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You should now have a reasonably complete, conceptual understanding of the basics of mul-
tiple regression analysis. This chapter will begin by summarizing the topics covered in Part 1. 
I will touch on some issues that you should investigate and understand more completely to 
become a sophisticated user of MR and will close the chapter with some nagging problems 
and inconsistencies that we have discussed off and on throughout Part 1 (and will try to 
resolve in Part 2).

SUMMARY

“Standard” Multiple Regression

For social scientists raised on statistical analyses appropriate for the analysis of experi-
ments (ANOVA and its variations), multiple regression often seems like a different animal 
altogether. It is not. MR provides a close implementation of the general linear model, of 
which ANOVA is a part. In fact, MR subsumes ANOVA, and as shown in several places in 
this portion of the book, we can easily analyze experiments (ANOVA-type problems) using 
MR. The reverse is not the case, however, because MR can handle both categorical and con-
tinuous independent variables, whereas ANOVA requires categorical independent variables. 
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Those with such an experimental background may need to change their thinking about the 
nature of their analyses, but the underlying statistics are not fundamentally different. In my 
experience, this transition to MR tends to be more difficult for those with a background in 
psychology or education; in other social sciences, such as sociology and political science, 
experimentation (i.e., random assignment to treatment groups) is less common. Even in 
psychology and education the trend increasingly appears to be to focus on the general lin-
ear model, and multiple regression, early in students’ research training, so the sometimes-
difficult transition I mention here may not apply to you.

In early chapters we covered how to calculate the fundamental statistics associated with 
multiple regression. More practically, we discussed how to conduct, understand, and inter-
pret MR using statistical analysis programs. R is the multiple correlation coefficient, and R2 
the squared multiple correlation. R2 is an estimate of the variance explained in the dependent 
variable by all the multiple independent variables in combination; an R2 of .2 means that 
the independent variables jointly explain 20% of the variance in the dependent variable. In 
applied social science research, R2’s are often less than .5 (50% of the variance explained), 
unless some sort of pretest is included as a predictor of some posttest outcome, and R2’s of 
.10 are not uncommon. A high R2 does not necessarily mean a good model; it depends on the 
dependent variable to be explained. R2 may be tested for statistical significance by comparing 
the variance explained (regression) to the variance unexplained (residual) using an F table, 
with degrees of freedom equal to the number of independent variables (k) and the sample 
size minus this number, minus 1 (Nc−k−1).

R2 provides information about the regression as a whole. The MR also produces infor-
mation about each independent variable alone, controlling for the other variables in the 
model. The unstandardized regression coefficients, generally symbolized as b (or sometimes 
as B), are in the original metric of the variables used, and the b can provide an estimate of 
the likely change in the dependent variable for each 1-unit change in the independent vari-
able (controlling for the other variables in the regression). For example, Salary, in thousands 
of dollars a year, may be regressed on Educational Attainment, in years, along with several 
other variables. If the b associated with Educational Attainment is 3.5, this means that for 
each additional year of schooling salary would increase, on average, by 3.5 thousand dollars 
per year. The b is equal to the slope of the regression line. The b’s may also be tested for sta-
tistical significance using a simple t test ( )t b

SEb
= , with the df equal to the df residual for the 

overall F test. This t simply tests whether the regression coefficient is statistically significantly 
different from zero. More interestingly, it is also possible to determine whether the b differs 
from values other than zero, either using a modification of the t test or by calculating the 
95% (or 90%, or some other level) confidence interval around the b’s. Suppose, for example, 
that previous research suggests that the effect of Educational Attainment on Salary is 5.8. If 
the 95% CI around our present estimate is 2.6 to 4.4, this means that our present estimate is 
statistically significantly lower than are estimates from previous research. The use of confi-
dence intervals is increasingly required by journals (see, for example, American Psychologi-
cal Association, 2010).

We can also examine the standardized regression coefficients associated with each inde-
pendent variable, generally symbolized as β. β’s are in standard deviation units, thus allowing 
the comparison of coefficients that have different scales. A β of .30 for the effect of Educa-
tional Attainment on Salary would be interpreted as meaning that each standard deviation 
increase in Educational Attainment should result in a .30 SD average increase in Salary.

The standardized and unstandardized regression coefficients serve different purposes 
and have different advantages. Unstandardized coefficients are useful when the scales of 
the independent and dependent variables are meaningful, when comparing results across 
samples and studies, when we wish to develop policy implications or interventions from our 



ASSUMPTIONS, DIAGNOSTICS, POWER AND PROBLEMS • 197

research, and when interpreting the results of interaction (moderation) analyses. Unstan-
dardized coefficients are also the coefficients that are tested for statistical significance. Stan-
dardized coefficients are useful when the scales of the variables used in the regression are not 
meaningful or when we wish to compare the relative importance of variables in the same 
regression equation.

The regression analysis also produces an intercept or constant. The intercept represents 
the predicted score on the dependent variable when all the independent variables have a 
value of zero. The regression coefficients and the intercept can be combined into a regres-
sion equation (e.g., Ypredicted = intercept + b1X1 + b2X2 + b3X3), which can be used to predict 
someone’s score on the outcome from the independent variables.

The regression equation, in essence, creates an optimally weighted composite of the 
independent variables to predict the outcome variable. This composite is weighted so as to 
maximize the prediction and minimize the errors of prediction. We can graph this predic-
tion by plotting the outcome (Y-axis) against the predicted outcome (X-axis). The spread 
of data points around the regression line illustrates the accuracy of prediction and the 
errors of prediction. Errors of prediction are also known as residuals and may be calculated 
as outcome scores minus predicted outcome scores. The residuals may also be considered 
as the outcome variable with the effects of the independent variables statistically removed.

Explanation and Prediction

MR may serve a variety of purposes, but these generally fall under one of two broad cat-
egories: prediction or explanation. If our primary interest is in explanation, then we are 
interested in using MR to estimate the effects or influences of the independent variables on 
the dependent variable. Underlying this purpose, whether we admit it or not, is an interest 
in cause and effect. To estimate such effects validly, we need to choose carefully the variables 
included in the regression equation; it is particularly important that we include any common 
causes of our presumed cause and presumed effect. An understanding of relevant theory and 
previous research can help one choose variables wisely. Throughout this text, I have assumed 
that in most instances we are interested in using MR in the service of explanation, and most 
of the examples have had an explanatory focus.

In contrast, MR may also be used for the general purpose of prediction. If prediction is our 
goal, we are not necessarily interested in making statements about the effect of one variable on 
another; rather, we only want to be as accurate as possible in predicting some outcome. A pre-
dictive purpose is often related to selection; a college may be interested in predicting students’ 
first-year GPAs as an aid in determining which students should be admitted. If prediction is 
the goal, the larger the R2 the better. One does not need to worry about common causes, or 
even cause and effect, if one’s interest is in prediction, and thus variable selection for predic-
tion is less critical. It may even be perfectly acceptable to have an “effect” predicting a “cause” 
if prediction is the goal. Theory and previous research can certainly help you choose the vari-
ables that will predict your outcome successfully, but they are not critical to the interpretation 
of your findings as they are when MR is used for explanation. If your interest is in predic-
tion, however, you must refrain from making statements or coming to conclusions about the 
effects of one variable on another (an explanatory purpose). It is unfortunately common to 
see research in which the purpose is supposedly prediction, but then when you read the dis-
cussion you find explanatory (causal) conclusions are being made. Any time you wish to use 
MR to make recommendations for intervention or change (if we increase X, Y will increase), 
your primary interest is in explanation, not prediction. Explanation subsumes prediction. If 
you can explain a phenomenon well, then you can generally predict it well. The reverse does 
not hold, however; being able to predict something does not mean you can explain it.
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Three Types of Multiple Regression

There are several types, or varieties, of multiple regression. The type of MR used in the ear-
lier chapters of this book is generally referred to as simultaneous, or forced entry, or standard 
multiple regression. In simultaneous regression, all independent variables are entered into 
the regression equation at the same time. The regression coefficients and their statistical 
significance are used to make inferences about the importance and relative importance of 
each variable. Simultaneous regression is useful for explanation or prediction. When used 
in an explanatory context, the regression coefficients from simultaneous regression provide 
estimates of the direct effects of each independent variable on the outcome (taking the other 
independent variables into account); this is one of this method’s major advantages. Its chief 
disadvantage is that the regression coefficients may change depending on which variables are 
included in the regression equation; this disadvantage is related to the exclusion of relevant 
common causes or the presence of intervening or mediating variables.

In sequential, or hierarchical, regression, each variable [or group or block of variables] is 
entered separately into the regression equation, sequentially, in an order determined by the 
researcher. With sequential regression, we generally focus on ∆R2 from each step to judge the 
statistical significance of each independent variable. ∆R2 is a stingy and misleading estimate 
of the importance of variables, however; the square root of ∆R2 provides a better estimate 
of the importance of each variable (given the order of entry). Order of entry is critical with 
sequential regression because variables entered early in the sequential regression will appear, 
other things being equal, more important than variables entered later. Time precedence and 
presumed causal ordering are common methods for deciding the order of entry. The regres-
sion coefficients for each variable from the block in which it enters a sequential regression 
may be interpreted as the total effect of the variable on the outcome, including any indirect 
or mediating effects through variables entered later in the regression. To interpret sequential 
regression results in this fashion, variables must be entered in their correct causal order. 
Causal, or path, models are useful for both sequential and simultaneous regression and have 
been used to illustrate regression models and results throughout Part 1 of this text; they will 
be explored in more depth in Part 2. Sequential regression may be used for explanation or 
prediction. An advantage is that it can provide estimates of the total effects of one variable 
on another, given the correct order of entry. A chief disadvantage is that the apparent impor-
tance of variables changes depending on the order in which they are entered in the sequential 
regression equation.

Simultaneous and sequential regression may be combined in various ways. One combina-
tion is a method sometimes referred to as sequential unique regression. It is commonly used 
to determine the “unique” variance accounted for by a variable or a group of variables, after 
other relevant variables are accounted for. In this method, the other variables are entered 
in a simultaneous block, and a variable or variables of interest are entered sequentially in 
a second block. If a single variable is of interest, simultaneous regression may be used for 
the same purpose; if the interest is in the variance accounted for by a block of variables, this 
combination of simultaneous and sequential regression should be used. We made extensive 
use of this sort of combination of methods when we tested for interactions and curves in the 
regression line.

A final general method of multiple regression is stepwise regression and its variations. 
Stepwise regression operates in a similar fashion to sequential regression, except that the com-
puter program, rather than the researcher, chooses the order of entry of the variables; it 
does so based on which variable will lead to the greatest single increment in ∆R2 at each 
step. Although this solution seems a blessing—it avoids lots of hard thinking and potentially 

embarrassing statements about causal ordering—it is not. Using ∆R2 or ∆R2  as a measure 
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of the importance of variables is predicated on the assumption that the variables have been 
entered in the regression equation in the proper order. To also use ∆R2 to determine the 
order of entry thus requires circular reasoning. For this reason, stepwise methods should 
be used only for prediction, not explanation. In the words of my friend Lee Wolfle, stepwise 
regression is “theoretical garbage” (1980, p. 206), meaning that its results will mislead rather 
than inform if you try to use it in explanatory research. And, in fact, stepwise regression may 
not be a particularly good choice even for prediction. If your interest is simply selecting a 
subset of variables for efficient prediction, stepwise regression may work (although I still 
wouldn’t recommend it); large samples and cross-validation are recommended. Whatever 
method of MR you use, be sure you are clear on the primary purpose of your research and 
choose your regression method to fulfill that purpose.

Categorical Variables in MR

It is relatively easy to analyze categorical, or nominal, variables in multiple regression. One 
of the easiest ways is to convert the categorical variable into one or more dummy variables. 
With dummy variables, a person is assigned a score of 1 or 0, depending on whether the 
person is a member of a group or not a member. For example, the categorical variable sex 
can be coded so that males are scored 0 and females 1, essentially turning it into a “female” 
variable on which those who are members of the group (females) receive a score of 1 and 
those who are not members (males) receive a score of 0. For more complex categorical 
variables, multiple dummy codes are required. We need to create as many dummy variables 
as there are categories, minus 1 (g – 1). When a categorical variable has more than two 
categories, thus requiring more than one dummy variable, one group will be scored 0 on 
all the dummy variables; this is essentially the reference group, or often the control group. 
When dummy variables are analyzed in MR, the intercept is equal to the mean score on the 
dependent variable for the reference group, and the b’s are equal to the mean deviations 
from that group for each of the other groups.

We demonstrated that MR results match those of ANOVA when the independent vari-
ables are all categorical: the F from the two procedures is the same, and the effect size η2 
from ANOVA is equal to the R2 from MR. The coefficients from MR may be used to perform 
various post hoc procedures. There are other methods besides dummy coding for coding 
categorical variables for analysis in MR; we illustrated effect coding and criterion scaling. 
The different methods will provide the same overall results, but different contrasts from the 
regression coefficients.

Categorical and Continuous Variables, Interactions, and Curves

Our primary interest in discussing the analysis of categorical variables in MR was as prepara-
tion for combining categorical and continuous variables together in MR analyses. Analyses 
including both categorical and continuous variables are conceptually and analytically little 
different from those including only continuous variables. It is also possible to test for inter-
actions between categorical and continuous variables. To do so, we centered the continuous 
variable and created a new variable that was the cross product of the dummy variable and 
the centered continuous variable. If there are multiple dummy variables, then there will also 
be multiple cross products. These cross products are then entered as the second, sequential 
step in a regression following the simultaneous regression with all other independent vari-
ables (including the categorical and continuous variables used to create the cross products). 
The statistical significance of the ∆R2 associated with the cross products is the test of the 
statistical significance of the interaction. With multiple dummy variables, and thus multiple 
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cross products, the ∆R2 associated with the block of cross products is used to determine the 
statistical significance of the interaction.

Given the presence of a statistically significant interaction, the next step is to graph the 
interaction to provide an understanding of its nature, perhaps followed by additional regres-
sions across the values of the categorical variable or other post hoc probing. Tests of predic-
tive bias and attribute–treatment interactions are specific examples of analyses that should 
use this MR approach. ANCOVA can also be considered as MR with categorical and continu-
ous variables, but researchers using MR can also test for possible interactions between the 
covariate and the treatment.

It is equally possible to test for interactions between two continuous variables in MR. The 
same basic procedure is used: the continuous variables are centered and multiplied, and this 
cross product is entered sequentially in a regression equation. Follow-up of this type of inter-
action may be a little more difficult, but the first step again is generally to graph the interaction. 
Several methods were discussed for graphing and exploring interactions between continuous 
variables. All types of interactions are often well described using the phrase “it depends.”

A special type of interaction between continuous variables is when a variable interacts with 
itself, meaning that its effects depend on the level of the variable. For example, we found that 
the effect of homework depends on the amount of homework being discussed; homework has 
a stronger effect on achievement for fewer hours of homework than for higher levels of home-
work. This type of interaction shows up as curves in the regression line. We test for curves in 
the regression line by multiplying a variable times itself and then entering this squared variable 
last in a combined simultaneous–sequential regression. We can test for more than one curve 
by entering additional product terms (variable-cubed, to the fourth power, etc.). Again, graphs 
were recommended as a method for understanding the nature of these curvilinear effects.

Moderation, Mediation, and Common Cause

Interactions in multiple regression also go by the name of “moderation.” To say that sex mod-
erates the effect of self-concept on achievement means the same thing as saying that sex and 
self-concept interact in their effect on achievement, or that self-concept has differential effects 
on achievement by sex. Why do we use different terms to mean what is essentially the same 
thing? Thompson’s contention that we do so to “confuse the graduate students” seems as plau-
sible as any other (Thompson, 2006, p. 4). The term moderation is sometimes confused with 
that of mediation. Mediation describes the process by which one variable has an indirect effect 
on another variable through another mediating variable. If homework mediates the effect 
of motivation on achievement, this means that motivation affects homework, which in turn 
affects achievement. In Chapter 9 we discussed several methods for testing for mediation in 
multiple regression, but also noted that it is often easier to understand and test for media-
tion in the context of path analysis and SEM (as in Part 2). Indeed, we used path diagrams 
extensively to illustrate mediation. Although I tend to use the terms “mediation” and “indirect 
effect” fairly interchangeably, others suggest that the term mediation should be reserved for 
analyses involving longitudinal data (e.g., Kline, 2016, chap. 6). Fewer writers discuss the issue 
of common cause (and there are also several terms used to discuss this concept). A common 
cause is a variable that affects both our presumed influence and our presumed outcome; such 
variables must be included in multiple regression for the results to provide valid estimates 
of “effects.” It is not unusual to see and hear this concept confused with that of moderation. 
When you hear researchers vaguely state that two variables likely interact in some way, pay 
attention. Do they really mean interaction/moderation? Or are they really talking about a 
potential common cause? Again, this is a topic that becomes clearer with the presentation of 
path diagrams (as used in Chapter 9) and is an important topic in Part 2 of this book.
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ASSUMPTIONS AND REGRESSION DIAGNOSTICS

We have postponed discussion of several important topics until you had a more complete 
understanding of multiple regression and how to conduct and interpret results of multiple 
regression analyses. Now it is time to discuss assumptions underlying our multiple regres-
sions, as well as how to diagnose various problems that can affect regression analyses and 
what to do about these problems. References are given to sources that provide more detail 
about these topics.

Assumptions Underlying Regression

What assumptions underlie our use of multiple regression? If we are to be able to trust 
our MR results and interpret the regression coefficients, we should be able to assume the 
following:

1. The dependent variable is a linear function of the independent variables.
2. Each person (or other observation) should be drawn independently from the popula-

tion. Recall one general form of the regression equation: Y = a + bX1 + bX2 + e. This 
assumption means that the errors (e’s) for each person are independent from those of 
others.

3. The variance of the errors is not a function of any of the independent variables. The 
dispersion of values around the regression line should remain fairly constant for all 
values of X. This assumption is referred to as homoscedasticity.

4. The errors are normally distributed.

The first assumption (linearity) is the most important. If it is violated, then all of the 
estimates we get from regression—R2, the regression coefficients, standard errors, tests of 
statistical significance—may be biased. To say the estimates are biased means that they 
will likely not reproduce the true population values. When assumptions 2, 3, and 4 are 
violated, regression coefficients are unbiased, but standard errors, and thus significance 
tests, will not be accurate. In other words, violation of assumption 1 threatens the mean-
ing of the parameters we estimate, whereas violation of the other assumptions threatens 
interpretations from these parameters (Darlington, 1990, p. 110). Assumptions 3 and 4 
are less critical, because regression is fairly robust to their violation (Kline, 1998). The 
violation of assumption 4 is only serious with small samples. We have already discussed 
methods of dealing with one form of nonlinearity (curvilinearity, in Chapter 8) and will 
discuss here and later methods for detecting and dealing with violations of the other 
assumptions.

In addition to these basic assumptions, to interpret regression coefficients as the effects of 
the independent variables on the dependent variable, we need to be able to assume that the 
errors are uncorrelated with the independent variables. This assumption further implies the 
following:

5. The dependent variable does not influence any of the independent variables. In other 
words, the variables we think of as causes must in fact be the causes, and those that we 
think of as the effects must be the effects.

6. The independent variables are measured without error, with perfect reliability and 
validity.

7. The regression must include all common causes of the presumed cause and the pre-
sumed effect (Kenny, 1979, p. 51).
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We have already discussed assumptions 5 and 7 and will continue to develop them further 
in Part 2. Assumption 6 is a concern, because in the social sciences we rarely have perfect mea-
surement. Again, we will discuss the implications of violation of this assumption in Part 2. 
There are a number of very readable, more detailed explanations of these seven assumptions. 
Allison (1999), Berry (1993), and Cohen and colleagues (2003) are particularly useful.

Regression Diagnostics

Here and in earlier chapters I noted that a good habit in any data analysis is to examine the 
data to make sure the values are plausible and reasonable. Always, always, always check your 
data. Regression diagnostics take this examination to another level and can be used to probe 
violations of assumptions and spot impossible or improbable values and other problems 
with data. In this section I will briefly describe regression diagnostics, illustrate their use for 
the data from previous chapters, and discuss what to do with regression diagnostic results. I 
will emphasize a graphic approach.

Diagnosing Violations of Assumptions

Nonlinearity 

In Chapter 8, we examined how to deal with nonlinear data by adding powers of the inde-
pendent variable to the regression equation. In essence, by adding both Homework and 
Homework2 to the regression equation, we turned the nonlinear portion of the regression 
line into a linear one and were thus able to model the curve effectively using MR.

This approach thus hints at one method for determining whether we have violated the 
assumption of linearity: If you have a substantive reason to suspect that an independent 
variable may be related to the outcome in a curvilinear fashion, add a curve component 
(variable2) to the regression equation to see whether this increases the explained variance.

The potential drawback to this approach is that the curve modeled by variable2 may not 
adequately account for the departure from linearity. Therefore, it is useful to supplement this 
approach with a more in depth examination of the data using scatterplots. Rather than plot-
ting the dependent variable of interest against the independent variable, however, we will plot 
the residuals against the independent variables; the residuals should magnify departures from 
linearity. Recall that the residuals represent the predicted values of the dependent variable 
minus the actual values of the dependent variable (Y ′ − Y). They are the errors in prediction.

To illustrate, we will use the example from Chapter 8 that was used to illustrate testing for 
curves in MR: the regression of Grades on SES, previous Achievement, and time spent on 
Homework out of school. The addition of a Homework2 variable was statistically significant, 
indicating (and correcting) a departure from linearity in the regression. Let’s see if we can 
pick up this nonlinearity using scatterplots.

I reran the initial regression (without the Homework2 variable and using the original 
uncentered metric) and saved the residuals (regression programs generally allow you to save 
unstandardized residuals as an option). Figure 10.1 shows the plot of the residuals against the 
original variable Homework. Note the two lines in the graph. The straight, horizontal line is 
the mean of the residuals. The line should also represent the regression line of the residuals 
on Homework. That line would be horizontal because the residuals represent Grades with 
the effects of Homework (and the other independent variables) removed. Because Home-
work has been removed, it is no longer related to the residuals. Recall that when two variables 
are unrelated our best prediction for Y is its mean for all values of X. The regression line is 
thus equal to the line drawn through the mean of the residuals. The other, almost straight 
line is what is called a lowess (or loess) fit line, which represents the nonparametric best fitting 
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line, one that does not impose the requirement of linearity. Most computer programs can 
easily add this line to a regression scatterplot. 

If there is no departure from linearity in the data, we would expect the lowess line  
to come close to the regression line; Cohen and colleagues note that the lowess  
line should look like “a young child’s freehand drawing of a straight line” (2003, p. 111). 
With a significant departure from linearity, you would expect the lowess line to be 
curved, something more similar to the curvilinear regression lines shown in Chapter 8 

Figure 10.1 Plot of the unstandardized residuals against one independent variable (Homework). The 
lowess line is fairly straight.
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Figure 10.2 Plot of unstandardized residuals against the predicted Grades (a composite of the inde-
pendent variables).
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(e.g., Figure 8.10) but without the upward slope. The lowess line in this plot indeed 
approaches the straight regression line. Figure 10.2 shows another useful plot: the resid-
uals and the predicted values for the Grades dependent variable. Recall in Chapter 3 
that we demonstrated that the predicted Y is an optimally weighted composite of the 
independent variables. It is, then, a variable that represents all independent variables in 
combination. Again, the lowess line comes close to the regression line and does not sug-
gest a departure from linearity.

In this example, the test of the addition of a curve component (Chapter 8) was more suc-
cessful in spotting a departure from linearity than was the inspection of data through scat-
terplots. This will not always be the case, and thus I recommend that you use both methods if 
you suspect a violation of this assumption. If theory or inspection suggests a departure from 
linearity, a primary method of correction is to build nonlinear terms into the regression (e.g., 
powers, logarithms). The method is discussed in Chapter 8; see also Cohen and colleagues 
(2003) and Darlington and Hayes (2017) for more depth.

Nonindependence of Errors

When data are not drawn independently from the population, we risk violating the 
assumption that errors (residuals) will be independent. As noted in the section on multi-
level modeling in the next chapter, the NELS data, with students clustered within schools, 
risks violation of this assumption. Violation of this assumption does not affect regression 
coefficients but does affect standard errors. When clustered as described, we risk under-
estimating standard errors and thus labeling variables as statistically significant when they 
are not. This danger is obviated, to some degree, with large samples like the NELS data 
used here, especially when we are more concerned with the magnitude of effects than with 
statistical significance.

Are the residuals from the regression of Grades on SES, Previous Achievement, and 
Homework nonindependent? Is there substantial variation within schools? Unfortunately, 
this assumption is difficult to test with the NELS data included on the Web site because, with 
the subsample of 1000 cases, few of the schools had more than one or two students. There-
fore, I used the original NELS data and selected out 414 cases from 13 schools. I conducted 
a similar regression analysis (Grades on SES, Previous Achievement, and Homework) and 
saved the residuals.

One way to probe for the violation of this assumption is through a graphing technique 
called boxplots. The boxplots of residuals, clustered by schools, are shown in Figure 10.3. The 
center through each boxplot shows the median, with the box representing the middle 50% 
of cases (from the 25th to the 75th percentile). The extended lines show the high and low 
values, excluding outliers and extreme values. For the purpose of exploring the assumption 
of independence of errors, our interest is in the variability of the boxplots. There is some 
variability up and down by school, and thus this clustering may indeed be worth taking into 
account. Another, quantitative test of the independence of observations uses the intraclass 
correlation coefficient, which compares the between-group (in this case, between-schools) 
variance to the total variance (for an example, see Stapleton, 2006). The intraclass correla-
tion could be computed on the residuals or on a variable (e.g., Homework) that you suspect 
might vary across schools.

One option for dealing with a lack of independence of errors is to include categorical 
variables (e.g., using criterion scaling; see Chapter 6) that take the clustering variable into 
account. Another option is the use of multilevel or hierarchical linear modeling, discussed 
briefly in the next chapter. This assumption can also be violated in longitudinal designs in 
which the same tests or scales are administered repeatedly. We will deal with this issue briefly 
in Part 2.
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Homoscedasticity

We assume that the variance of errors around the regression line is fairly consistent across 
levels of the independent variable. In other words, the residuals should spread out con-
sistently across levels of X. Violation of this assumption affects standard errors and thus 
statistical significance (not the regression coefficients), and regression is fairly robust to its 
violation. Scatterplots of residuals with independent variables or predicted values are also 
helpful for examining this assumption.

Return to Figure 10.1, the scatterplot of Homework with the Residuals from the regres-
sion of Grades on SES, Previous Achievement, and Homework. Although the residuals are 
spread out more at lower levels of homework than at upper levels, the difference is slight; 
visual inspection suggests that heteroscedasticity (the opposite of homoscedasticity) is not a 
problem. A common pattern of heteroscedasticity is a fan shape with, for example, little vari-
ability at lower levels of Homework and large variability at higher levels of Homework. But-
terfly shapes are also possible (residuals constricted around the middle level of Homework), 
as is the opposite shape (a bulge in the middle).

Focus again on Figure 10.2. Notice how the residuals bunch up at higher levels of 
the Predicted Y; the plot has something of a fan shape, narrowing at upper levels of the 
predicted values. Do these data violate the assumption of homoscedasticity? To test this 
possibility, I collapsed the predicted Grades into five equal categories so that we can com-
pare the variance of the residuals at each of these five levels. The data are displayed in 
Figure 10.4 as both a bar chart and table. As shown in the table, for the lowest category 
of predicted values, the variance of the residuals was 2.047, versus .940 for the highest 
category. There is a difference, but it is not excessive. One rule of thumb is that a ratio of 
high to low variance of less than 10 is not problematic. Statistical tests are also possible 
(Cohen et al., 2003).

Figure 10.3 Boxplots of residuals, grouped by the school from which NELS students were sampled. 
The data are 414 cases from the full NELS data.
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Normality of Residuals

The final assumption we will deal with is that the errors, or residuals, are normally distrib-
uted. What we are saying with this assumption is that if we plot the values of the residuals 
they will approximate a normal curve. This assumption is fairly easily explored because most 
MR software has tools built in to allow such testing.

Figure 10.5 shows such a plot: a bar graph of the residuals from the NELS regression of 
Grades on SES, Previous Achievement, and Homework (this graph was produced as one of 
the plot options in regression in SPSS). The superimposed normal curve suggests that the 
residuals from this regression are indeed normal. Another, more exacting, method is what is 
known as a q–q plot (or, alternatively, a p–p plot) of the residuals. A q–q plot of the residu-
als shows the value of the residuals on one axis and the expected value (if they are normally 
distributed) of the residuals on the other. Figure 10.6 shows the q–q plot of the residuals from 
the Grades on SES, Previous Achievement, Homework regression. If the residuals are nor-
mally distributed, the thick line (expected versus actual residuals) should come close to the 
diagonal straight line. As can be seen from the graph, the residuals conform fairly well to the 
superimposed straight line. The reason this method is more exact is that it is easier to spot a 
deviation from a straight line than a normal curve (Cohen et al., 2003). Some programs (e.g., 
SPSS) produce a p–p plot of the residuals as an option in multiple regression. A p–p plot 

Figure 10.4 Comparison of the variance of residuals for different levels of predicted Grades.
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Figure 10.5 Testing for the normality of residuals. The residuals form a nearly normal curve.
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Figure 10.6 A q–q plot of the residuals. The residuals’ adherence to a nearly straight line supports 
their normality
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uses the cumulative frequency and is interpreted in the same fashion (looking for departures 
from a straight line). 

Excessive heteroscedasticity and nonnormal residuals can sometimes be corrected through 
transformation of the dependent variable. Eliminating subgroups from the regression may 
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also be useful. Finally, there are alternative regression methods (e.g., weighted least squares 
regression) that may be useful when these assumptions are seriously violated (see Cohen  
et al., 2003, and Darlington, 1990, for more information).

Diagnosing Data Problems

Regression diagnostics for spotting problematic data points focus on three general char-
acteristics: distance, leverage, and influence. Conceptually, how would you spot unusual 
or problematic cases, commonly referred to as outliers or as extreme cases? Focus on 
Figure 10.7, a reprint of the earlier Figure 3.7. The figure is a byproduct of the regression 
of students’ Grades on Parent Education and Homework. Recall that we saved the vari-
able Predicted Grades, which I demonstrated was an optimally weighted composite of the 
two independent variables, weighted so as to best predict the outcome. The figure shows 
students’ GPA plotted against their Predicted GPAs. Note the case circled in the lower 
right of the figure. This case is among the farthest from the regression line; this is one 
method of isolating an extreme case, called distance. Leverage refers to an unusual pat-
tern on the independent variables and does not consider the dependent variable. If you 
were using homework in different academic areas to predict overall GPA, it would not be 
unusual to find a student who spent 1 hour per week on math homework nor would it 
be unusual to find a student who spent 8 hours per week on English homework. It would 
likely be unusual to find a student who combined these, who spent only 1 hour per week 
on math while spending 8 hours per week on English. This case would likely have high 
leverage. Because leverage is not calculated with respect to the dependent variable, the 
graph shown here may not be informative as to leverage; a graph of the two independent 
variables may be more useful (as we will soon see). The final characteristic of interest is 

Figure 10.7 Predicted versus actual Grades plot from Chapter 3. The circled case is a potential extreme 
case, a long distance from the regression line.
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influence. As the name implies, a case that has high influence is one that, if removed from 
the regression, results in a large change in the regression results. Cases with high influence 
are those that are high on both distance and leverage. The circled case would likely fit this 
description as well. If it were deleted from the regression, the regression line would likely 
be somewhat steeper than it is in the figure. 

Distance

Common measures of distance are derived from the residuals. In Figure 10.7, the residual for 
the circled case is the point on the regression line above the case (approximately 85) minus 
the actual value of the case (64). This definition matches well the conceptual definition of 
distance given previously.

In practice, the unstandardized residuals are less useful than are standardized versions 
of residuals. Table 10.1 shows some of the cases from this data set. The first column shows 
the case number, followed by the dependent variable Grades and the two independent 
variables Parent Education and Homework. Column five shows the Predicted Grades 
used to create the graph in Figure 10.7. The remaining columns show various regression 
diagnostics. The first row of the table shows the names assigned these variables in SPSS, 
under which I have included a brief explanation. Column six, labeled ZRE_1, shows the 
standardized residuals, which are the residuals standardized to approximately a normal 
distribution. Think of them like z scores, with values ranging from 0 (very close to the 
regression line) to ±3 or more. The next column (SRE_1) represents the standardized 
residuals converted to a t distribution (the t distribution is also referred to as Student’s 
t, hence the S), which are generally called the studentized or t residuals. The advantage 
of this conversion is that the t residuals may be tested for statistical significance (see 
Darlington, 1990, p. 358). In practice, however, researchers often simply examine large 
positive or negative standardized or studentized residuals or, with reasonable sample size, 
those greater than an absolute value of 2 (with very large samples, there may be many of 
these).

The cases shown in Table 10.1 were chosen for display because they have high values for 
distance, leverage, or influence. As shown in the table, cases 34 (–3.01) and 83 (2.06) show 
high values for studentized residuals.

Figure 10.8 shows the same plot of Predicted and actual Grades, with a few of the cases 
identified. Note the case that was originally circled is case number 34, the highest negative 
studentized (and standardized) residual. As can be seen, case 83, with a high positive stan-
dardized residual, is also far away from the regression line. It might be worth investigating 
these cases with high residuals further to make sure that they have been coded and entered 
correctly. 

Leverage

Leverage gets at the unusualness of a pattern of independent variables, without respect to the 
dependent variable. The column in Table 10.1 labeled LEV_1 provides an estimate of lever-
age (this measure is also often referred to as h). Leverage ranges from 0 to 1, with an average 
value of (k + 1)/ n (k = number of independent variables); twice this number has been sug-
gested as a rule of thumb for high values of leverage (Pedhazur, 1997, p. 48). Case 16 in the 
table had the highest value for leverage (.098), followed by cases 36 (.088) and 32 (.084). Both 
these values are higher than the rule of thumb would suggest:
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As can be seen in Figure 10.8, you might suspect that case 16 was unusual from a visual 
display (because it is on one edge of the graph), but case 36 is right in the middle of the 
graph. Recall, however, that leverage does not depend on the dependent variable. Figure 10.9 
shows a plot of the two independent variables. Cases 16, 36, and 32 are outside the “swarm” 
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Figure 10.8 Plot from Figure 10.7 with several noteworthy cases highlighted.

Figure 10.9 Leverage illustrated.
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of most of the cases; they indeed represent an unusual combination of independent vari-
ables. These cases may also be worth checking. 

Influence

Influence means what the name suggests: a case that is highly influential on the intercept or 
the regression line. The column labeled Coo_1 (for Cook’s Distance) in Table 10.1 provides 
values of an estimate of influence; cases with large values are worth inspecting. The cases 
with the largest Cook’s D values were cases 34 (.115) and 83 (.081). The regression plane 
would move the most if these cases were omitted.

Most computer programs also compute estimates of partial influence (as in influence, 
with the effects of the other independent variables accounted for). The DF Betas, standard-
ized, listed in the last three columns are estimates of partial influence. The first of these 
columns (SDB0_1) pertains to the regression intercept, the second (SDB1_1) to the first 
independent variable (Parent Education), and the third (SDB2_1) to the second indepen-
dent variable (Homework). The values shown are the change in each parameter, if a par-
ticular case were removed. A negative value means that the particular case lowered the value 
of the parameter, whereas a positive value means that the case raised the parameter. So, for 
example, case 34 had standardized DF Beta values of .457, –.429, and –.169. Case 34 served to 
raise the intercept and lower the regression coefficient for Parent Education and Homework. 
Although the unstandardized DF Betas are not shown in Table 10.1, they were 2.29, –.158, 
and –.058. If you run the regression without case 34, you will find that the intercept reduces 
by 2.29, the Parent Education b increases by .158, and the Homework b increases by .058.

An inspection of the standardized DF Betas showed large negative values by case 83 for 
the intercept (–.416) and large positive value for case 34 (.457). These two cases were also 
very influential for the Parent Education regression coefficient, although reversed: case 34 
(–.429), case 83 (.405). The partial influence values for the Homework variable were consid-
erably smaller. Cases 21 and 29 had the highest values (.334 and .335).

Uses

What do these various regression diagnostics tell us? In the present example, cases 34 and 
83 showed up across measures; it would certainly be worth inspecting them. But inspect-
ing them for what? Sometimes these diagnostics can point out errors or misentered data. A 
simple slip of the finger may cause you to code 5 hours of homework as 50. This case will 
undoubtedly show up in the regression diagnostics, thus alerting you to the mistake. Of 
course, a simple careful inspection of the data will likely spot this case as well! Think about 
the example I used initially to illustrate leverage, however, someone who reports 1 hour of 
Math Homework and 8 hours of English Homework. This case will not show up in a simple 
inspection of the data, because these two values are reasonable and, taken by themselves, only 
become curious when taken together. The case will likely be spotted in an analysis of both 
leverage and influence; we might well discover that errors were made in entering this datum 
as well.

If there are not obvious errors for the variables spotted via regression diagnostics, then 
what? In our present example, cases 34 and 83, although outliers, are reasonable. A check of 
the raw data shows that case 34 had well-educated parents, higher than average homework, 
but poor grades. Case 83 simply had an excellent GPA and higher than average homework. 
On further investigation, I might discover that case 34 had a learning disability, and I might 
decide to delete this case and several other similar cases. Or I might decide that the varia-
tion is part of the phenomenon I am studying and leave case 34 in the analysis. Another 
option is additional analysis. If a number of outliers share characteristics in common and are 
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systematically different from other cases, it may suggest that a different regression is needed 
for these participants or the advisability of including an interaction term in the analysis (e.g., 
Disability Status by Parent Education). It might also suggest the inclusion of an important 
common cause (e.g., disability status affecting both time spent on homework and subse-
quent grades).

Obviously, unless clear-cut errors are involved, considerable judgment is involved in the 
inspection of regression diagnostics. Note that deletion of case 34 will increase the regression 
weight for Homework; if I did delete this case, I will need to be sure that my deletion is based 
on a concern about its extremity rather than a desire to inflate the apparent importance of 
my findings. If you do delete cases based on regression diagnostics, you should note this in 
the research write-up and the reasons for doing so. With the present example and after exam-
ining cases with high values on all the regression diagnostics, I would first double-check each 
of these values against the raw data but would likely conclude in the end that all the cases 
simply represented normal variation. I would then leave the data in their present form.

Again, I have barely scratched the surface of an important topic; it is worth additional 
study. Darlington (1990, chap. 14), Darlington and Hayes (2017), Fox (2008), and Pedhazur 
(1997) each devote chapters to regression diagnostics and are worth reading.

Multicollinearity

I mentioned briefly when discussing interactions the potential problem of multicollinearity 
(also called collinearity). Briefly, multicollinearity occurs when several independent vari-
ables correlate at an excessively high level with one another or when one independent vari-
able is a near linear combination of other independent variables. Multicollinearity can result 
in misleading and sometimes bizarre regression results.

Figure 10.10 shows some results of the regression of a variable named Outcome on two 
independent variables, Var1 and Var2. The correlations among the three variables are also 
shown. The results are not unusual and suggest that both variables have positive and statisti-
cally significant effects on Outcome. 

Now focus on Figure 10.11. For this analysis, the two independent variables correlated at 
the same level with the dependent variable as in the previous example (.3 and .2). However, 
in this example, Var1 and Var2 correlate .9 with each other (versus .4 in the previous exam-
ple). Notice the regression coefficients. Even though all variables correlate positively with  

Figure 10.10 Regression of Outcome on Var1 and Var2. The results are reasonable.
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one another, Var1 seems to have a positive effect on Outcome, whereas Var2 has a negative 
effect. As noted previously, multicollinearity can produce strange results such as these; standard-
ized regression coefficients greater than 1 are also common. Notice also that the standard 
errors of the b’s are also considerably larger for the second example than for the first. Mul-
ticollinearity also inflates standard errors; sometimes two variables will correlate at similar 
levels with an outcome, but one will be a statistically significant predictor of the outcome, 
while the other will not, as a result of multicollinearity. 

Conceptually, multicollinearity suggests that you are trying to use two variables in a 
prediction that overlap completely or almost completely with one another. Given this defi-
nition, it makes intuitive sense that multicollinearity should affect standard errors: the 
more that variables overlap, the less we can separate accurately the effects of one versus 
the other. Multicollinearity is often a result of a researcher including multiple measures 
of the same construct in a regression. If this is the case, one way to avoid the problem is 
to combine the overlapping variables in some way, either as a composite or, as is done in 
Part 2, using the variables as indicators of a latent variable. Multicollinearity is also often 
a problem when researchers use a kitchen-sink approach: throwing a bunch of predictors 
into regression and using stepwise regression, thinking it will sort out which are important 
and which are not.

Given the example, you may think you can spot multicollinearity easily by examining the 
zero-order correlations among the variables, with high correlations alerting you to potential 
problems. Yet multicollinearity can occur even when the correlations among variables are 
not excessive. A common example of such an occurrence is when a researcher, often inadver-
tently, uses both a composite and the components of this composite in the same regression. 
For example, in Figure 10.12 I regressed BYTests on grades in each academic area, in addition 
to a composite Grades variable (BYGrads). Notice the results: the overall R2 is statistically 
significant, but none of the predictors is statistically significant. In this example, the largest 
individual correlation was .801, however, not overly large. The zero-order correlations are 
not always useful in spotting collinearity. 

How can you avoid the effects of multicollinearity? Computer programs provide, on 
request, collinearity diagnostics. Such statistics are shown in Figures 10.10 through 10.12. 
Tolerance is a measure of the degree to which each variable is independent of (does not 
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Figure 10.11 Regression of Outcome on Var1 and Var2 when Var1 and Var2 are very highly correlated 
(collinear). The results are puzzling, and the interpretation will likely be misleading.
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overlap with) the other independent variables (Darlington & Hayes, 2017). Tolerance can 
range from 0 (no independence from other variables) to 1 (complete independence); larger 
values are desired. The variance inflation factor (VIF) is the reciprocal of tolerance and is “an 
index of the amount that the variance of each regression coefficient is increased” over that 
with uncorrelated independent variables (Cohen et al., 2003, p. 423). Small values for toler-
ance and large values for VIF signal the presence of multicollinearity. Cohen and colleagues 
(2003, p. 423) note that a common rule of thumb for a large value of VIF is 10, which means 
that the standard errors of b are more than three times as large as with uncorrelated variables 

10 3 16=( ). , but that this value is probably too high. Note that use of this value will lead 

toan inspection and questioning of the results in Figure 10.12, but not those in Figure 10.11.
Values for the VIF of 6 or 7 may be more reasonable as flags for excessive multicollinearity 
(cf. Cohen et al., 2003). These values of the VIF correspond to tolerances of .10 (for a VIF of 
10), .14 (VIF of 7), and .17 (VIF of 6), respectively.

Factor analysis of independent variables and “all subsets” regression can also be useful 
for diagnosing problems. When you get strange regression results, you should consider and 
investigate multicollinearity as a possible problem. Indeed, it is a good idea to routinely 
examine these statistics. A method known as ridge regression can be used when data are 
excessively collinear.

Figure 10.12 Another cause of multicollinearity. A composite and its components are both used in 
the regression.
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Obviously, I have just touched the surface of this important topic; it is worth additional 
study. Pedhazur (1997) presents a readable, more detailed discussion of the topic, as does 
Darlington (1990, chaps. 5, 8). Darlington and Hayes (2017, chap. 4) offer useful suggestions 
for dealing with collinearity.

SAMPLE SIZE AND POWER

“How large a sample do I need?” Anyone who has advised others on the use of multiple 
regression (or any other statistical method) has heard this question more times than he or 
she can count. This question may mean several things. Some who ask it are really asking, “Is 
there some minimum sample size that I can’t go below in MR?” Others are looking for a rule 
of thumb, and there is a common one: 10 to 20 participants for each independent variable. 
Using this rule, if your MR includes 5 independent variables, you need at least 50 (or 100) 
participants. I’ve heard this rule of thumb many times but have no idea where it comes from. 
We will examine it shortly to see if it has any validity for the types of MR problems we have 
been studying. Finally, more sophisticated researchers will ask questions about what sample 
size they need to have a reasonable chance of finding statistical significance.

I hope you recognize this final version of the question as one of the power of MR. I have 
alluded to power at several points in this text (e.g., in the discussion of interactions in MR, 
testing for mediation), but, as you will see, we have really sidestepped the issue until this 
point by our use of the NELS data. With a sample size of 1000, we had adequate power for all 
the analyses conducted. You can’t always count on sample sizes in the thousands, however, so 
let us briefly turn to the issue of power and sample size.

Briefly, power generally refers to the ability correctly to reject a false null hypothesis. It 
is a function of the magnitude of the effect (e.g., whether Homework has a small or a large 
effect on Grades); the alpha, or probability level chosen for statistical significance (e.g., .05, 
.01, or some other level); and the sample size used in the research. Likewise, the necessary 
sample size depends on effect size, chosen alpha, and desired power. The needed sample size 
increases as desired power increases, effect size decreases, and alpha gets more stringent (i.e., 
as the probability chosen gets smaller). Common values for power are .8 or .9, meaning that 
given a particular effect size one would like to have an 80% or 90% chance of rejecting a 
false null hypothesis of no effect. Like alpha, and despite conventions, power levels should be 
chosen based on the needs of a particular study.

This short section is, of course, no treatise on power analysis. What I do plan to do here 
is to examine power and sample size for the rule of thumb given previously, as well as some 
of the examples we have used in this book, to give you some sense of what sorts of sample 
sizes are needed with the kinds of problems used in this book. Fortunately, there are some 
excellent books on power analysis, including Cohen’s classic book on the topic (1988). The 
Darlington and Hayes (2017) and Cohen and colleagues (2003) text is useful on this topic 
as well and many others; for experimental research, I found Howell’s (2013) introduction 
to power especially clear. If you intend to conduct research using MR (or other methods), 
I recommend that you read further on this important issue. You should and can also have 
access to a program for conducting power analysis. The examples that follow use G*Power 
3.1 (Faul, Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007), a free 
power analysis program available for download (www.gpower.hhu.de/, or just search for 
“GPower”). I have also used SamplePower from SPSS, and the PASS (Power Analysis and 
Sample Size) program from NCSS (www.ncss.com); they also are easy to use and work well. 

First, let’s examine several of the examples in this text. In Chapter 4, we regressed GPA in 
10th grade on Parent Education, In School Homework, and Out of School Homework in a 
simultaneous regression. The R2 for the overall regression was .155, with a sample size of 909. 

http://www.gpower.hhu.de
http://www.ncss.com
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What sort of power did we have with this simultaneous regression? According to G*Power, 
this example had a power of 1.0 (for this and the other examples, I will assume an alpha of 
.05) for the overall regression. In other words, given the information previously, we had a 
100% chance of correctly rejecting a false null hypothesis. Figure 10.13 shows the relevant 
screen shot. We are interested in an F test (Test Family), and are interested in the overall 
regression (e.g., the statistical significance of the overall R2), so choose “Fixed model . . . R2 
deviation from zero.” G*Power uses f 2 as its measure of effect size, but it is easy to convert R2 
and ∆R2 into f 2 (see chapters 4 and 5); indeed, G*Power will do these calculations for you, as 
shown on the smaller right-hand screen (to get this screen, click on the “Determine” button 
under “Input Parameters.”). The figure also shows the results.

These findings are for a post-hoc power analysis; that is, we conducted the regression and 
then wondered what the power was. Much more useful for most researchers is an a priori 
power analysis, in which we plan the research and then calculate the needed sample size to 
have a good chance of rejecting a false null hypothesis. With these three variables and an R2 
of .155, we will have a power of .8 with 64 participants and a power of .9 with 82 participants. 
Figure 10.14 shows a graph of power (Y-axis) as a function of sample size, given an alpha of 
.05 and an R2 of .155.

We often are interested in the power of the addition of one variable or a block of variables 
to the regression equation, with other variables (background variables or covariates) con-
trolled. For example, in Chapter 5 we considered the sequential regression in which we added 
Locus of Control and Self-Esteem to the regression, with SES and Previous Grades already 

Figure 10.13 Power analysis for the overall regression of GPA on Parent Education, In-School Home-
work, and Out-of-School Homework from Chapter 4.
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in the equation. The R2 with two variables in the equation was .328, and the psychological 
variables added another .010 to the R2. What sort of power was associated with this block? 
Given the sample size of 887, this final block in the regression had a power of .92; given this 
information, we had a 92% chance to reject correctly a false null hypothesis of no effect for 
the psychological variables. Given these same numbers, a sample size of 641 (see Figure 10.15) 
would be needed for a power .80 and sample size of 841 for a power of .90 for this block. The 
top of Figure 10.15 shows the input values for G*Power; the lower portion shows the sample 
size graph.

Consider the regressions in which we added interaction terms to the regression. In Chap-
ter 7 we tested the interaction of Previous Achievement and Ethnic origin in their possible 
effect on Self-Esteem. The categorical and continuous variable accounted for 2% of the vari-
ance in Self-Esteem, and the cross product added another .8% (which I will round off to 1%) 
to the variance explained, with a sample size of approximately 900. In this example, the test 
of the interaction term had a power of .86 (post hoc) and .80 power would be achieved with 
a sample size of 764 (a priori). Although the test of the interaction has lower power than the 
initial variables, with this sample size we still had adequate power to examine the statistical 
significance of the interaction.

Figure 10.14 Power to detect a statistically significant R2 as a function of sample size. This figure refers 
to the same regression as Figure 10.13, both from Chapter 4.



Figure 10.15 Power analysis for ∆R2 for one of the sequential regressions from Chapter 5.
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Finally, consider the 10 to 20 participants per independent variable rule of thumb. Let’s 
model this on some of the other regressions discussed here. Suppose four independent vari-
ables account for 20% of the variance in the outcome (f 2 = .25), a value that seems reason-
able given our examples. Will a sample size of 40 to 80 produce adequate power? Forty cases 
will produce a total power of only .65, but 80 cases will result in a power of .95. The relevant 
graph is shown in Figure 10.16. If the R2 for these four variables was .30 (f 2 = .43) instead of 
.20, then the power associated with 40 cases is .89 (no graph shown). Suppose instead that 
you were interested in the power associated with one variable that increased the R2 by .05 
above an R2 = .20 (∆f 2 = .067) from the first four variables in the regression. You will need a 
sample size of 120 to have a power of .80 for this final variable (see Figure 10.17). It appears 
that this rule of thumb, although sometimes accurate, will produce low power in many real-
world research problems.1

In real-world research, you should, of course, conduct these power calculations prior to 
the research to make sure you collect data on the needed number of participants. You will 
not know the exact effect size but can generally estimate effect sizes from previous research 
and your knowledge of relevant theory in the area. Most programs use R2 or ∆R2 as the mea-
sure of effect size, or the easily calculable f 2 or ∆f 2 (as in the previous examples). You can, 
of course, get estimates of ∆R2 if researchers have used sequential regression or by squaring 

Figure 10.16 Power as a function of sample size for R2 = .20 (f 2 = .25). The example illustrates poten-
tial problems with a common rule of thumb for sample size in multiple regression.
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the semipartial correlations (which you can calculate using t values, if necessary). If you have 
no previous research to go on, you can use common rules of thumb (e.g., R2’s of .01, .09, 
and .25; f 2’s of .02, .13, and .35 represent small, medium, and large effects in the social sci-
ences; Cohen et al., 2003). A medium effect size is generally recognized as one noticeable to 
a knowledgeable observer (Howell, 2013).

As you plan your own research, I encourage you to investigate power more completely and 
spend some time estimating the sample size you will need in your research (assuming you 
are not using a large data set like NELS). You don’t want to be filled with regrets after having 
conducted the research and finding nothing of statistical significance and then wishing that 
you had collected data from 10, or 100, additional participants! 

PROBLEMS WITH MR?

Let’s revisit some of the interpretive problems we’ve dealt with throughout this part of the 
book. I conducted three multiple regressions of high school Achievement on Family Back-
ground (SES), Intellectual Ability, Academic Motivation, and Academic Coursework in high 
school. Our interest is in the effects of these variables on students’ high school achievement. 
We will briefly examine the results of a simultaneous, a sequential, and a stepwise multi-
ple regression, with a focus on the different conclusions we can reach using the different 

Figure 10.17 Power as a function of sample size for ∆R2 = .05 (with 1 – R2 = .75).
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methods. Because our primary interest is in the differences across methods, I won’t define 
the variables in any more detail. The data are taken from Keith and Cool (1992), however, 
if you are interested in learning more. For this example, rather than simulating the data, I 
have conducted the regressions using a portion of the correlation matrix as presented in the 
article. The file “problems w MR 3.sps” illustrates how to conduct a MR using a correlation 
matrix in SPSS. You may want to save or print this file; it’s a useful method and one you can 
use to reanalyze any published correlation matrix.

Figure 10.18 shows the primary results from a simultaneous MR of Achievement on the 
four explanatory variables. The regression is statistically significant, and over 60% of the 
variance in Achievement is explained by these four variables (R2 = .629). The table of coef-
ficients in the figure provides information about the relative influence of the variables. All 
the variables appear important, with the exception of Academic Motivation. The effects of 
Motivation appear very small (β = .013) and are not statistically significant. Motivation, it 
seems, has no effect on high school Achievement. Turning to the other variables and based 
on the β’s, Ability appears the most important influence, followed by high school Course-
work; both effects were large. Family Background, in contrast, had a small but statistically 
significant effect on Achievement. 

Figure 10.19 shows the same data analyzed via sequential MR. For this problem, the 
explanatory variables were entered in the order of presumed time precedence. Parents’ 
background characteristics generally come prior to their children’s characteristics; Ability, 
a relatively stable characteristic from an early age, comes prior to the other student charac-
teristics; Motivation determines in part the courses students take in high school; and these 
courses, in turn, determine in part a high school student’s Achievement. Thus, achievement 
was regressed on Family Background, then Ability, then Motivation, and finally Coursework. 
Relevant results of this regression are shown in Figure 10.19. 

There are several differences in these results and those from the simultaneous MR. What 
is more disturbing is that we will likely come to different conclusions depending on which 
printout we examine. First, with the sequential regression and focusing on the statistical sig-
nificance of ∆R2 for each step, it now appears that Academic Motivation does have a statisti-
cally significant effect on Achievement (∆R2 = .009, F[1, 996] = 19.708, p < .001). Second, 

Figure 10.18 Simultaneous regression of Achievement on Family Background, Ability, Motivation, 
and Academic Coursework.
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Figure 10.19 Sequential regression results for the same data.
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although we still conclude that Ability was the most important variable, we now conclude 

that Family Background was second in importance ( ∆R2 = .620, .417, .251, .095, for Abil-
ity, Family Background, Coursework, and Motivation, respectively; of course this rank order 
would stay the same if we were to focus on ∆R2 instead).

Figure 10.20 shows the results from a stepwise regression of these same variables. Again, 
Academic Motivation appears unimportant, because it never entered the regression equation. 

Figure 10.20 Stepwise regression of Achievement on the same four school learning variables. 
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And again, the order of “importance” changed. In the stepwise regression, Ability entered 
the equation first, followed by Coursework, followed by Family Background. The stepwise 
regression thus seems to paint yet another picture of the importance of these variables for 
Achievement. 

How do we resolve these differences? First, we can ignore the results of the stepwise regres-
sion, because this is an explanatory problem and stepwise regression is not appropriate for 
explanatory research. But we still have the differences between the simultaneous and the 
sequential regressions, both of which are appropriate for explanation.

We have touched on these differences in previous chapters. As noted primarily in Chap-
ter 5, simultaneous regression focuses the direct effects of variables on an outcome, whereas 
sequential regression focuses on total effects. Thus, the two approaches may well produce 
different estimates, even when they are based on the same underlying model and even when 
one interprets the same statistics. Table 10.2 shows the relevant regression coefficients from 
Figures 10.18 (simultaneous regression) and 10.19 (sequential regression). For the sequen-
tial regressions, the coefficients are from the step at which each variable was entered (shown 
in italic boldface in the table of coefficients in Figure 10.19). Note the differences in the coef-
ficients; many of the differences are large. Family Background, for example, has an effect of 
.069 (standardized) in the simultaneous regression versus .417 in the sequential regression.

Again, these differences are not so startling if we know that the simultaneous regression 
focuses on direct effects versus total effects for sequential regression. But many users of mul-
tiple regression seem unaware of this difference. Likewise, many users of MR seem unaware 
that their regression, when used for explanatory purposes, implies a model and that this 
model should guide the analysis. The model that underlies these regressions is shown in Fig-
ure 10.21, and it can be used to illustrate the differences in coefficients between simultaneous 
and sequential regression. The simultaneous regression estimates the direct effects, labeled a, 
b, c, and d in the figure. The sequential regression estimates aspects of the total effects. Thus 
for the variable motivation, the coefficient for Motivation is the direct effect of Motivation 
on Achievement (path b) plus the indirect effect of Motivation on Achievement through 
Academic Coursework (path e times path a). 

In Part 2 of this book we will develop such models in considerably more detail and, along 
the way, gain a deeper understanding of MR and our current difficulties in interpretation. 
Even if you are using this book for a class in MR only and focusing on Part 1 only, I urge you 

Table 10.2 Regression Coefficients from the Simultaneous versus Sequential Regression of Achieve-
ment on Family Background, Ability, Academic Motivation, and Academic Coursework.

Variable Simultaneous Regression Sequential Regression

Family Background .695 (.218) 4.170 (.288)
.069 .417

Ability .367 (.016) .454 (.015)
.551 .682

Academic Motivation .013 (.021) .095 (.021)
.013 .095

Academic Coursework 1.550 (.120) 1.550 (.120)
.310 .310

Note. The first row for each variable shows the unstandardized coefficient followed by the standard error (in parentheses). 
The second row shows the standardized coefficient.
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to read Part 2 (at least the first two chapters). I think you will find they help you resolve many  
of the issues that have vexed us—and apparently others—in the use and interpretation of 
multiple regression. If nothing else, these chapters will give you a more complete heuristic 
aid in understanding MR results.

EXERCISES

1. Return to the first regression we did with the NELS data. Regress 10th-grade GPA (FFU-
Grad) on Parent Education (BYParEd) and Time Spent on Homework Out of School 
(F1S36A2) (see the exercises in Chapter 2). Save the unstandardized residuals and pre-
dicted values. Use the residuals to test for linearity in the Homework variable and for the 
overall regression. Are the residuals normally distributed? Is the variance of the errors 
consistent across levels of the independent variables (to conduct this final analysis, I 
suggest you reduce the Predicted Grades variable into a smaller number of categories)?

2. Rerun the regression; save standardized and studentized residuals, leverage, Cook’s Dis-
tance, and standardized DF Betas. Check any outliers and unusually influential cases. 
Do these cases look okay on these and other variables? What do you propose to do? 
Discuss your options and decisions in class. (To do this analysis, you may want to create 
a new variable equal to the case number [e.g., COMPUTE CASENUM=$CASENUM 
in SPSS]. You can then sort the cases based on each regression diagnostic to find high 
values, but still return the data to their original order.)

3. Do the same regression, adding the variable BYSES to the independent variables (BYP-
arEd is a component of BYSES). Compute collinearity diagnostics for this example. Do 
you note any problems?

Note

1 Two slightly more sophisticated rules of thumb are N > 50 + 8k for calculating the N needed for 
adequate power in an overall regression and > 104 + k for the testing the statistical significance of 
a single variable (with k representing the number of independent variables). Green (1991) evalu-
ated these and other rules of thumb and, although they work somewhat better than the simple 
N > 10k rule mentioned in this chapter, they also fall short, because they do not take effect sizes into 
account. Indeed, the second rule would underestimate the sample size needed for the final example 
given here. Green also developed several additional rules of thumb that take effect size into account 
and are therefore more useful. I recommend you use a power analysis program rather than rules of 
thumb, but this article is still worth reading.

Figure 10.21 Model underlying the simultaneous and sequential regressions of Achievement on 
Family Background, Ability, Academic Motivation, and Academic Coursework.

Ability
Academic

Coursework

Achievementj

f

h

i

g

e c

d

b
a

Family
Background

Motivation


