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Fr a n c i s  G a l t o n  a n d  r e g r e s s i o n  t o  t h e  m e a n

Galton was born into a wealthy family. The 
youngest of nine children, he appears to have 
been a precocious child – in support of which his 
biographer cites the following letter from young 
Galton, dated February 15th, 1827, to one of his 
sisters:

My dear Adèle,
I am four years old and can read any 

English book. I can say all the Latin Sub-
stantives and adjectives and active words 
besides 52 lines of Latin poetry. I can cast 
up any sum in addition and multiply by

2,3,4,5,6,7,8,(9),10,(11)

I can also say the pence table, I read 
French a little and I know the clock.

Francis Galton1

Apparently Galton was also a truthful child, since, 
having written the letter, he had realised that 
what he had claimed about the numbers 9 and 
11 was not quite true and had tried to obliterate 
them. And before you get too impressed, his 
birthday was February 16th so he was very nearly 
five!

Galton’s later progress in education was 
not quite so smooth. He dabbled in medicine 
and then read mathematics at Cambridge, but 
eventually had to take a pass degree. In fact he 
subsequently freely acknowledged his weakness 
in formal mathematics, but this weakness was 
compensated by an exceptional ability to under-

stand the meaning of data. Galton was a brilliant 
natural statistician.

Many words in our statistical lexicon were 
coined by Galton. For example, correlation and 
deviate are due to him, as is regression, and he 
was the originator of terms and concepts such 
as quartile, decile and percentile, and of the use 
of median as the midpoint of a distribution2. Of 

course, words have a way of developing a life 
of their own, so that, unfortunately decile is 
increasingly being applied to mean tenth. There 
are, pretty obviously, ten tenths of a distribu-
tion, but there are, slightly less obviously, only 
nine deciles, since the deciles are the boundaries 
between the tenths. To use decile to mean tenth 
– as when, for example, speaking of students “in 
the top decile” (according to their examination 
marks) – is not only pompous but also wrong 
and means that yet another word will eventually 
have to be invented to perform the function that 
Galton created decile to fulfil.

To take another example, we no longer use 
the term regression in quite the way Galton did. 

We now usually reserve it for the fitting of linear 
relationships. In Galton’s usage regression was a 
phenomenon of bivariate distributions – those 
involving two variables - and something he dis-
covered through his studies of heritability. How-
ever, the use of regression in Galton’s sense does 
survive in the phrase regression to the mean – a 
powerful phenomenon it is the purpose of this 
article to explain. 

Galton first noticed it in connection with 
his genetic study of the size of seeds, but it is 
perhaps his 1886 study of human height3 that 
really caught the Victorian imagination. Galton 
had compared the height of adult children to the 
heights of their parents.

For this purpose he had multiplied the heights 
of female children by 1.08. For as he put it:

In every case I transmuted the female 
statures to their corresponding male 
equivalents and used them in their 
transmuted form, so that no objection 
grounded on the sexual difference of 
stature need be raised when I speak of 
averages.

It is interesting to note, incidentally, that he 
also considered whether 1.07 or 1.09 might not 
be a better factor to use, but remarked:

The final result is not of a kind to be 
affected by these minute details, for 
it happened that, owing to a mistaken 
direction, the computer to whom I first 
entrusted the figures used a somewhat 
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Galton compared the height of 
children to that of their parents. 
He found that adult children are 

closer to average height than 
their parents are.
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different factor, yet the result came out 
closely the same.

The year being 1886 the computer in question 
was, of course, a human and not an electronic 
assistant! The more interesting point, 
however, is that Galton is describing what we 
would now call robustness in statistics – and, 
simultaneously, provides an early example of 
what is now recognised as a general scientific 
phenomenon: scientists never seem to fail the 
robustness checks they report. It is interesting 
to speculate why.

Galton’s data consisted of 928 adult children 
and 205 “parentages” – that is to say, father-
and-mother couples. (The mean number of chil-
dren per couple was thus just over 4.5 – families 
were larger in those days.) He represented the 
height of parents using a single statistic, the 
“mid-parent”, this being the mean of the height 
of the father and of his wife’s height multiplied 
by 1.08. Of course, as previously noted, for the 
female children the heights were also multiplied 
by 1.08. For the male children they were unad-
justed.

Figure 1 is a modern graphical representa-
tion of Galton’s data. Galton had grouped his 
results by intervals of 1 inch, and in conse-
quence, if a given child’s recorded height were 
plotted against its recorded mid-parent height, 
many points would be superimposed on top of 
each other. I have added a small amount of “jit-
ter” in either dimension to separate the points, 
which are shown in blue. The data are plotted 
in two ways: child against mid-parent on the 
left and mid-parent against child on the right. 
The thin solid black diagonal line in each case 
is the line of equality. If a point lies on this 
line then child and mid-parent were identical in 
height. Also shown in red in each case are two 

different approaches one might use to predict-
ing “output” from “input”. The dashed line is 
the least squares fit, what we now (thanks to 
Galton) call a regression line. The thick red line 
is a more local fit, in fact a so-called LOWESS 
(or locally weighted scatterplot smoothing) 
line. The point about either of these two ap-
proaches – irrespective of whether we predict 
child from mid-parent or vice versa – is that 
the line that is produced is less steep than the 
line of exact equality. The consequence is that 
we may expect that an adult child is closer 
to average height than its parents – but also, 
paradoxically, that parents are closer to average 
height than is their child.

The first part we might expect. The second 
may seem absurd – but is just as true. I will say 
it again: a tall child will have parents, on aver-
age, less tall than himself. This particular point 
is both deep and trivial. It is deep because the 
first time that students encounter it (I can still 
remember my own reaction) they assume that it 
is wrong; its truth is well hidden. Once under-
stood, however, it becomes so obvious that one 
is amazed at how regularly it is overlooked. It is 
a point not about genetics but about statistics.

In fact I am confident that at this stage I 
can divide my readers into two: those who will 
claim that I am wasting their time repeating a 
hackneyed truth, and those who will say that I 
have so far failed in anything that I have said to 
show that the hackney in question is a genuine 
carriage. So I will say farewell to the members 
of the first group and address myself to the sec-
ond – but before I say goodbye to the first I 
will ask them one question. Do you think that 
there is good evidence that the placebo effect is 
genuine? If so, stick around for a while because I 
will try and show you that you (and ten thousand 
physicians with you) are wrong. What this has to 

do with Francis Galton will be revealed in due 
course.

So let us leave Francis Galton for the mo-
ment and consider another example, this time a 
simulated one. Figure 2 shows simulated values 
in diastolic blood pressure (DBP) for a group 
of 1000 individuals measured on two occasions: 
at baseline and at outcome. (“Outcome” simply 
means “some time later”; they have not re-
ceived any medical treatment between the two 
occasions.) If your blood pressure is high, you 
are hypertensive. Using a common but arbitrary 
definition of hypertension as a diastolic pres-
sure of 95 mmHg or more, the subjects have 
been classified as consistently hypertensive 
(red diamonds) consistently normotensive (blue 
circles) or inconsistent – hypertensive on one 
occasion, normal on the other (orange stars). 
The distributions at outcome and baseline are 
very similar, with means close to 90 mmHg and 
a spread that can be defined by that Galtonian 
statistic, the inter-quartile range, as being close 
to 11 mmHg on either occasion. In other words, 
what the picture shows is a population that all 
in all has not changed over time although, 
since the correlation (to use another Galtonian 
term) is just under 0.8 and therefore less than 
1, there is, of course, variability over time for 
many individuals. Some have increased their 
blood pressure between the measurements, 
some have reduced it. 

However, in the setting of many clinical tri-
als, Figure 2 is not a figure we would see. The 
reason is simple: we would not follow up indi-
viduals who were observed to be normotensive 
at baseline. If you are “healthy”, we would not 
bother to call you back for the second test. In-
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Figure 1. Galton’s height data: two scatterplots showing the regression phenomenon (drawn from data listed at 
http://www.math.uah.edu/stat/data/Galton.txt)

Figure 2. Simulated diastolic blood pressure for 1000 
patients measured on two occasions – blue circles, 
normotensive on both occasions; red diamonds, 
hypertensive on both occasions; orange stars, 
inconsistent
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stead what doctors and medics see is the picture 
given in Figure 3. Of the 1000 subjects seen 
at baseline, 285 had DBP values in excess of 
95 mmHg. We did not bother to call the other 
715 back; we concentrated instead on those we 
deemed to have a medical problem – and those 
are the only ones shown in the figure. And if now 
we compare the outcome values of those 285 
subjects we have left to the values they showed 
at baseline, we will find that mean DBP seems 
to have gone down. At outcome it is more than 
2 mmHg lower than it was at baseline. What we 
have just observed is what Francis Galton called 
regression to the mean. 

There has been an apparent spontaneous 
improvement in blood pressure. Apparently many 
patients who were hypertensive at baseline 
became normotensive. It is important to under-
stand here that this observed “improvement” is 
a consequence of this stupid (but very common) 
way of looking at the data. It arises because of 
the way we select the values. What is missing 
because of our selection method is bad news. We 
can only see patients who remain hypertensive 
or who become normotensive. We left out the 
patients who were normotensive but became 
hypertensive. They are shown in Figure 4. If we 
had their data they would correct the misleading 
picture in Figure 3, but the way we have gone 
about our study means that we will not see their 
outcome values.

Regression to the mean is a consequence of 
the observation that, on average, extremes do 
not survive. In our height example, extremely 
tall parents tend to have children who are taller 
than average and extremely small parents tend 
to have children who are smaller than average, 
but in both cases the children tend to be closer 
to the average than were their parents. If that 
were not the case the distribution of height 

would have to get wider over time. Of course 
there can be changes in such distributions over 
time and it is the case that people are taller 
now than in Galton’s day, but this is a separate 
phenomenon in addition to regression to the 
mean.

However, regression to the mean is not re-
stricted to height nor even to genetics. It can 
occur anywhere where repeated measurements 
are taken. 

Does it happen that scientists get fooled 
by Galton’s regression to the mean? All the 
time! Right this moment all over the world 
in dozens of disciplines, scientists are fool-
ing themselves either by not having a control 
group, which would also show the regression 
effect, or, if they do have a control group, by 
concentrating on the differences within groups 
between outcome and baseline rather than the 
differences between groups at outcome. It is 
regression to the mean that is a very plausible 
explanation for the placebo effect, since entry 
into clinical trials is usually only by virtue of an 
extreme baseline value. This does not matter as 
long as you compare the treated group to the 
placebo group, since both groups will regress 
to the mean. It does mean, however, that you 
have to be very careful before claiming that any 
improvement in the placebo group is due to the 
healing hands of the physician or psychological 
expectancy.

To prove that would require a three-arm trial: 
an active group, a placebo group and a group 
given nothing at all. Then all three groups would 
have the same regression to the mean improve-
ment and differences between the placebo and 
the open arm could be judged to be due to a true 
placebo effect. Not surprisingly, very few such 
trials have been run. However, analysis of those 
that have been run suggests that only in the 

area of pain control do we have reliable evidence 
of a placebo effect4,5.

But regression to the mean is not just lim-
ited to clinical trials. Did you choose dangerous 
road intersections in your region for corrective 
engineering work based on their record of traffic 
accidents? Did you fail to have a control group 
of similar black spots that went untreated? Are 
you going to judge efficacy of your interven-
tion by comparing before and after? Then you 
should know that Francis Galton’s regression to 
the mean predicts that sacrificing a chicken on 

such black spots can be shown to be effective 
by the methods you have chosen6. Did you give 
failing students a remedial class and did they 
improve again when tested? Are you sure that 
subsequence means consequence? What have 
you overlooked?

A Victorian eccentric who died 100 years ago, 
although no great shakes as a mathematician, 
made an important discovery of a phenomenon 
that is so trivial that all should be capable of 
learning it and so deep that many scientists 
spend their whole career being fooled by it.
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Do scientists get fooled by Galton’s 
regression to the mean?  All the time!

Figure 3. Diastolic blood pressure on two occasions 
for patients observed to be hypertensive at baseline

Figure 4. Patients from Figure 2 who were normotensive 
at baseline but hypertensive at outcome
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