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Abstract

Social scientists often seek to demonstrate that a construct has incremental validity over
and above other related constructs. However, these claims are typically supported by mea-
surement-level models that fail to consider the effects of measurement (un)reliability. We
use intuitive examples, Monte Carlo simulations, and a novel analytical framework to dem-
onstrate that common strategies for establishing incremental construct validity using multi-
ple regression analysis exhibit extremely high Type | error rates under parameter regimes
common in many psychological domains. Counterintuitively, we find that error rates are
highest—in some cases approaching 100%—when sample sizes are large and reliability is
moderate. Our findings suggest that a potentially large proportion of incremental validity
claims made in the literature are spurious. We present a web application (http://jakewestfall.
org/ivy/) that readers can use to explore the statistical properties of these and other incre-
mental validity arguments. We conclude by reviewing SEM-based statistical approaches
that appropriately control the Type | error rate when attempting to establish incremental
validity.

Introduction

A common goal of statistical analysis in the social sciences is to draw inferences about the rela-
tive contributions of different variables to some outcome variable. When regressing academic
performance, political affiliation, or vocabulary growth on other variables, researchers often
wish to determine which variables matter to the prediction and which do not—typically by
considering whether each variable’s contribution remains statistically significant after statisti-
cally controlling for other predictors. When a predictor variable in a multiple regression has a
coefficient that differs significantly from zero, researchers typically conclude that the variable
makes a “unique” contribution to the outcome. And because measured variables are typically
viewed as proxies for latent constructs of substantive interest—for example, two cognitive abil-
ity measures might be taken to index spatial versus verbal ability—it is natural to generalize the
operational conclusion to the latent variable level; that is, to conclude that the latent construct
measured by a given predictor variable itself has incremental validity in predicting the outcome,
over and above other latent constructs that were examined [1,2].

Incremental validity claims pervade the social and biomedical sciences. In some fields, these
claims are often explicit. To take the present authors’ own field of psychology as an example, a
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Google Scholar search for the terms “incremental validity” AND psychology returns (in Janu-
ary 2016) over 18,000 hits—nearly 500 of which contained the phrase “incremental validity” in
the title alone. More commonly, however, incremental validity claims are implicit—as when
researchers claim that they have statistically “controlled” or “adjusted” for putative confounds
—a practice that is exceedingly common in fields ranging from epidemiology to econometrics
to behavioral neuroscience (a Google Scholar search for “after controlling for” and “after
adjusting for” produces over 300,000 hits in each case). The sheer ubiquity of such appeals
might well give one the impression that such claims are unobjectionable, and if anything, rep-
resent a foundational tool for drawing meaningful scientific inferences.

Unfortunately, incremental validity claims can be deeply problematic. As we demonstrate
below, even small amounts of error in measured predictor variables can result in extremely
poorly calibrated Type 1 error probabilities. This basic problem has been discussed in a number
of literatures—most extensively, in epidemiology and biostatistics, where concerns about incre-
mental validity claims are often discussed under the heading of residual confounding [3-5], but
also in fields ranging from psychology to education to econometrics [6-11]. The common
thread is that measurement unreliability and model misspecification will often have a deleteri-
ous and large effect on parameter estimates (and associated error rates) when covariates are
entered into regression-based model. Consequently, under realistic assumptions, it can be
shown that a large proportion of incremental validity claims in many disciplines are likely to be
false.

In this paper, we develop and apply a general statistical and conceptual framework for
understanding and evaluating claims about incremental validity. We begin by providing an
intuitive statement of the problem using simple examples and simulated data. We discuss the
most common forms of incremental validity argument and identify the unstated assumptions
they rest on. Next, we introduce a formal statistical framework for analytically determining the
expected Type I error rate of incremental validity claims as a function of key parameters like
sample size, effect size, and reliability. We demonstrate that the likelihood of spurious inference
is surprisingly high under real-world conditions, and often varies in counterintuitive ways
across the parameter space. For example, we show that, because measurement error interacts
in an insidious way with sample size, the probability of incorrectly rejecting the null and con-
cluding that a particular construct contributes incrementally to an outcome quickly approaches
100% as the size of a study grows.

In the latter part of the paper, we consider potential solutions to the problems we have iden-
tified. We focus attention on structural equation modeling (SEM) methods that can maintain
appropriate Type I error rates provided certain assumptions are met—or, alternatively, that
can be used to identify the boundary conditions under which an observed association can be
said to hold. We also provide a novel perspective on power analysis that takes the measurement
unreliability of covariates into account, providing more realistic—and surprisingly large—esti-
mates of the sample sizes typically required to support incremental validity claims. Taken as a
whole, our work provides a formal framework for understanding the effects of multiple predic-
tors on significance testing in the presence of unreliability, and offers practical guidelines for
dealing with a very common, but largely unappreciated, problem.

An Intuitive Statement of the Problem

Incremental validity claims come in a number of different forms. The most basic and common
of these is what might be called the argument for predictive utility. Stated abstractly, it says: “If
measurements of construct X correlate significantly with outcome Y even when controlling for
existing measure(s) Z, then X is a useful predictor of Y, over and above Z.” As noted above,
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examples of this argument abound throughout the social and biomedical sciences. For example,
epidemiologists have concluded that eating processed meat significantly increases colorectal
cancer risk, on the basis of prospective studies that consistently find a positive association
between the two variables when controlling for a host of confounding variables [12,13]. Orga-
nizational psychologists advocate the use of measures such as Emotional Intelligence on the
grounds that they incrementally predict job performance when controlling for standard per-
sonality and cognitive ability measures [14,15]. Political scientists frequently seek to quantify
the incremental contributions of specific demographic variables to voting preferences (e.g., are
higher-income individuals more likely to vote Republican in US elections after controlling for
differences in education level, race, state, etc.; [16-18]). And cognitive neuroscientists' argu-
ments for the utility of brain-based predictive models are often predicated on those models’
putative ability to predict real-world outcomes (e.g., product purchases or smoking cessation)
above and beyond relevant self-report variables [19,20].

In all of these cases—and thousands of others—the claims in question may seem unobjec-
tionable at face value. After all, in any given analysis, there is a simple fact of the matter as to
whether or not the unique contribution of one or more variables in a regression is statistically
significant when controlling for other variables; what room is there for inferential error? Trou-
ble arises, however, when researchers behave as if statistical conclusions obtained at the level of
observed measures can be automatically generalized to the level of latent constructs [9,21]—a
near-ubiquitous move, given that most scientists are not interested in prediction purely for pre-
diction’s sake, and typically choose their measures precisely so as to stand in for latent con-
structs of interest. That is, researchers typically do not care to show that, say, school vouchers
are associated with improved academic performance after controlling for a specific survey item
asking about respondents’ income bracket; rather, the goal is to show that the vouchers may
improve performance after accounting for the general construct of income (or, more generally,
socioeconomic status).

To see the problem intuitively, consider a slight alteration of a familiar example from many
introductory data analysis courses. Suppose we are given city statistics covering a four-month
summer period, and observe that swimming pool deaths tend to increase on days when more
ice cream is sold. As astute analysts, we immediately identify average daily temperature as a
confound: on hotter days, people are more likely to both buy ice cream and visit swimming
pools. Using multiple regression, we can statistically control for this confound, thereby elimi-
nating the direct relationship between ice cream sales and swimming pool deaths.

Now consider the following twist. Rather than directly observing recorded daily tempera-
tures, suppose we obtain self-reported Likert ratings of subjectively perceived heat levels. A
simulated batch of 120 such observations is illustrated in Fig 1, with the reliability of the subjec-
tive heat ratings set to 0.40—a fairly typical level of reliability for a single item in psychology.
(A conventionally acceptable level of reliability for sum-scores derived from a measurement
scale in psychology is around 0.8. If such a scale consists of six parallel items, which would be a
fairly typical number of items in many contexts, then by the Spearman-Brown formula, the
reliability of each individual item would be around 0.4.) Fig 2 illustrates what happens when
the error-laden subjective heat ratings are used in place of the more precisely recorded daily
temperatures. The simple relationship between ice cream sales and swimming pool deaths (Fig
2A) is positive and substantial, 7(118) = .49, p < .001. When controlling for the subjective heat
ratings (Fig 2B), the partial correlation between ice cream sales and swimming pool deaths is
smaller, but remains positive and statistically significant, r(118) = .33, p < .001. Is the conclu-
sion warranted that ice cream sales are a useful predictor of swimming pool deaths, over and
above daily temperature? Obviously not. The problem is that subjective heat ratings are a noisy
proxy for physical temperature, so controlling for the former does not equate observations on
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Fig 1. Plot of subjective heat ratings on a 7-point Likert scale against the “true” underlying daily
temperatures.

doi:10.1371/journal.pone.0152719.g001

the latter. If we explicitly control for recorded daily temperatures (Fig 2C), the spurious rela-
tionship is eliminated, as we would intuitively expect, r(118) = -.02, p = .81.

The foregoing example is based on a single batch of simulated data. If we repeat the simula-
tion 10,000 times with the same parameter values, we find a spurious partial correlation
between ice cream sales and swimming pool deaths when controlling for subjective heat ratings
92% of the time.

While the variables in the above example were deliberately chosen so that the absurdity of
the hypothetical relationship is clear, the parameter values upon which it is based, and the
structure of the statistical argument itself, are representative of many common research
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Fig 2. lllustration of residual confounding. (A) Simple relationship between daily swimming pool deaths and number of ice cream cones sold. (B)
Relationship between daily swimming pool deaths and number of ice cream cones sold after controlling for subjective heat Likert ratings. (C) Relationship
between daily swimming pool deaths and number of ice cream cones sold after controlling for recorded daily temperatures.

doi:10.1371/journal.pone.0152719.g002
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situations. Table 1 presents expected Type I error rates for a number of other parameter
regimes common to different scientific disciplines—ranging from small-sample lab-based
experiments involving large effects (e.g., n = 30, r = 0.6) to population-level models involving
tens of thousands of individuals and putatively small associations (n = 30,000, r = 0.2). In each
case, we quantify the probability of (incorrectly) rejecting the null—that is, of concluding that a
construct of interest makes a statistically significant contribution after controlling for a putative
confound, when in fact the confound fully accounts for the relationship at the latent-variable
level. For simplicity, we assume that measurement reliability is identical for both predictors.

While the Type I error rate varies considerably depending on sample size, effect size, and reli-
ability, it is apparent from Table 1 that it is very often much larger than the nominal value of 5%.
We submit that if there is a high probability of rejecting the null hypothesis in such situations
even when it is actually true, then rejecting the null hypothesis cannot be considered convincing
empirical evidence that a construct has incremental predictive utility. To be confident that an
incremental validity argument is sound, one would need to either ensure perfect measurement
reliability, or formally account for the potential effects of unreliability in one’s model. The former
is a daunting—and usually impossible—proposition. The latter is quite feasible, but, as we discuss
in a later section, cannot be accomplished with standard multiple regression.

A General Statistical Framework for Assessing Incremental Validity

Having provided illustrative examples to prime readers’ intuitions, we now undertake a more
comprehensive evaluation of the Type 1 error rates associated with incremental validity argu-
ments. We first lay out the statistical models involved and define the relevant null hypotheses.
We then quantify how the Type 1 error rates for tests of incremental validity claims vary across a
broad range of parameter values. We have also written an interactive web application (“Ivy,”
accessible online at http://jakewestfall.org/ivy/) that readers can use to explore the statistical
properties of these and other incremental validity arguments for themselves. In S1 Appendix, we
give the analytical derivations underlying these results, in which we determine the probabilities
of rejecting different combinations of regression coefficients as a function of the simple or partial
correlations among the outcome and the latent predictors, the reliabilities, and the sample size.
Consider a regression of an outcome Y on two true scores T,

Y =B+ BnT + BT, + e,

Table 1. Type 1 error rates for a few parameter combinations. N = sample size; ES (r) = correlations of
predictor with covariate and covariate with outcome; reliability = reliability of predictor and covariate. These
error rates are determined using the methods described in the next section, and described in more detail in
the S1 Appendix.

N ES (r) reliability Type | error rate
30 0.6 0.4 0.12

30 0.6 0.8 0.07
120 0.5 0.4 0.2
120 0.5 0.8 0.09
300 0.4 0.4 0.19
300 0.4 0.8 0.09
3000 0.3 0.4 0.48
3000 0.3 0.8 0.16
30000 0.2 0.4 0.76
30000 0.2 0.8 0.25

doi:10.1371/journal.pone.0152719.1001
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Fig 3. Contour plots of Type 1 error probabilities for the argument for predictive utility. The null hypothesis is that T1 has no partial relationship with Y
after controlling for T5 (i.e., p1 2 = 0). The size of the true indirect effect of T; on Y via T, varies from small (panel A) to medium (panel B) to large (panel C).

doi:10.1371/journal.pone.0152719.9003

with er a random disturbance term (subscripts indexing people are omitted for simplicity). But
rather than observing the latent predictors T; directly, we instead observe two imperfectly mea-
sured indicators X; = b;T; + ej;, so that the regression we actually observe is

Y =By + B Xy + BroX, + ey

From these regressions we define the following parameters:

p1: The simple correlation between Y and T;.

p1.2: The partial correlation between Y and T3, controlling for T,.

p>: The simple correlation between Y and 7.

p2.1: The partial correlation between Y and T, controlling for Tj.

6: The simple correlation between T and 7.

ay: The reliability of X; (var(b, T})/var(X,)).

a,: The reliability of X, (var(b,T,)/var(X5)).

(Note that in the special case where X, and X, measure the same true score—that is,
T)=T,=T—thend=1andp; =p,=p.)

The core incremental validity argument—i.e., the “argument for predictive utility”—claims
that T} is a useful predictor of Y even after controlling for T,. The corresponding null hypothe-
sis for this argument, stated in terms of the statistical parameters just defined, is that p; , =0
We reject this null hypothesis if we observe a significant partial correlation between Y and the
measured variable X, controlling for X,.

Type 1 error rates for this argument are illustrated in Fig 3. The first thing to note is that if
the control variable X, is free of measurement error, the Type 1 error rate is, as expected, 5%.
Although not illustrated in the plot, the error rate is also 5% if either p, = 0 or § = 0, either of
which imply that the indirect effect of T; on Y via T is 0, in which case there is no confounding
influence to control for. However, if X, is contaminated with any amount of measurement
error, and there is any indirect effect of T; on Y via T, then the Type 1 error rate exceeds 5%.
The extent by which the error rate exceeds 5% depends on three factors: the size of the indirect
effect (p,0), the sample size (), and the reliability of X, (a,).

The influence of the indirect effect size is straightforward: All else equal, as the indirect
effect increases, the Type 1 error rate increases. When the indirect effect is small (both p, and &
are modest; Fig 3A), the error rate is only slightly inflated. When the indirect effect is large (p,
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and J are large; Fig 3C), the error rate is very high for most representative values of n and a,.
The intuitive explanation for this is that measurement unreliability makes it easier for the
regression model to confuse the direct and indirect paths (i.e., to apportion variance in the out-
come incorrectly between the various predictors). The larger the influence of the confounding
covariate, the more variance can be misattributed to the predictor of interest, leading to an
increase in Type I error.

The relationship between n and Type 1 error may be less obvious: all else equal, as sample
size increases, error rates also increase. It is worth reflecting on this result, because it contra-
venes the received wisdom that larger samples mitigate most common statistical problems
(e.g., as n grows, power to reject the null increases, parameter estimates become more precise,
etc.). Indeed, we find that for studies involving thousands of participants and non-negligible
indirect effects, rejection of the null hypothesis is a near certainty even when the null is in fact
true (cf. Table 1). On reflection, the reason for this behavior becomes clear: as samples grow,
power to detect any reliable association between the predictors and the outcome necessarily
increases. This remains true even when measurement unreliability causes the model to confuse
a common effect of two or more predictors with a unique effect of one predictor—as #n grows,
the model more confidently concludes that there is a reliable association between the predictor
of interest and the outcome.

Finally, the effect of reliability on error rates is even less intuitive: there is a non-monotonic
relationship, such that Type 1 error approaches 5% when reliability nears 0 or 1, but is highest
when reliability is moderate. The error rate typically peaks when reliability is between 0.3 and
0.7, which is likely representative of many commonly used measures in the social sciences, par-
ticularly those that consist of a single item. However, even at a conventionally acceptable reli-
ability of 0.7 or 0.8, the error rate can still be extremely high if the sample size and/or indirect
effect are large. The non-monotonic effect of reliability has a compound explanation that
becomes clear when one considers each extreme separately. When reliability is very low, the
observed associations between all variables must be very small (i.e., power is very low), so the
null cannot be rejected simply because it becomes almost impossible to detect any effect. Con-
versely, when reliability is very high, the model is able to avoid misattributing the effect of the
covariate to the predictor of interest. In the middle, however, there exists a territory where
effects are large enough to afford detection, but reliability is too low to prevent misattribution,
leading to particularly high Type 1 error rates.

Variations on the Same Theme

Thus far, we have focused analysis exclusively on the situation where one is attempting to show
that a predictor of interest contributes incrementally to an outcome after controlling for a puta-
tive confound. As noted above, this situation is ubiquitous in the social sciences, and has been
discussed extensively in previous work [8-10,22]. However, there are less obvious variants of
the basic incremental validity argument that, despite being widely employed in some fields,
have received less consideration. These more specialized arguments have the same basic struc-
ture laid out above: one infers relationships between latent constructs and outcomes of interest
based on observed patterns of significant coefficients in a multiple regression of the outcome
on composite scores thought to measure the latent constructs. These variants inherit all the sta-
tistical problems of the basic incremental validity argument, as well as additional problems
related to the more complicated nature of the latent relationships being inferred.

One variant particularly common in the psychological sciences is what we might term the
argument for separable constructs. Stated abstractly, it says: “If measurements of two constructs,
X and Z, both significantly predict variation in an outcome Y while controlling for each other,

PLOS ONE | DOI:10.1371/journal.pone.0152719 March 31,2016 7/22



@. PLOS ‘ ONE Incremental Validity

Type 1 error rates for rejecting p12 = 0 OR p2 1= 0 if both predictors significant
Api=p2=.3 B:p1=p,=.5 Cipr=ps=.7

(=] T [=] o
(=] (=] (=]
v 720 IR\ |
E \\ / E : E
[v] m € m
@ @ - @
oD O o O - . o O ]
o [=] o o o (= 5
P — P — ‘;J’ —
N N N ¢ -
w w w
"] o X © o © (=] 4 .
s 0 =z v s ©
E : E E ;
] m o
w w o . w .
(=] / (=] f o lll k / .
o I | ™ I I | ™ I I
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Reliabilities (cq = ap) Reliabilities (cq = ay) Reliabilities (ctq = ciz)

Fig 4. Contour plots of Type 1 error probabilities for the argument for separable constructs. The alternative hypothesis is that both of the predictors
are separately related to the outcome, which implies the null hypothesis that either of the predictors is not related to the outcome. The magnitude of the true
correlation between Y and T varies from small (panel A) to medium (panel B) to large (panel C).

doi:10.1371/journal.pone.0152719.9004

then X and Z are distinct and independently useful constructs.” Real-world examples of this
reasoning abound. In social psychology, theorists have argued for an important distinction
between explicit attitudes and implicit attitudes [23-25] based partly on demonstrations that
explicit and implicit attitude measures make statistically separable contributions to behavioral
outcomes, notably including voting behavior [26-28]. In the individual differences literature,
arguments for the existence of “multiple intelligences” often draw support from demonstra-
tions that ability measures thought to tap different cognitive abilities make independent contri-
butions to scholastic performance or other outcomes [29,30]. And in the neuroimaging
literature, different brain regions or networks are often ascribed dissociable cognitive functions
on the grounds that they each contribute unique variance to behavioral outcomes [31,32]. In
all of these cases, it is tempting to conclude that the outcome in question is independently pre-
dicted by both of the predictors, which are thought to measure strongly related but conceptu-
ally distinct constructs. But a simpler interpretation that is often equally consistent with the
data is that both predictors are simply noisy indicators of the same construct.

Our framework allows us to readily estimate Type 1 error rates for the argument for separa-
ble constructs. Here, the investigator seeks to establish the alternative hypothesis that both p, ,
# 0 and p, ; # 0, which implies jointly rejecting the null hypotheses that p; , =0 and p,; = 0.
Formally, we reject the disjunctive null hypothesis “p; , = 0 or p,; = 0” if we observe that both
multiple regression coefficients are significant.

Type 1 error rates for this argument are illustrated in Fig 4. As in the previous case, the
error rate here approaches 5% as the two measured predictors approach perfect reliability.
(The estimates of the regression coefficients are technically not identifiable when both predic-
tors have reliability exactly equal to 1, since in that case the two predictors in the regression
equation are perfectly collinear under the null hypothesis.) More realistically, when X; and X,
are imperfectly reliable, the Type 1 error rate can vary dramatically depending on the sample
size (n) and the true correlation between Y and T (p; = p, = p). In general, Type 1 error
increases as p increases (compare panels in Fig 4)—with the exception that when reliability is
high and sample size is low, increasing p can produce overly conservative error rates (e.g., less
than .01). Similarly, increasing # generally increases Type 1 error. In fact, as the sample size
approaches infinity, simultaneous rejection of both Sx; = 0 and By, = 0 becomes guaranteed
even when the null hypothesis (6 = 1) is true, as long as p # 0 and the reliabilities are between 0
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and 1—both of which conditions are extremely probable in actual social science research. Fur-
thermore, as Fig 4 makes apparent, the convergence of the error rate to 100% happens fairly
quickly for many reasonable parameter values. For example, if the reliabilities are both .8 and
we have p = .5 (so that each predictor’s simple, attenuated correlation with Y is about 0.45),
then by the time the sample size reaches n = 300, the error rate has already surpassed 65%. We
conclude that many previous findings in the social sciences are at high risk of having concluded
that two constructs are distinct when they may not in fact be so.

Another variant of the incremental validity argument could be called the argument for
improved measurement (or, less formally, the “mine is better” argument), which in its abstract
form looks something like: “Our new measure of construct X is better than old measures of X
because it is a better predictor of outcomes like Y, as evidenced by the fact that when we regress
Y on both the old and new X measures, only the new X measure is significant.” For example,
psychologists studying the relationship between feelings of shame and symptoms of depression
have advanced a new measure of the construct of shame—the Experience of Shame Scale (ESS)
—and argued for its utility in part by demonstrating that, when regressing a depressive symp-
tom index on both ESS scores and scores on a previously used measure of shame—the Test of
Self-Conscious Affect (TOSCA)—in a multiple regression model, the new ESS scores signifi-
cantly predict the degree of depressive symptoms while the old TOSCA scores do not [33].

While this line of statistical reasoning has intuitive appeal, in most cases it actually provides
very little evidence for the hypothesis that the new measure is more strongly related to the out-
come than is the older measure. Again, we can quantify the false positive rate using our analyti-
cal framework. In this case, an investigator rejects the null hypothesis that p; , = p, ;, in favor of
the alternative p; , # p, 1, upon finding that one of the predictors in the observed multiple
regression is significant while the other predictor is not. The Type 1 error surface for this argu-
ment, illustrated in Fig 5, is very unusual. The first thing to note is that, unlike with the previ-
ous two cases, here the error rate does not approach the nominal alpha level of 5% as the
predictors approach perfect reliability. This is because the argument for improved measure-
ment is actually based on flawed test logic: the correct procedure would directly test the differ-
ence p; , — p».1 rather than separately testing the individual coefficients. Thus, while the
unreliability of the predictors affects the error rates a lot (compare the panels of Fig 5), it is not
really the main problem with the argument for improved measurement.

Type 1 error rates for rejecting p1.» = po.1 if only one predictor significant
A P12 = P21 = 0.1 B: P12 = P21 = 0.3 C: P12=p21= 0.5
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Fig 5. Contour plots of Type 1 error probabilities for the argument for improved measurement. The null hypothesis is that the two predictors have the
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doi:10.1371/journal.pone.0152719.9005
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The second thing to note is that, unlike in the previous cases, here the error rate does not
approach 100% as the sample size goes to infinity. Instead, the error rate increases until it
reaches some maximum value that is typically in the 50%-65% range. After that point, the
error rate then declines and begins to approach 0%, so that the test is extremely conservative
(and hence underpowered) at large sample sizes. The intuition for this fact is that, when the
sample size is very large, it is nearly certain that both of the predictors will be significant as
long as there is some nonzero partial correlation, so observing only one predictor significant
and the other nonsignificant would be extremely rare under the null hypothesis. The exact
sample size at which the expected error rate reaches its maximum is a complicated, joint func-
tion of the reliabilities of the predictors and the strength of the partial correlations with the out-
come. Two rules of thumb that can be gleaned from the plots are that the maximum error rate
tends to be reached at a smaller sample size when (a) the reliabilities of the predictors are
higher, and/or when (b) the partial correlations between the predictors and the outcome are
stronger. One thing this analysis does make abundantly clear is that the Type 1 and 2 error
rates associated with the argument for improved measurement are extremely poorly calibrated,
so that the evidential value of rejecting this particular null hypothesis is often entirely unclear
in practice.

Lastly, it is important to note while we have focused exclusively on Type 1 error probabili-
ties within a frequentist hypothesis testing framework, essentially the same problem will arise
no matter what statistical approach one uses (unless reliability is explicitly accounted for, as we
discuss in the next section). For example, suppose one takes the view that the null hypothesis is
almost never exactly true, and that researchers should instead focus on parameter estimation
[34,35]. Consider the case of a true partial correlation that is very small but technically non-
zero, p1 , = 0.01. Given a large indirect effect size (p, = 6 = 0.7), modest reliabilities (o = o, =
0.4), and a sample size of n = 100, the mean estimated incremental contribution is
Tvx, x, = 0.22, with 95% of estimated values lying in [0.02, 0.40], which does not even include
the true value p; ,. Thus, all of the conclusions we have drawn above generalize to a parameter
estimation regime with little or no modification required. Nor is the problem restricted to fre-
quentist approaches, as the same issues would arise for Bayesian models that fail to explicitly
account for measurement error.

Accounting for unreliability explicitly using structural models

The results presented above demonstrate that, in a wide range of very common research sce-
narios, incremental validity arguments based on multiple regression analysis run a very high
risk of Type 1 error. Perhaps even more problematically, the error rates in question are typi-
cally unknown, because investigators often lack reasonable estimates of predictor reliability
(e.g., econometric studies attempting to control for SES hardly ever estimate or report the reli-
ability of the actual survey item(s) used to operationalize the SES construct). Of course, one
could avoid these pitfalls by abstaining entirely from drawing construct-level claims on the
basis of measurement-level models—and in general, we believe that researchers should always
exercise extreme caution when ascribing latent-variable interpretations to observed variables.
Ultimately, however, incremental validity arguments are statistical statements about the rela-
tionships between latent variables. As such, the most appropriate way to test such statements is
to use latent variable approaches such as structural equation modeling (SEM), which can
explicitly account for measurement unreliability.

In this section, we illustrate how an SEM approach can be used to support incremental
validity claims through a reanalysis of a widely used personality data set—the Eugene-Spring-
field community sample [36,37], which involved a longitudinal study of nearly 1,000 adults
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who completed dozens of different self-report and behavioral measures over the course of 15
years. Here we use these data to test the incremental validity of two popular personality models
in predicting respondents’ self-reported frequencies of a wide range of behaviors; however, the
same general SEM approach can be used in virtually any situation where researchers wish to
make construct-level incremental validity claims, and have some knowledge or estimate of the
reliability of their predictors.

Our analysis focuses on the “Big Five” personality taxonomy—the most widely used person-
ality model in modern psychology [38]. The Big Five model includes the traits of Openness to
experience, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. Proponents of
the Big Five model have historically argued that these five personality factors explain most of
the broad variation in people’s personalities, and that measurements of where people stand on
these five factors can predict many major outcomes such as academic achievement, personality
disorders, and work success [39-42]. More recently, however, some researchers have advanced
a competing six-factor “HEXACO” model, which includes dimensions of Honesty-Humility,
Emotionality, eXtraversion, Agreeableness, Conscientiousness, and Openness to experience
[43]. Personality researchers have theorized a number of specific relationships between the six
HEXACO factors and the Big Five factors [44]. Three of the HEXACO factors—Extraversion,
Conscientiousness, and Openness to Experience—are thought to be essentially the same as the
Big Five factors of the same name. The Emotionality and Agreeableness factors, on the other
hand, are thought to be similar, but not identical, to the Big Five’s Neuroticism and Agreeable-
ness factors. Finally, the HEXACO model introduces a sixth Honesty-Humility factor intended
to capture a range of honesty- and modesty-related behaviors that are putatively overlooked by
the Big Five [45].

This postulated pattern of construct-level relationships leads to three testable hypotheses
about the relative contributions of Big Five and HEXACO traits to behavior. First, since the
Extraversion, Conscientiousness, and Openness factors are thought to be conceptually identical
in the NEO and HEXACO models, when we regress a behavioral outcome on both the NEO
and HEXACO versions of these factors, we expect both regression coefficients to be nonsignifi-
cant. Second, since the Emotionality/Neuroticism and Agreeableness factors are thought to be
conceptually different in the NEO and the HEXACO models, when we regress a behavioral
outcome on both versions of these factors, we expect both the NEO and HEXACO predictors
to have significant regression coefficients. Third, since the Honesty-Humility factor of the
HEXACO is thought to explain additional variance in personality beyond the five NEO factors,
participants’ Honesty-Humility scores should predict at least some behavioral outcomes even
after controlling for their scores on the five NEO factors. The first two of these predictions cor-
respond to what we called the “argument for separable constructs” (except that in the first case
we predict that they are not separable) while the third prediction corresponds to the more com-
mon “argument for predictive utility.”

The standard way of testing these predictions is to compute sum or mean scores for each
factor and then to enter these sum scores as simultaneous predictors in a multiple regression
equation predicting the behavioral outcome of interest [46-48]. The SEM method of testing
these predictions is similar, but rather than manually pre-computing sum scores, one instead
specifies the measurement model for each factor as part of the structural regression model, so
that the measurement error associated with each factor becomes an explicit part of the full
model.

We directly compared the conclusions produced by the two approaches using data from the
publicly-available and widely-used Eugene-Springfield Community Sample [36,37]. Partici-
pants (n = 604) completed both the NEO-PI-R and the HEXACO-PI, as well as a “Behavioral
Report Inventory” containing 400 descriptions of specific activities such as borrowing money,
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Fig 6. Test statistics from models regressing BRI outcomes on both the NEO and HEXACO versions of a factor. The test statistics are t-statistics for
the regression models and z-statistics for the SEM models. BRI = Behavioral Report Inventory. SEM = Structural Equation Model.

doi:10.1371/journal.pone.0152719.9006

chewing gum, playing chess, or yelling at a stranger (for details, see [49]). Participants rated the
frequency with which they engage in each activity, and Goldberg and colleagues aggregated the
results into 60 distinct clusters. For each of these clusters, we conducted both regression-based
and SEM analyses and compared the results. The results for the first and second predictions
are illustrated for all 60 behaviors in Fig 6—which shows the absolute value of the test statistic
(t for regression, z for SEM) for the HEXACO predictor, controlling for the NEO predictor—
and in Fig 7—which shows the test statistic for the NEO predictor, controlling for the HEX-
ACO predictor.

For the multiple regression models, there are always many behaviors that appear to be inde-
pendently predicted by both the HEXACO and NEO versions of all five factors. This should
not be surprising given the results we reviewed in the last section demonstrating a very high
Type 1 error rate for the multiple regression analyses; we expect to reject the null hypothesis a
large proportion of the time whether it is true or false. By contrast, the SEM results produce
more measured conclusions that support the theoretical predictions. The HEXACO and NEO
versions of the Extraversion, Conscientiousness, and Openness to Experience factors almost
never make separable contributions to any of the behaviors, consistent with our first prediction
from above. For the Neuroticism/Emotionality factor, the SEM results look similar to the mul-
tiple regression results, with the HEXACO and NEO versions of the factor making separable
contributions to predicting many of the behavioral outcomes. And for Agreeableness, the
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doi:10.1371/journal.pone.0152719.9007

results are mixed: there are many behaviors in which the NEO factor predicts the outcome
over and above the HEXACO factor, but only a few behaviors in which HEXACO significantly
predicts the outcome over and above NEO. Thus, there is partial support of the second predic-
tion from above. Finally, the results pertaining to the third prediction, which stated that Hon-
esty-Humility should predict variation in behavior even after controlling for the five NEO
factors, are shown in Fig 8. In this case the results from the SEM models look roughly similar
to the results from the multiple regression models. In both cases there are a subset of the behav-
iors in which Honesty-Humility scores significantly predict variation over and above the five
NEO factors. Thus, there is support for the third prediction from above as well.

The Single Indicator Case

In all of our personality analyses above, we had multiple indicators of each construct (i.e., the
individual questionnaire items). We were therefore able to empirically estimate the reliability
with which each construct was measured, and the SEM models used these empirical reliability
estimates to appropriately attenuate or disattenuate the parameter estimates for measurement
error. However, in most cases, researchers do not have the luxury of multiple indicators of the
constructs under study. For example, in a study of student outcomes in which we wish to con-
trol for the education level of students’ parents, we might have only a single survey item assess-
ing parental education (e.g., “what is the highest level of education you have attained?”).
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Responses to such items typically contain a substantial amount of measurement error that,
unfortunately, cannot be empirically estimated.

In such cases it is still possible to carry out SEM analyses like those presented above ([50]

p- 168), [51], ([52] p. 276). The major difference is that, rather than relying on empirical esti-
mates of reliability, we have to make assumptions about the level of reliability for any variables
that we think contain measurement error. In this section we illustrate what such an analysis
looks like, again using the Eugene-Springfield community sample. We test all of the same
hypotheses as in the previous section, except that we pretend, for instructional purposes, that
we have only a single indicator of each construct (the total scale score for each personality fac-
tor), and we examine how our results vary as a function of the assumptions we make about the
reliability of the measures. For simplicity we focus on just one of the 60 BRI clusters—the fre-
quency of self-reported illegal drug use.

Fig 9 shows a path diagram representing the appropriate structural equation model to fit to
these data. We define two correlated latent variables that are indicated by the observed NEO and
HEXACO sum scores, and then regress the drug use outcome simultaneously on these latent pre-
dictors. Of course, the reliability of the NEO and HEXACO scores cannot be estimated from the
data since we are considering them to each consist of only a single measurement—in terms of the
model, the variances of the residuals perturbing the observed predictors are not identifiable.
Therefore, to model the effects of unreliability of the predictors, we fix the loadings of both indi-
cators to 1.0 and fix the variances of their residuals to (1 — &), where @; is the assumed reliabil-

ity of the jth predictor and s; is the sample variance of that predictor. For example, the observed

variance of the NEO neuroticism scores is 0.42, so to constrain the reliability of the neuroticism
scores to be, say, 0.4, we would constrain its residual variance to be (1-.4)0.42 = 0.25.
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Fig 9. Path diagram for a SEM predicting drug use, allowing for specified degrees of reliability in the
observed NEO and HEXACO scores. Circle nodes represent latent variables, square nodes represent
observed variables, solid lines represent paths or variances to be estimated from the data, and dashed lines
represent paths or variances that are fixed to constant, a priori values. SEM = Structural Equation Model.

doi:10.1371/journal.pone.0152719.g009

The results obtained from this procedure depend on the values of a; that we have assumed.
Our recommendation is therefore to run the procedure for a range of assumed values of @; and
investigate how the statistical conclusion varies as a function of the assumed reliability. This
idea is illustrated in Fig 10, where we repeat all the analyses from Figs 6, 7 and 8, but vary the
assumed reliability of the HEXACO and NEO sum score predictors from 0.2 to 1 (see Fig cap-
tion for additional details). The values plotted on the curves in panels A through E are the z-
statistics from the structural equation model output for testing the null hypotheses that 5; =0
and f3, = 0, that is, for testing the partial effect of HEXACO scores on drug use, controlling for
the NEO scores, and vice versa (analogous to Figs 6 and 7). The z-statistics plotted in panel F
are from a structural equation model with 6 predictors, testing the null hypothesis that HEX-
ACO honesty/humility scores significantly predict drug use over and above the five NEO
scores (analogous to Fig 8).

The results of this analysis show that our conclusions about whether the HEXACO and
NEO factors are incrementally valid predictors of drug use sometimes depend on our assump-
tions about the reliability of the sum scores, and sometimes do not. For example, the NEO
Neuroticism and HEXACO Emotionality predictors both significantly predict drug use as long
as we assume their reliabilities are at least 0.5 (a reasonable assumption given prior literature).
By contrast, for the Extraversion, Openness to Experience, and Conscientiousness factors,
there is no level of reliability for which both of the predictors significantly predict drug use con-
trolling for one another. For Agreeableness, both the NEO and HEXACO predictors are signifi-
cant only if we assume that their reliabilities are at least & > .92, which is not impossible, but
seems highly unlikely a priori. And in fact, since in this example we actually do have multiple

PLOS ONE | DOI:10.1371/journal.pone.0152719 March 31,2016 15/22



@ PLOS | one

Incremental Validity

A: Emotionality/Neuroticism B: Extraversion

z-statistics from regressing
drug use on both predictors
-4

HEXACO

| T |
02 04 06

T
0.8

1
1.0

C: Openness to experience

i

HEXACO

0 2 4

HEXACO

-4
|

-8
L

z-statistics from regressing
drug use on both predictors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
drug use on both predictors
l

z-statistics from regressing

T T T | T T T T T |
02 04 06 08 1.0 02 04 06 08 1.0

Assumed reliability of predictors Assumed reliability of predictors Assumed reliability of predictors

D: Agreeableness

HEXACO

z-statistics from regressing
drug use on both predictors
-4
| |

| T |
02 04 06

0.8

1.0

F: HEXACO "Honesty/Humility'
controlling for 5 NEO factors
ﬂ- p—

E: Conscientiousness

HEXACO
N === —— e —— - o

z-statistics from regressing

drug use on both predictors
4 0
|
|
|
|
|
|
|
|
|
= |
m!

g [
z-statistic for
Honesty/Humility predictor
4 0

—
|
|
I
|
|
|
.
|
|
|
|
|

T | T | T T T T T |
02 04 06 08 1.0 02 04 06 08 1.0

Assumed reliability of predictors Assumed reliability of predictors Assumed reliability of predictors

Fig 10. Test statistics as a function of assumed reliability. The shaded region gives the range within which the test statistics are nonsignificant. In each
model, assuming reliabilities below a certain value invariably caused the model to fail to converge or to yield an inadmissible solution (i.e., impossible
correlation matrices for the latent variables); we only plot the results for reliability values that successfully converge on stable estimates.
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indicators, if we estimate the reliabilities empirically we get estimates of .73 for NEO agreeable-
ness and .79 for HEXACO agreeableness—so the full multi-indicator SEM analysis would not
have found evidence that NEO and HEXACO agreeableness are incrementally valid predictors
of drug use. Finally, in panel F we see that the HEXACO Honesty-Humility scores only signifi-
cant predict drug use over and above NEO scores if the reliabilities are assumed to be at least o
> .78, which could plausibly be the case, although it is far from certain. Thus, the results of this
analysis are somewhat ambiguous. Once again, if we estimate the reliabilities empirically we
get estimates that range from .66 to .79 with an average of & = .74. So the full SEM model
would have yielded at best weak evidence for incremental validity as well.

Statistical Power of Incremental Validity Arguments Using SEM

The reanalyses presented above make it clear that, when arguing for incremental validity, the
reliability of the predictors matters. Seemingly strong evidence for incremental validity based
on a multiple regression model that ignores measurement error can easily disintegrate when
one uses more appropriate, SEM-based methods that account for measurement error in the
predictors. This observation naturally raises an important question: what kind of statistical
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power do incremental validity arguments have when they are based (correctly) on SEM rather
than multiple regression?

Naively, one might suppose that an SEM analysis should be only modestly more conserva-
tive than its multiple regression equivalent. However, multiple regression and SEM respond
very differently to the presence of measurement error in a covariate. As illustrated in Fig 11,
adding an increasingly unreliable covariate to an SEM model causes the standard error of the
parameter estimate for the predictor of interest to grow larger and larger. The intuition for this
behavior is that the model must adjust the parameter estimate to account for the overlap with
the covariate, but as the covariate’s unreliability increases, it becomes increasingly unclear
exactly how much of an adjustment is required. This increasing uncertainty is reflected in the
increasing standard error. By contrast, multiple regression will typically show the opposite
trend: the more unreliable the covariate, the more the multiple regression actually capitalizes
on this unreliability by conflating the direct and indirect effects of the predictor of interest,
leading to biased, inconsistent parameter estimates and inflated test statistics [6]. The net effect
is that, as the reliability of a covariate falls, it typically becomes easier to reject the null with
multiple regression (resulting, as we have already seen, in very high false positive rates when
the null is true), but harder to reject the null with SEM. The latter is the correct behavior, as it
reflects our expectation that introducing additional measurement error into a set of regression
equations should increase the uncertainty in parameter estimates and correspondingly
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attenuate the test statistics for hypothesis tests on those parameters. The upshot is that shifting
from multiple regression to SEM should increase the sample size required to support incre-
mental validity claims. The key question is by how much.

To find out, we conducted a simulation. We generated random data according to a struc-
tural equation model identical in structure to the model shown in Fig 9. The reliability of the
focal predictor of interest was always kept at 1.0, while the assumed reliability of the covariate
was set to either perfect (o0 = 1; equivalent to multiple regression), high (a = .8; a typical reliabil-
ity for an aggregate of multiple items), or low (¢ = .4; a typical reliability for a single item).
(Adding measurement error to the focal predictor would, of course, simply diminish the statis-
tical power even further and lead the required sample sizes to be even larger.) We assumed a
relatively large indirect effect of the focal predictor via the covariate, with 6 = p,; =.7. We rea-
soned that, in the real word, the situations where it occurs to the researcher that it might be
important to control for a particular covariate are precisely those in which the covariate has a
large indirect effect, so that large indirect effects are probably common in much actual research.
We varied the size of the partial correlation between the focal predictor and the outcome
between p; , = 0 (to verify that the SEM can keep the Type 1 error rate at approximately the
nominal alpha level of 5%) to p, , = .3, in increments of 0.1. For each parameter combination
we ran the simulation 30,000 times, each time drawing sample sizes from a distribution uni-
form on the log scale from n = 50 to n = 5000.

The results of the simulation are shown in Fig 12. Panel A, in which the covariate is perfectly
reliable, shows a relatively happy situation: with effect sizes of p; , = .3, .2, or .1, achieving 80%
power requires sample sizes of n = 80, 200, or 800, respectively. These are equivalent to the
power results for multiple regression, and we suspect that most researchers’ intuitions about
statistical power are calibrated to a situation similar to this one. We also see that the Type 1
error rate is maintained at 5%. In panel B, where we now introduce just a relatively small
amount of measurement error to the covariate, we can see that the required sample sizes
increase substantially: with effect sizes of p; , = .3, .2, or .1, achieving 80% power now requires
sample sizes of n ~ 180, 400, or 1600, respectively. The Type 1 error rates are still maintained
at 5%. Finally, in panel C, where the covariate is measured with a substantial amount of error—
as is likely typical with single indicator covariates widely used across many fields—the required
sample sizes are now very large. With effect sizes of p; , = .3 or .2, achieving 80% power
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Fig 12. Power to detect incremental validity using SEM. The lines in each panel are smoothed curves derived from fitting generalized additive models
with a binomial response to the simulation results. SEM = Structural Equation Model.

doi:10.1371/journal.pone.0152719.9012
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requires sample sizes of n ~ 1200 or 2300, respectively. The required sample size for p; , = .1 is
too large to even show within the plot margins, but it seems to be well into the tens of thou-
sands. We also see that, in the low reliability case, there is some slight elevation of the Type 1
error rate, although it does not appear to go much beyond 10%.

For comparison, we also conducted a simulation involving a small indirect effect size of 6 =
P21 =.3. In this simulation, the required sample sizes to achieve 80% power with direct effect
sizes of p; , = .3, .2, or .1 were about n = 80, 200, or 800, respectively, for both perfect reliability
and high reliability. For low reliability, the required sample sizes were about n = 110, 300, or
1000, respectively. We note that such estimates are probably much too optimistic for most
real-world situations, as it is rare for a single predictor to exert nearly all of its influence on the
outcome via the direct path, and independently of other possible covariates.

Discussion

To most social scientists, observed variables are essentially just stand-ins for theoretical con-
structs of interest. The former are only useful to the extent that they accurately measure the lat-
ter. Accordingly, it may seem natural to assume that any statistical inferences one can draw at
the observed variable level automatically generalize to the latent construct level as well. The
present results demonstrate that, for a very common class of incremental validity arguments,
such a strategy runs a high risk of failure. The scope of the problem is considerable: literally
hundreds of thousands of studies spanning numerous fields of science have historically relied
on measurement-level incremental validity arguments to support strong conclusions about the
relationships between theoretical constructs. The present findings inform and contribute to
this literature—and to the general practice of “controlling for” potential confounds using mul-
tiple regression—in a number of ways.

First, we show that the traditional approach of using multiple regression to support incre-
mental validity claims is associated with extremely high false positive rates under realistic
parameter regimes. Researchers relying on such arguments will thus often conclude that one
construct contributes incrementally to an outcome, or that two constructs are theoretically dis-
tinct, even when no such conclusion is warranted. Of course, this general problem is not novel,
and has been discussed in a number of literatures [8-10]—most extensively, under the heading
of “residual confounding” in epidemiology [3,5]. However, previous treatments have typically
focused on circumscribed aspects of the problem or applications to specific domains. Here we
have introduced a general formal framework that can be easily used to derive expected false
positive rates for any combination of reliabilities and effect sizes, expressed in terms of either
simple or partial correlations. As a complement, we also provide a web application that enables
researchers to obtain these quantities using a simple point-and-click interface (http://
jakewestfall.org/ivy/). Application of our framework to a wide range of realistic scenarios dem-
onstrates that key parameters interact with one another in complex, and sometimes counterin-
tuitive, ways. For example, we find that false positive rates typically increase with sample size,
and typically peak when reliability is moderate rather than when it is very low or very high. In
general, we find that the probability of spurious inference approaches 100% much more
quickly than one might imagine, and under realistic parameter regimes will typically be several
times the nominal rate of 5%.

Second, we demonstrate that the problem has a principled solution: inferences about the
validity of latent constructs should be supported by latent-variable statistical approaches that
can explicitly model measurement unreliability. Researchers in a position to measure con-
structs using multiple indicators can rely on well-established structural equation modeling
techniques to support construct-level inferences; however, we also show how even when only a
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single indicator is available, researchers can use an SEM approach to estimate what level of reli-
ability must be assumed in order to support the validity of one’s inferences ([50] p. 168), [51],
([52] p. 276)—providing important insights into the plausibility and/or boundary conditions
of posited relationships. A major strength of the latter approach is that it can be readily applied
to existing datasets, thus enabling researchers to re-evaluate previous incremental validity
claims with measurement unreliability taken into account.

Lastly, we address an important question that, to our knowledge, has not been previously
investigated in the literature: what kind of sample sizes are required to achieve adequate statis-
tical power to detect incremental contributions at the latent variable level? While the answer
will necessarily vary across contexts, we show that, under realistic conditions likely to apply
fairly widely, statistical power to establish incremental validity at the construct level is often
shockingly low. In particular, when the unique contribution of the construct of interest is rela-
tively small, a study can easily require tens of thousands of participants to establish that con-
struct’s incremental validity. Even when the effect is moderate to large, achieving adequate
power in the presence of moderately unreliable covariates will often require hundreds of partic-
ipants. Moreover, our analyses focused only on the case where a single covariate is included in
the model. The inclusion of additional imperfectly measured covariates—as is common in real-
world analyses—will generally make detection of incremental validity even more difficult.

Conclusion

Taken as a whole, our results demonstrate that drawing construct-level inferences about incre-
mental validity is considerably more difficult than most researchers recognize. We do not
think it is alarmist to suggest that many, and perhaps most, incremental validity claims put for-
ward in the social sciences to date have not been adequately supported by empirical evidence,
and run a high risk of spuriousness. By this we do not mean to suggest that such claims are
wrong, but simply that the modal analytical strategy of controlling for one or more covariates
in a multiple regression cannot provide adequate evidence for a construct-level incremental
validity claim under realistic conditions where variables are measured unreliably. Our hope is
that greater appreciation of the inferential dangers of confusing measures with constructs [21]
will lead researchers to adopt statistical approaches like SEM that provide appropriately cali-
brated evidence for incremental validity claims.

Supporting Information

S1 Appendix. Derivation of statistical properties of incremental validity. We derive the
probabilities of rejecting different combinations of regression coefficients as a function of (1)
the simple or partial correlations among the outcome and the latent predictors, (2) the reliabili-
ties, and (3) the
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