
Submitted: 5th of May 2021 DOI: 10.26775/OP.2021.06.15

Published: 15th of June 2021 ISSN: 2597-324X

Are we comparing apples or squared apples? The proportion

of explained variance exaggerates differences between

effects
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Abstract

In this brief note, I wish to bring attention to a problem that has been discussed many times before, but whose implications
are still not widely appreciated. As a result, many researchers (present author included) keep making distorted inferences
about the relative size and importance of certain effects, by directly comparing the proportions of variance they account for.
Using the proportion of explained variance as an index of effect size does not just distort the interpretation of individual
effects, but also exaggerates the differences between effects, which may lead to strikingly incorrect judgements of relative
importance. Luckily, a meaningful and interpretable “effect ratio” can be easily calculated as the square root of the ratio
between proportions of explained variance. In several real-world examples, effect ratios tell a different story than variance
components, and might prompt one to rethink the interpretation of certain canonical results (e.g., regarding the role of the
shared environment in the development of psychological traits). This simple but consequential point should be understood
more widely; with no pretense of originality, I hope that this note will contribute to raise awareness and prevent fallacious
interpretations of research findings.
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Introduction

In this brief note, I wish to draw attention to a problem that has been discussed a number of times in the
literature, but whose implications are still not widely appreciated. As a result, many researchers (present
author included) keep making distorted inferences about the relative size and importance of certain effects,
by directly comparing the proportions of variance they account for. This can be especially consequential in
disciplines where variance components are routinely used as indices of effect size, such as behavior genetics. To
illustrate, the narrow-sense heritability of depression (i.e., the variance in the risk for the disorder explained by
additive genetic effects) is 30-40 %, whereas that of bipolar disorder is at least 60 % and perhaps as high as
80 % (Johansson et al., 2019; Knopik et al., 2017). These figures seem to indicate that the influence of genetic
factors on the risk of developing a condition is approximately twice as large in bipolar disorder as in depression.
But this interpretation is incorrect; as I discuss below, genetic factors play a much more similar role in the two
disorders than suggested by this comparison.

The proportion of explained variance is a non-intuitive and often misleading index of effect size. Variances are
mathematically convenient because they combine additively; however, they are not expressed in the original
units of the variable of interest—say income in dollars, intelligence in IQ points, or height in inches—but in
squared units. Even when these variance units are not meaningless (as with squared dollars or squared IQ
points), they still fail to measure the actual trait under consideration (e.g., square inches do not measure a
person’s height). In contrast, the correlation coefficient—the square root of the explained variance—quantifies
the relation between two variables in terms of the (standardized) original units, and thus has a natural
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interpretation with respect to the size of the effect.1 If the correlation between X and Yis .30, a change of
one standard deviation in X predicts a change of 0.30 standard deviations in Y (and vice versa; here I do not
distinguish between statistical prediction and genuine causality). The proportion of the variance ofY accounted
for by X is just 9 %, which makes the effect seem small and unimportant. But, as noted above, explained
variance is expressed in squared units of Y, and relates to the real-world effect of X on Y in a highly nonlinear
fashion.2 Over the years, many have noted that the proportion of explained variance can lead researchers to
dramatically underestimate the importance of certain effects, and have recommended the use of correlations (or
other unsquared indices such as Cohen’s d) to quantify and interpret effect sizes (e.g., Abelson 1985; Beatty
2002; Breaugh 2003; D’Andrade & Dart 1990; Funder & Ozer 2019; Hunter & Schmidt 1990, 2014; Rosenthal &
Rubin 1979).

An important corollary, but one that is seldom discussed explicitly, is that comparing effects based on their
respective proportions of explained variance tends to exaggerate the differences among them—often by a large
margin (Hunter & Schmidt, 1990, 2014). Consider a variable Z that correlates .60 with Y. A change of one
standard deviation in Z predicts a change of 0.60 standard deviations in Y. That is, a given change in Z has
twice the effect on Y than the same amount of change in X. But the variance explained by Z (36 %) is four times
as large as that explained by X—a ratio that grossly exaggerates the real-world difference between the respective
effects of X and Z on Y, expressed in the scale of the original units of these variables.

More generally, the ratio between two correlations (henceforth the “effect ratio”) is simply the square root of the
ratio between the corresponding squared correlations (i.e., the proportions of explained variance). Of course, it
is not always sensible to compare two standardized effect sizes, and—depending on context—unstandardized
effects can be more informative than standardized ones. But when it makes sense to compare proportions of
explained variance in the context of continuous variables, the effect ratio provides a much more realistic index
of the relative importance of the effects, which usually concerns the original units of the variables rather than
the squared units of the variance. However, note that the ratio between correlations is not the same as the ratio
between values of Cohen’s d, because d is nonlinearly related to the correlation coefficient. Thus, when the focus
of the analysis is the difference between two groups (i.e., the proportion of the total variance accounted for by a
binary group variable, such as males vs. females), the simple effect ratio described here does not correspond to
the ratio between d values, except in special cases.3 In the rest of this paper, I only consider examples in which
the relevant variables are continuous and the correlation coefficient is a natural effect size.

Going back to the case of depression and bipolar disorder, the ratio of the heritabilities of these disorders is
about two; the square root of this ratio is about 1.41, meaning that genetic factors contribute about 40 % more
to the risk of bipolar disorder compared with that of depression (instead of twice as much, as suggested by
the heritabilities). Indeed, one standard deviation increase in the genetic predisposition for bipolar disorder
increases risk by

√
.60 ≈ 0.77 standard deviations, whereas one standard deviation increase in the genetic

predisposition for depression increases risk by
√
.30 ≈ 0.55 standard deviations.

For another example, consider this quote from Plomin & von Stumm (2018): “One of the most interesting devel-
opmental findings about intelligence is that its heritability as estimated in twin studies increases dramatically
from infancy (20 %) to childhood (40 %) to adulthood (60 %)” (p. 152). Although the heritability increases
threefold, the real-world impact of genetic factors on intelligence is only about 70 % larger in adulthood than in
infancy (

√
3 ≈ 1.73). Specifically, one standard deviation increase in the genetic score for intelligence can be

expected to increase intelligence by
√
.20 ≈ 0.45 standard deviations in infancy,

√
.40 ≈ 0.63 standard deviations

in childhood, and
√
.60 ≈ 0.77 standard deviations in adulthood. In the same paper, the authors predicted

that genomewide polygenic scores “will explain substantially more than 10 % of the variance in intelligence,

1 In some scenarios, the unsquared correlation between two variables measures the variance explained by a third variable of interest
(see W. Johnson 2011; Ozer 1985). For example, the correlation between monozygotic twins reared apart is a direct estimate of trait
heritability (i.e., the proportion of variance explained by additive genetic factors); the correlation between two parallel forms of a scale is
a direct estimate of their reliability (i.e., the proportion of variance explained by the latent construct). In these scenarios, the effect of
interest is not the association between the two measured variables, but that between each of them and a third, unobserved variable
(the genetic factor; the latent construct). As usual, the effect of interest is quantified by the square root of the proportion of explained
variance—in this case, the square root of the heritability or reliability.

2 Throughout the paper, I use “real-world” as a shorthand for effects expressed in the original (standardized) units of the relevant variables,
as contrasted with the squared units of variance.

3 For equal-sized groups, the conversion is d = 2r√
1−r2

. Hence, the ratio between two d values is d1
d2

= r1
r2

√
1−r2

2
1−r2

1
. The ratio of d’s closely

approximates the ratio of r’s only if the two correlations are both small or very similar to each other, so that the term inside the square
root becomes approximately 1.
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which is more than 20 % of the 50 % heritability of intelligence”, and commented “Nonetheless, 10 % is a long
way from the heritability estimate of 50 % obtained from twin studies of intelligence” (p. 151). However, a
polygenic score that explains “just” 10 % of the variance can be expected to predict the actual value of the
phenotype almost half as well as the full genotype (

√
.10/.50 ≈ 0.45), assuming that the estimate from twin

studies is correct.

As an important caveat to the above paragraphs, I wish to stress that there are contexts in which directly
comparing heritabilities has a natural, meaningful interpretation. For example, the response of a trait under
selection can be predicted with the breeder’s equation R = h2S, where S is the selection differential (i.e., the
within-generation change in the trait mean), R is the response to selection (i.e., the between-generation change
in the trait mean), and h2 is the narrow-sense heritability. In this particular context, the effect of interest—that
is, the response to selection—is directly proportional to the heritability; for instance, doubling the heritability
of a trait will double its response to the same amount of selection. More generally, I am emphatically not
suggesting that the heritability is a meaningless quantity. The point is that the real-world effect of additive
genetic factors on a trait (in terms of the trait’s original units) is not quantified by the heritability but by its
square root.

In quantitative genetics, the routine use of variance components as indices of effect size may have led researchers
to underestimate the impact of shared environmental factors (i.e., those aspects of the environment that tend
to increase the similarity between siblings). In his famous paper on the “three laws of behavior genetics”,
Turkheimer (2000) expressed a common perception in the field: “Although according to the second law shared
environment accounts for a small proportion of the variability in behavioral outcomes, according to the third
law, nonshared environment usually accounts for a substantial portion. So perhaps the appropriate conclusion
is not so much that the family environment does not matter for development, but rather that the part of the
family environment that is shared by siblings does not matter” (p. 162; emphasis mine).

Specific examples of deflationary interpretations of the shared environmental variance can be found in various
sources, including Knopik et al. (2017)’s classic textbook of behavior genetics. After discussing results that
estimate the heritability of verbal and spatial abilities at about 40-50 %, the authors noted: “[H]owever, adoption
designs show little influence of shared environment. For example, the correlations for adoptive siblings are
only about 0.10, suggesting that only 10 percent of the variance of verbal and spatial abilities is due to shared
environmental factors” (p. 174). But these figures correspond to an effect ratio of about 2, meaning that shared
environmental factors are roughly half as influential as genetic ones. Or: “Large twin studies found similar
results [heritability around 60 %] in the early school years for both reading disability and reading ability.
However, in all of these studies, shared environmental influence is modest, typically accounting for less than 20
percent of the variance” (p. 205). But even a “modest” 10 % of variance would indicate a real-world effect 40 %
as large as that of genes (

√
.10/.60 ≈ 0.41).

In their comprehensive meta-analysis of 50 years of human twin studies (including cognitive and behavioral
traits but also morphological, metabolic, reproductive traits, etc.), Polderman et al. (2015) estimated the mean
heritability across traits at 48.8 % and the mean shared environmental component at 17.4 %. Taken at face value,
these figures seem to suggest that additive genetic factors are almost three times as influential as the shared
environment (explained variance ratio: 2.80); but in terms of real-world effects on the phenotype, the impact of
genes is only 67 % larger than that of the shared environment (effect ratio:

√
2.80 ≈ 1.67). Equivalently, one

could say that the impact of the shared environment is 60 % as large as that of genes (the reciprocal of 1.67 is
0.60). Similarly, the heritable and shared environmental components of criminality and substance use have been
estimated at about 50 % and 20 %, respectively (Kendler et al., 2016, 2019). Translated into real-world effects,
this corresponds to a ratio of about

√
.50/.20 ≈ 1.58 (or its reciprocal 0.63), meaning that shared environmental

factors are about 60 % as influential as genetic factors.4

It is important to note that the discrepancy between the ratio of explained variances and the effect ratio becomes
more pronounced as the effects being compared grow more different from each other. For example, consider
a trait that is 50 % heritable and has a 5 % shared environmental component (ten times smaller than the
heritability). Many would regard that 5 % of variance as very small, or even practically negligible; but in fact,
the effect ratio is only

√
10 ≈ 3.16 (reciprocal 0.32), meaning that the impact of the shared environment on the

phenotype is about one third of that of genes (!). Even a shared environmental component of just 1 % is not as

4 (Hunter & Schmidt, 1990, 2014) illustrated this point with a similar example from behavior genetics: if intelligence is 80 % heritable
and 20 % environmental (which may be the case in older adults, at least in wealthier countries; see Plomin & Deary 2015), the proper
ratio between the real-world genetic and environmental effects is two, not four as suggested by the size of the variance components.
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tiny as it looks against a heritability of 50 %. The effect ratio in this case is
√

50 ≈ 7.07, meaning that genetic
factors are seven times more influential than the shared environment—a substantial difference, but not nearly
as large as indicated by the size of the variance components.5

Psychometrics is another discipline in which variance components are routinely calculated and directly inter-
preted by researchers. In classical test theory, the reliability of a scale is the proportion of true score variance (i.e.,
variance shared with the latent construct being measured) on the total variance, with the remainder accounted
for by measurement error. Thus, directly comparing the reliabilities of different scales may give a misleading
impression of their relations with the latent construct of interest. If two scales have reliabilities of .60 and .80,
the higher-quality scale correlates with the latent construct only 15 % more strongly than the lower-quality one
(effect ratio:

√
.80/.60 ≈ 1.15).

This phenomenon can become especially insidious when the variance of psychometric scales is parsed at a finer
scale of analysis. For example, McCrae (2015, Table 1) reported that measured scores on the facets of the Big
Five personality domains contain an average of 34 % common trait variance (i.e., variance shared with the
broader domain) and 9 % facet-specific variance. (To illustrate: in this model of personality, the broad domain
of Extraversion has six narrower facets: Warmth, Gregariousness, Assertiveness, Activity, Excitement seeking,
and Positive emotions.) These figures seem to suggest that a person’s true score on a given personality domain
(e.g., Extraversion) contributes to their measured score on a facet of that domain (e.g., Assertiveness) almost
four times as much as their true score on the facet itself (explained variance ratio: 3.78). However, the effect
ratio is a markedly smaller

√
3.78 ≈ 1.94, meaning that personality domains contribute to scores about twice as

much as facets (instead of almost four times as much).

Later in the same paper, McCrae (2015) estimated variance components for scores on single personality items.
On average, the total score variance consisted of 12 % common trait variance; 24 % item-specific variance; 13 %
method variance (regarded as systematic error); and 51 % random error. McCrae concluded: “The observed
values are sobering: In the typical item, nearly two thirds of the variance is either random or systematic error
[...], which is why single items are notoriously unreliable; of the remaining true-score variance [...], only a third
is due to the common trait” (p. 106). However, effect ratios paint a less sobering picture: measurement error
contributes only 33 % more than true score variation (

√
(.51 + .13)/(.24 + .12) ≈ 1.33), and the contribution of

common trait variation to item scores is about 70 % as large as that of item-specific variation (
√
.12/.24 ≈ 0.71).

The use of variance components as measures of effect size is especially widespread in behavior genetics and
psychometrics, but by no means limited to these disciplines. An entire line of methodological research—under
the rubric of “relative importance analysis” or “relative weight analysis”—seeks to supplement standard
multiple regression coefficients with indices that quantify the amount of variance explained by each predictor in
the model, in order to rank and compare predictors in terms of their importance (see J. W. Johnson & LeBreton
2004; Tonidandel & LeBreton 2011, 2015). Relative importance analysis is popular in various areas of the
applied social sciences, including organizational, vocational, and business psychology. The rationale for relying
on variance components is that, unlike regression coefficients, they are additive and sum to the total R2 of the
model. But while additivity is a convenient property, variance-based indices can dramatically magnify the
apparent differences in importance among predictors, even when their real-world effects on the outcome are
not very dissimilar.6 In principal component analysis (PCA) and exploratory factor analysis (EFA), components
and factors are routinely ranked based on the proportion of variance they explain in the original variables (as
measured by the corresponding eigenvalues) ; this may easily inflate the perceived differences between “strong”
and “weak” dimensions of variation in the data.

In sum: using the proportion of explained variance as an index of effect size does not just distort the real-world
magnitude of individual effects, but also exaggerates the differences between effects, which may lead to strikingly
incorrect judgements of relative importance. Luckily, a meaningful and interpretable “effect ratio” can be
easily calculated as the square root of the ratio between proportions of explained variance. In a number of
practical examples, effect ratios tell a different story than variance components, and might prompt one to

5 Here I am assuming that the 1 % or 5 % of shared environmental variance in these examples represents a reliable effect, and not a
spurious estimate resulting from sampling error or other forms of bias. At least in some cases, it is reasonable to treat small variance
components as effectively zero; my argument only applies to genuine nonzero effects that happen to account for a small proportion of
the variance. Note that shared environmental effects that account for a few percent of the variance cannot be reliably detected in twin
studies unless sample size is quite large; hence, they are often dropped from the best-fitting model and set to zero (see e.g., Burt 2014).

6 A similar criticism applies to the summary indices I have proposed to quantify the heterogeneity in the contributions of individual
variables to Mahalanobis’ D, which is the multivariate generalization of Cohen’s d (Del Giudice, 2017, 2018)(Del Giudice, 2017, 2018).
Those indices rely on a decomposition of the total squared effect size into a weighted sum of squared univariate effect sizes, and arguably
provide an inflated sense of heterogeneity across variables.
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rethink the interpretation of certain canonical results (e.g., regarding the role of the shared environment in the
development of psychological traits). This simple but consequential point should be understood more widely;
with no pretense of originality, I hope that this note will contribute to raise awareness and prevent fallacious
interpretations of research findings.

Method

I wish to thank Mike Bailey, Steve Gangestad, and Emil Kirkegaard for their helpful comments on a previous
draft of this manuscript.
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