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Regression to the mean: what it is and how

to deal with it

Adrian G Ba\rnett,1 Jolieke C van der Pols! and Annette J Dobson!

Regression to the mean (RTM) is a statistical phenomenon that can make natural
variation in repeated data look like real change. It happens when unusually large
or small measurements tend to be followed by measurements that are closer to

We give some examples of the phenomenon, and discuss methods to overcome
it at the design and analysis stages of a study.

The effect of RTM in a sample becomes more noticeable with increasing
measurement error and when follow-up measurements are only examined on a

RTM is a ubiquitous phenomenon in repeated data and should always be
considered as a possible cause of an observed change. Its effect can be alleviated
through better study design and use of suitable statistical methods.
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In this tutorial style paper we give an introduction to the
problem of regression to the mean (RTM) and then use
examples to highlight practical methods for dealing with the
problem at the design and analysis stages of a study.

RTM at the subject level

RTM is a statistical phenomenon that occurs when repeated
measurements are made on the same subject or unit of
observation. It happens because values are observed with random
error. By random error we mean a non-systematic variation in
the observed values around a true mean (e.g. random
measurement error, or random fluctuations in a subject).
Systematic error, where the observed values are consistently
biased, is not the cause of RTM. It is rare to observe data without
random error, which makes RTM a common phenomenon.
Figure 1 illustrates a simple example of RTM using an artificial
but realistic! distribution of high density cholesterol (HDL)
cholesterol in a single subject. The first panel shows a Normal
distribution of observations for the same subject. The true mean
for this subject (shown here as 50 mg/dl) is unknown in practice
and we assume it remains constant over time. We assume that
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the variation is only due to random error (e.g. fluctuations in the
HDL cholesterol measurements, or the subject’s diet).

In the second panel we show an observed HDL cholesterol
value (from this Normal distribution) of 30 mg/dl, a relatively
low reading for this subject. If we were to observe another value
in the same subject it would more likely be >30 mg/dl
than <30 mg/dl (third panel). That is, the next observed value
would probably be closer to the mean of 50 mg/dl (third panel).

In general, when observing repeated measurements in the
same subject, relatively high (or relatively low) observations are
likely to be followed by less extreme ones nearer the subject’s
true mean. This phenomenon was first discussed by Sir Francis
Galton in 1877 (see Stigler2 for an historical account of RTM),
and it was Galton who coined the phrase ‘regression to the
mean’. The practical problem caused by RTM is the need to
distinguish a real change from this expected change due to the
natural variation. For example, in the third panel of Figure 1 we
might think that the subject’s HDL cholesterol has increased
when in fact the first measurement was just unusually low and
the subject’s true mean HDL cholesterol has remained constant.

RTM at the group level

The problem of RTM 1is not restricted to individual
measurements. We now give an example where the effect of
RTM is compounded by categorizing subjects into groups based
on their baseline measurement(s).
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Figure 1 Graphical example of true mean and variation, and of regression to the mean using a Normal distribution. The distribution represents
high density lipoprotein (HDL) cholesterol in a single subject with a true mean of 50 mg/dl and standard deviation of 9 mg/dl
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Figure 2 Hypothetical population distribution of high density lipoprotein HDL cholesterol and distributions for 50 simulated subjects. The cut-
point at 40 mg/dl identifies those with a low HDL cholesterol. The second panel focuses on the left tail of the population and hence on those 21
subjects who may be included in the ‘low” group. The second panel shows the mean and variation in HDL cholesterol for these 21 subjects, and is

a bird’s-eye view of the first panel. Adapted from Yudkin & Stratton!®

Consider measuring HDL cholesterol in a random sample of
subjects from a defined population. The distribution of HDL
cholesterol in this population is Normal with some mean (say
60 mg/dl) and standard deviation (say 12 mg/dl). Subjects in
the population each have their own mean (which is within a
population range of about 20-100 mg/dl). Due to measurement
error and random fluctuation we cannot expect that subjects
will have the same HDL cholesterol reading if measured at two
different times.

The first panel of Figure 2 shows a hypothetical population
distribution of HDL cholesterol and the simulated distributions
of 50 subjects generated from this population. We assumed that
at the population level HDL cholesterol was Normally
distributed with mean 60 mg/dl and standard deviation
12 mg/dl. At the subject level HDL cholesterol is also Normally
distributed but with a smaller standard deviation (9 mg/dl). We
further assumed that the variation was the same for all subjects.
Chesher discusses the RTM effect in non-Normal data.’

There are more subjects with a true mean close to 60 mg/dl
(the population mean) and fewer near the population tails (e.g.
with means of <30 or >90 mg/dl).

After an initial measurement, suppose a subgroup of subjects
is identified with undesirably low HDL cholesterol. In this

example we use a value of <40 mg/dl to define a group of
people targeted for treatment.* The second panel of Figure 2
shows the subjects who may be included in this low HDL
cholesterol group. There are only 2 subjects whose true mean
is <40 mg/dl, and 19 whose true mean is >40 mg/dl. On re-
measurement these 19 subjects with a true mean >40 mg/dl
will most likely return results closer to their true mean. This will
have the effect of increasing the overall mean of the low group.
Such a change in the group mean may wrongly be attributed to
a true change in HDL cholesterol when the real cause would be
RTM. The issue becomes particularly important when an
intervention is applied between the two measurements.

The left panel of Figure 2 highlights another important
consequence of random variation: the variability in individual
measurements is greater than the variability in the true means.
Suppose we wanted to use individuals with levels of HDL
cholesterol similar to those in Figure 2 to estimate the
increasing risk of coronary heart disease with decreasing HDL
cholesterol. A simple method would be to fit a regression line to
data comprising coronary event rates (y-axis) plotted against
HDL (x-axis). If we used the individual measurements of HDL
the x-axis data would have a greater range than if we used the
true means, whereas the data on the y-axis remains unchanged.
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Therefore the slope of the line would be shallower than if the
true means had been known and used. This attenuation of
association is known as the regression dilution bias.”

Quantifying the effect of RTM

The above example highlighted how both the within-subject

variance 0'5/ and the population or between-subject variance (51%

contribute to RTM. The formula to calculate the expected RTM

effect, for Normally distributed data, is defined as:®”
0_2
RTM elfect = ————C(z),
o2 + o}
=c(l—p)Cz), —-l=<p=1, (1)

where 62 = 62 + 67 is the total variance, 62, = (1 — p)o? is the

within-subject variance, 6}3 = pct2 is the between-subject
variance, p is the correlation and,

C(2) = 0(2)/1(2),

where z = (¢ — n)/c, if the subjects are selected using a baseline
measurement greater than ¢, and z= (u — )/, if the subjects
are selected using a baseline measurement less than ¢; p is the
population mean. The terms ¢(z) and ®(z) are respectively the
probability density and the cumulative distribution functions of
the standard Normal distribution.

In the HDL cholesterol example the cut-off was a baseline
measurement less than ¢ = 40 mg/dl, so we use z= (60 — 40)/15 =
1.33. From tables of the standard Normal distribution
0(z) = 0.16 and ®(z) = 0.09. From the within (62=9?) and
between-subject variances (0‘5 = 122) we can calculate
p =0.64, so approximately the RTM effect =9.6 mg/dl, a
seemingly large increase in the group’s mean HDL cholesterol.

For some measurements the correlation p may be expected to
decay over time. Equation (1) shows that as the correlation
becomes smaller the RTM effect increases. Equation (1) also
shows that the RTM effect is proportional to the population
standard deviation, and that the effect increases as the value of
C(z) increases, which corresponds to a more extreme cut-off
value (closer to either tail of the Normal distribution).

Some real-life examples of RTM

One of Galton’s first examples was the average height of
parents and their children. He found that tall parents had (on
average) children who were smaller than them, and that short
parents had (on average) children who were taller than
them. In both cases the children with parents at the extreme
ends of the distribution had heights closer to the population
mean height.

In more recent studies RTM has been reported in
birthweights,8 blood pressure,9 and cholesterol.19 Nevertheless
it continues to be missed by some public health researchers; for
example, part of the 90% drop in cases of meningitis C in the
UK after the introduction of an immunization programme could
be due to a very bad year being likely to be followed by a better
year.11 Some other interesting examples are given by Bland and
Altman.!2
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Identifying and dealing with RTM
Example: the Nambour Skin Cancer Prevention Trial

To illustrate the statistical methods used to detect and control
for RTM we used a random subset of measurements of serum
betacarotene from the Nambour Skin Cancer Prevention
Trial.!? This community-based randomized trial investigated the
effect of a daily betacarotene supplement and daily application
of sunscreen on skin cancer. The effect of the betacarotene
supplement on serum levels was investigated in a random sub-
sample of trial participants, who provided a blood sample at the
start of the trial, in February 1992, and another blood sample
at the end of the supplementation period in July 1996
(unpublished). The betacarotene measurements (ULM/1) in this
study were strongly positively skewed. For our purpose we
therefore log-transformed the data to make them appro-
ximately Normally distributed. The data consist of n = 96 paired
measurements, n = 52 from the treatment group (betacarotene
supplement) and n = 44 from the placebo group. In the analyses
presented here we are interested in whether the supplements
increased betacarotene levels (i.e. a genuine treatment effect).

How to use graphs to help identify RTM

One should assume that RTM has taken place unless the data
show otherwise. The initial examination of the data should
include a scatterplot of change (follow-up minus baseline
measurements) against baseline measurements, which can help
identify the magnitude of the RTM effect. An example
scatterplot is shown in Figure 3 for the log-transformed betac-
arotene data from the Nambour Skin Cancer Prevention Trial.
The solid line represents perfect agreement (i.e. no change)
between the follow-up and baseline values. The dotted lines
were obtained by linear regression of the change values on
baseline values including a group covariate; the higher line is
for the treatment group and the distance between the
regression lines indicates a possible treatment effect. Some RTM
is apparent in the plots, as subjects whose baseline results were
unusually low have tended to increase (so that change values
are likely to be above the solid line), and subjects whose
baseline results were unusually high have tended to decrease
(so that change values are likely to be below the solid line). This
pattern is clearer in the placebo group where there was less
change in the group mean between the measurement times.

How to reduce the effects of RTM at the study
design stage

The effect of RTM can be reduced by a good study design. We
describe two such designs below. These designs can be
combined to give even greater protection against RTM, and are
described in detail by Yudkin & Stratton.!*

1. Random allocation to comparison groups

If subjects are randomly allocated to comparison groups the
responses from all groups should be equally affected by RTM.
With two groups, placebo and treatment, the mean change in
the placebo group provides an estimate of the change caused by
RTM (plus any placebo effect). The difference between the
mean change in the treatment group and the mean change in
the placebo group is then the estimate of the treatment effect
after adjusting for RTM.
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Figure 3 Scatter-plot of n = 96 paired and log-transformed betacarotene measurements showing change (log(follow-up) minus log(baseline))
against log(baseline) from the Nambour Skin Cancer Prevention Trial. The solid line represents perfect agreement (no change) and the

dotted lines are fitted regression lines for the treatment and placebo groups

2. Selection of subjects based on multiple

measurements
The effect of RTM increases with larger measurement variability
(see Equation (1)). To reduce the variability we can select
subjects using two or more baseline measurements. The study
selection criterion (i.e. a cut-off) is then applied to either the
mean of the multiple measurements, or the second (or later)
measurement, assuming that the RTM effect has taken place
between the first and second (or later) measurements. This
method can be thought of as an attempt to get a better estimate
of each subject’s true mean before the intervention. The
advantages of taking extra measurements are it gives better
estimates of the mean and the within-subject variation.

With multiple baseline measurements the expected RTM
effect” 1> is,

o’/m
RTM effect = —————C(2), (2)

[(o2/m) + o}

where m is the number of baseline measurements, and G‘i,cl%,
and C(z) are as in Equation (1). We give SAS code to calculate
Equations (1) and (2) on our web page.16

Figure 4 shows the reduction in the RTM effect due to
increasing the number of baseline measurements using z = 1.33,
6,= 15, and with p = 0.1 and p = 0.5. The reduction in the RTM
effect is biggest between the first and second measurements; the
benetit of extra baseline measurements decreases. As m—oo the
RTM effect tends to zero according to Equation (2), but in both
examples here the RTM effect is still reasonably large even
when m =5. However, Johnson and George15 use a more
realistic model in which two measurements from the same
subject are more similar than those from two different subjects
and hence show that the reduction in RTM by taking repeated
measurements does not tend to zero as m—oo.

-y —_ N N
o [&)] o [¢)]

RTM effect (mg/dl)

(é)]

1 2 3 4 5
Number of baseline measurements, m

Figure 4 An example of the reduction in the regression to the mean
(RTM) effect due to taking multiple baseline measurements and using
each subject’s mean as the selection variable. We use some values from
the earlier high density lipoprotein (HDL) cholesterol example, 6, = 15,
1 =60, and ¢ = 40 mg/dl, but we use two different values of p (the
correlation)

How to deal with RTM in data analysis

Many different methods have been proposed to estimate the
size of the RTM effect and to adjust observed measurements for
RTM.7 141718 wye give details of two methods below.

1. Correction using Equations (1) or (2)

If we know, or can estimate the mean and standard deviation of
the population distribution and the within-subject standard
deviation then we can estimate the RTM effect using Equation
(1) or Equation (2) for multiple baseline measurements. This
value can then be subtracted from the observed change to give
an adjusted estimate.
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Table 1 Analysis of change (follow-up result minus baseline) in log-transformed betacarotene measurements

Parameter n Mean change 95% CI change P-value
a) No cut-off (n = 96)

Placebo 44 —0.09 —0.33, 0.15 0.46%
Treatment 52 0.85 0.51, 1.20 <0.00014
Difference (Treatment-Placebo) 96 0.94 0.51, 1.37 <0.0001
b) Baseline cut-off <0.5 uM/I (n = 49)

Placebo 23 0.24 —0.04, 0.53 0.09?
Treatment 26 1.09 0.60, 1.57 0.0001°
Difference (Treatment-Placebo) 49 0.84 0.27, 1.41 0.004

4 Using a paired i-test.

Table 2 Analysis of covariance (ANCOVA) of log-transformed follow-
up betacarotene measurements

Coefficient Mean 95% CI Mean P-value
a) No cut-off (n = 96)
Baseline 0.56 0.33, 0.78 <0.0001
Difference

(Treatment-Placebo) 0.94 0.55, 1.33 <0.0001
b) Baseline cut-off <0.5 uM/I (n = 49)
Baseline 0.36 —0.03, 0.76 0.072
Difference

(Treatment—Placebo) 0.86 0.37, 1.36 0.0006
2. ANCOVA

An approach which is often more practical is to use analysis of
covariance (ANCOVA) which has high statistical power and
adjusts each subject’s follow-up measurement according to their
baseline measurement.'® This approach can be summarized
using a single regression equation:

Follow-up = constant + a X (baseline-baseline mean)
+ b X group + error, (3)

where group = 1 for treatment group, and group = 0 for placebo
group. The coefficient b is the estimated treatment effect
adjusted for RTM. Other terms may be added to Equation (3) to
account for confounders or other variables of interest.

ANCOVA can also be used with the change between baseline
and follow-up as the outcome variable, although the only
difference from Equation (3) is that the regression coefficient, a,
for the centred baseline value is decreased by one unit.?°

As ANCOVA is a special case of a general linear model it can
be performed in most statistical software packages used in
epidemiological research (e.g. SPSS, SAS, Stata). The commands
to perform ANCOVA and check the model’s adequacy in a
number of statistical packages are given on our web site,1¢ and
can also be obtained by contacting the authors.

Example analyses

We use the betacarotene data from the Nambour Skin Cancer
Prevention Trial to demonstrate the statistical methods of
adjusting for RTM. We use the data set of 7 = 96 pairs of values,
and a data set of n =49 pairs based on a cut-otf of <0.5 uM/I
(—0.69 on the log-scale) for baseline betacarotene to highlight
the impact of RTM when cut-offs are used. In this example,

treatment allocation was random, and hence the study was
protected against RTM at the design stage.

Table 1 shows an analysis of the serum betacarotene data from
the example data set. Using the full data set (no cut-off), the
results show a significant increase in betacarotene in the treatment
group and no apparent change in the placebo group. The increase
in the treatment group, compared with the placebo group, is 0.94
(95% CI: 0.51, 1.37) on the log scale. For the data with a baseline
cut-off, there appears to be a possible increase in the placebo group
of 0.24 (95% CI: —0.04, 0.53); unless there is a placebo effect, this
could be due to RTM. Using Equation (1) with 6, = 0.86, p = 0.56,
w=—0.75, and z= —0.07, we estimate the RTM effect in the
placebo group as 0.29. Hence we conclude that there was no real
change in the betacarotene levels in the placebo group.

Table 2 shows the results using ANCOVA, the estimated
treatment effect is similar to the paired f-test results, but with
narrower confidence intervals, particularly from the subset of
data using the cut-off. The narrower intervals are due to the
baseline term explaining more of the variance in the outcome
in the ANCOVA model.

Discussion

We have highlighted the problem of regression to the mean
(RTM) using some simple biological examples where the
variable was approximately Normally distributed. However,
RTM is not restricted to biological variables. It will occur in any
measurement (biological, psychometric, anthropometric, etc)
that is observed with error. Also it is not restricted to
distributions that are Normal, or even to distributions that are
continuous. RTM can occur in binary data where it would cause
subjects to change categories without any true change in their
underlying response.

Using data from a study in which subjects were randomly
allocated to groups ¢-tests and ANCOVA gave results that were
the same when there was no baseline cut-off. When a cut-off
was used, ANCOVA gave narrower confidence intervals for the
treatment effect, and the paired ¢-test showed a change in the
placebo group consistent with RTM. We recommend using
ANCOVA in any situation where ¢-tests could be used.

RTM occurs in any variable that is subject to random error,
and therefore it needs to be ruled out as a cause of an observed
change before any other explanation is sought. It has already
caught out many researchers?! —we hope that people who read
this article will avoid this mistake.
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KEY MESSAGES

of the baseline measurements?

e Reduce regression to the mean (RTM) at the design stage: (1) include a randomly allocated placebo group, (2) take
multiple baseline measurements, although this is unlikely to completely eliminate the problem.

e Identify RTM at the analysis stage: (1) examine a scatterplot of change against baseline; is there more change at the tails

e Deal with RTM at the analysis stage: (1) estimate the size of the RTM, (2) analyse the data using analysis of covariance.
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