statistical operator. As a matter of fact, let us consider a linear and positive operator p over finite dimensional

Hilbert space H. Then, p is self-adjoint (this follows from its positivity), and therefore it admits a spectral
decomposition in the form

p="> Neltn) (Wl (1.11)
K
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where { A\; } are non-negative eigenvalues and { | ¢;) } are orthonormal eigenstates of p. The trace condition
implies that )", A\x = 1, meaning that the coefficient { Ay } can be interpreted as probabilities. This allows to
call j a statistical operator.

Note that, while the decomposition of the statistical operator as an ensemble of states in general in not
unique (as discussed in the previous section), the spectral decomposition instead is unique. Moreover, for a
generic statistical mixture the states need not to be orthogonal, while for the mixture associated to the spectral
decomposition they are.

1.4 Pure states and statistical mixtures
There are two important classes of statistical operators, which are called respectively pure states and statistical
mixtures.

- Pure states: A statistical operator represents a pure state when it corresponds to a unique vector in the
Hilbert space. In such a case, it can be represented as

p=1¥) (Wl (1.12)

Here, one has maximal knowledge about the states of the system, compatibly with the rules of quantum
mechanics (the indeterminacy principle still applies).

- Statistical mixture: When the state is not pure, we have a statistical mixture reading

ﬁ:ZPk [UK) (Yrl (1.13)
%

where, of course, more than one probability pj is different from zero.

Given a density matrix, it is not always straightforward to understand if it corresponds to a pure state or to
a statistical mixture. A first criterion to discriminate between the two is based on the purity of the state. For a
pure state one has that

P =p. (1.14)

Exercise 1.1
Prove that the relation in Eq. (L.14)) holds for pure states.

This result can be summarized in the following theorem.
Theorem 1.1. A statistical operator p is pure if and only if p> = p, otherwise it is a statistical mizture.

When the dimension of the Hilbert space is large, it is not computationally easy to compare p with 2, and
a simpler criterion is desirable. The following theorem is easy to prove.

Theorem 1.2. Let p be a statistical operator. Then, in general one has that
Tr [p%] <1, (1.15)

where the equality holds if and only if p is a pure state.
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Ezercise 1.2
Prove that the relation in Eq. (1.15).

Computing the trace of a matrix is computationally easier than comparing two matrices, as the first operation
scales with the dimension of the Hilbert space and the second with its square. Therefore, Theorem is that
commonly used to verify the purity of a state.

1.5 The Bloch Sphere

Two dimensional quantum systems are the easiest example of quantum systems, and they are typically used
to set the ground for studies of more complex systems. Moreover, they are particularly relevant since they can
encode the qubit, the unit of quantum information. Let us then consider a two dimensional Hilbert space H and
its computational basis { | 0), | 1) }, which is commonly known as the computational basis. A density matrix p
on H when represented on a basis becomes a 2 X 2 matrix of the form

p= (CCL Z) , with a,b,c,d € C. (1.16)

In principle, these four coefficients represent 8 degrees of freedom. However, one can show that the density
matrix can be written in terms of three real numbers as follows

L 1+r, vy —ir,
T2 \rptiry 1—r, )7

1(/10 01 0—i 10
== 1.17
QK()l)—&-m(lO)—l-ry(i 0>+rz<01>}, ( )
l4r-o
2 ?
where o = (04, 0y,0.) are the Pauli matrices and r = (,y, z) three real coefficients, where |r| < 1. We see that
the density matrix is fully controlled by the three-dimensional vector r, which is called the Bloch vector.

Recall 1.1
Let us recall that the Paulio operators 6; have the following properties:

1) Their trace: Tr [6;] = 0,

2) Their determinant: det & = —1,

8) Their anticommutator: {6;,5;} = 20;;1, where 1 is the identity operator,

4) Their commutator: [6;,6;] = 20, €x0k, where €1, indicates the Levi-Civita symbol (having €123 = 1
and being odd for any permutation of two indeces).

Ezxercise 1.3
Prove that, by imposing i) pt = p, ii) Tr[p] = 1, iii) p > 0, one can describe a two dimensional density

matriz as in Eq. (1.17).

Let us consider the square of p
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~ 2
2 1+I‘6’
p - 2 )
1
4

(i—l—?l‘-(}—FZTﬂ‘ja’ia‘j R (118)

ij

i—l—?r-é’—i— ||I’H2 +'L'Z7"irj€ijka'k

ij
It follows that

R 1
Tr [p°] = 3 (14 [x[). (1.19)
Given the results of the previous section, the condition Tr [,52] < 1 implies that ||r||> < 1, where the equality
holds only for pure states. This leads to a rather natural way of representing the Bloch vector as a point of a
sphere of radius 1, which is called the Bloch sphere. Each point inside the sphere or on its surface represents a
density matrix. If the point lies on the surface, it represents a pure state. If it is inside, it represents a statistical
mixture.

Example 1.5
The mazimally mized state is p = 1/2. In this case v = 0, which corresponds to the center of the Bloch
sphere.

A (pure) state vector can be written as 1)) = a |0) +b|1), where its normalisation implies that |a|? 4 |b]? = 1.
Given such a constraint on the norm, it also admits a Bloch representation

0 ; 0
|1)) = cos 3 |0) + €*¥ sin 3 1), (1.20)

which is unique, up to an unimportant global phase. The associated density matrix reads

B cos? g e~ cos g sin % (121)
P=\ e cos g sin g sin? g ’ )
whose Bloch vector is
r = (sinf cos p,sin 6 sin p, cos ), (1.22)

and represents, in spherical coordinates, a point on the surface of the Bloch sphere (indeed, here we have
[lr]] = 1). We see that the Bloch sphere representation of a pure state is the same whether ones considers the
representation of the state vector or that of the corresponding density matrix, as it should be. The computational
basis vectors |0) and |1), which are also eigenstates of 7, correspond to the intersection between the Bloch sphere
and the z axis. Similarly, the eigenstates of ¢, correspond to the intersection with the x axis, and those of &
with the axis y, see Fig.
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0.
16 =1.037, ¢ =5.906} | |qubit)=( 869 )

0461 -0.182¢

Fig. 1.1: Representation of the state |qubit) in the Bloch sphere (red arrow). The eigenstates of &;, i = x, v, 2,
are also explicitly represented.

Ezxercise 1.4
Prove that the Bloch vector r appearing in Eq. (L.17) can be obtained from r = Tr [6p].

1.6 Quantum Mechanics in the Statistical operator formalism

It is quite straightforward to rewrite the axioms of QM in density matrix formalism. The rules are the following.

States. To every physical system, an Hilbert space H is associated. The state of the system is represented by a
statistical operator p. We remind that they admit the following (spectral) decomposition

p=>> prlr) (Wi, with D pp=1, (1.23)
k k

where the states |¢) are normalized.

FEvolution. Since each state |1)) evolves according to the Schrodinger equation, it follows that the evolution of

p is given by
Ld o . d - d
Zhapt = zk:pk Kmdt |¢k>> CARY (Zhdt <'l/)k|>:| ) (1.24)
which amounts to d
Zhapt = [vat} ) (1.25)

to be solved with the initial condition py = p. This is known as von-Neumann-Liouville equation and it is a
linear equation. It should be clear that its dynamics content is equivalent to that of the Schrodinger equation.
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The formal solution of the von-Neumann-Liouville equation is provided by
pr = UpoUf,  with U, = exp {—szt/h] : (1.26)

where, for simplicity, we are considering the case of a time independent Hamiltonian. Due to the cyclic property
of the trace (Tr {AB’CA’} =Tr [C’AB} ), and since U, is unitary, one has

Te [pe] = Tr |OipoUf | = T [0 Dupo] = Tr o] = 1, (1.27)

indicating that the trace is preserved, as it should be. Physically, it means that the probabilities are conserved.
This is a property inherited from the Schrédinger equation. Also the trace of the square of the density matrix
is conserved: o . R

Te (2] = T [UnpoUf UupoUf | = T [Cfopolf | = T [48] (1.28)
This means that pure states are mapped into pure states. Again, this is not a surprise, since a state vector re-

mains a state vector under the Schrodinger evolution. Similarly, statistical mixtures are mapped into statistical
mixtures: our ignorance about the state of the system propagates (linearly) during the evolution.

Observables. Observable quantities are represented by self-adjoint operators on H. This axiom does not change
with respect to the usual one.



	The Statistical Operator
	Statistical Operator and Density Matrix
	The physical meaning of the density matrix elements
	Propriesties of the Statistical Operator
	Pure states and statistical mixtures
	The Bloch Sphere
	Quantum Mechanics in the Statistical operator formalism

	The Reduced Density Matrix
	Open Quantum Systems, Partial Trace and the Reduced Density Matrix
	Quantum operations and the Kraus-Stinespring theorem
	Quantum operations on qubits

	Quantum Dynamical Semigroups
	On the linearity of the dynamics
	Strongly Continuous Semigroup
	Quantum Dynamical Semigroup
	Microscopic derivation of the Born-Markov master equation
	Born approximation
	Markov approximation

	Lindblad evolution in Quantum Information theory
	Unravelling formalism for noises

	Circuit model for quantum computation
	Qubit gates
	Hadamard test

	No-cloning theorem
	Dense coding
	Quantum teleportation
	Quantum Phase estimation
	Single-qubit quantum phase estimation
	Kitaev's method for single-qubit quantum phase estimation
	n-qubit quantum phase estimation

	Harrow-Hassidim-Lloyd algorithm

	Variational Quantum Algorithms
	The Ising model
	Mapping combinatorial optimisation problems into the Ising model
	Adiabatic Theorem
	Quantum Annealing
	Quantum Approximate Optimisation Algorithm (QAOA)
	Variational Quantum Eigensolver (VQE)

	Noisy Intermediate-Scale Quantum (NISQ) computation
	Miscalibrated gates
	Projection noise and sampling error
	Measurement error
	Environmental noise
	Global noise action


	Quantum Error Correction and Mitigation
	Quantum Error Correction
	Classical error correction
	Quantum information context
	The 3-qubit bit-flip code
	The 3-qubit phase-flip code
	The 9-qubit Shor code
	On the redundancy and threshold
	More layers of encoding or only more qubits

	Stabiliser formalism
	Inverting quantum channels
	Correctable errors
	Stabilisers
	Normalisers and Centralisers
	Stabiliser code

	Surface code
	Detecting errors

	Fault-tolerant computation
	Stean code or 7-qubit code


	Dynamical Decoupling and Quantum Error Mitigation
	Dynamical Decoupling
	Quantum Error Mitigation
	Zero noise extrapolation
	Probabilistic error cancellation


	Solutions of the exercises
	Solution to Exercise 4.1
	Solution to Exercise 4.2
	Solution to Exercise 4.3
	Solution to Exercise 4.4

	Index

