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The Wave Function

The Wave Function
Interpretation of the Double-Slit Experiment

Tonomura et al. (1989)

Electron double-slit

experiment

A single electron passes through either one
of the slits, A or B.

The accumulated pattern looks like wave
interference → superposition

The term wave function is assigned to the
probability amplitude with

P(x , y , z , t) ∝ |Ψ(x , y , z , t)|2

where P is the probability of finding the
particle at a position (x , y , z) at time t.

Ψ(x , y , z , t) is the so-called wave function.

Note that Ψ(x , y , z , t) can also be complex.
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The Free Particle

The Free Particle
The Wave Function of the Simplest System

Definition

A free particle is a point particle, which is under no potential. Within the
wave-particle duality, it can be seen as a de Broglie wave with a definite
wave length extending over the entire space.

The momentum of such a particle for a given wavenumber k = 2π/λ
is p = ℏk or in 3D k⃗ = ℏk⃗ .
Its energy is E = hν = ℏω.
To this particle, we assign a wave function

ψp(x , t) = Ae i(kx−ωt)

This function represents a delocalized state, meaning the probability
of finding the particle is equally distributed across all positions.

The momentum is well-defined, but the position is completely
uncertain (delocalized over all space).
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The Free Particle

The Free Particle
The Momentum Operator

Let us try to a mathematical operator (inspired by the classical wave
equation) to access the momentum from the wave function

These mathematical constructs will be called the momentum and
energy operators

p̂ = −iℏ
d

dx
⇒ p̂ψp(x , t) = ℏkψp(x , t) = pψp(x , t)

The three-dimensional equivalent is

p̂ = −iℏ∇

where ∇ is the gradient operator in Cartesian coordinates.

The components of the momentum operator are:

p̂ =

(
−iℏ

∂

∂x
,−iℏ

∂

∂y
,−iℏ

∂

∂z

)
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The Free Particle

The Free Particle
Fourier Transform: Superposition of Momentum States

A general wavefunction ψ(x) can be written as a superposition of
momentum eigenstates:

ψ(x) =
1√
2πℏ

∫ ∞

−∞
ψ̃(p)e ipx/ℏdp

where ψ̃(p) is the wavefunction in the momentum representation.

The function ψ̃(p) is the Fourier transform of ψ(x):

ψ̃(p) =
1√
2πℏ

∫ ∞

−∞
ψ(x)e−ipx/ℏdx

This allows us to decompose any wavefunction into momentum
eigenstates, linking the position and momentum representations.
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
First Postulate: The State of a System

Postulate

At each instant, the state of a physical system is represented by a wave
function Ψ(⃗r , t).

If the wave function is to be interpreted as a probability amplitude, it
must be true that: ∫

|Ψ(⃗r , t)|2dr⃗ = 1

This rule is called the normalization of the wave function.

The quantity
P (⃗r , t) = |Ψ(⃗r , t)|2

is interpreted to be the probability of the particle to be at position r⃗
at time t.
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
Aside: The Dirac Bracket Notation

Since we use a lot of integration in quantum mechanics, a convenient
shortcut is often used.
In this notation, the scalar product of two wave functions Ψ1(⃗r) and
Ψ2(vr) (drop time dependence for brevity) is denoted as

⟨Ψ1|Ψ2⟩ ≡
∫

Ψ∗
1(⃗r)Ψ2(⃗r)dr⃗

The two halves of the notation are called, respectively, the bra, and
the ket

⟨Ψ1| → bra

|Ψ2⟩ → ket

The bra and ket of a wave function are complex conjugates of one
another

⟨Ψ1|Ψ2⟩ = ⟨Ψ2|Ψ1⟩∗
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
Aside: The Dirac Bracket Notation

Other properties:

⟨cΨ1|Ψ2⟩ = c∗⟨Ψ1|Ψ2⟩
⟨Ψ|Ψ⟩ = 1

Two wave functions are said to be orthogonal if

⟨Ψ1|Ψ2⟩ = 0

The bra and ket can be used to represent wave functions in the space,
momentum and any other representation. This is why they are usually
refered to as abstract states of the system.
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
Second Postulate: The Superposition Principle

The Postulate

The states of a quantum system are linearly superposable.

The space of states is a vector space, allowing superposition:

|ψ⟩ = a1|ψ1⟩+ a2|ψ2⟩

where a1 and a2 are complex numbers.
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
Third Postulate: Observables and Operators

Postulate

With every measurable quantity (observable) of the system, there is
associated a linear operator.

An operator Â acts on a ket |ψ⟩ as:

Â|ψ⟩ → |ψ′⟩ = Â|ψ⟩

An operator is linear if

Â|c1Ψ1 + c2Ψ2⟩ = c1Â|Ψ1⟩+ c2Â|Ψ2⟩

The eigenstate |ψa⟩ of an operator Â is defined such that:

Â|ψa⟩ = a|ψa⟩

where a is an eigenvalue.
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
Third Postulate: Observables and Operators

For example, the momentum operator p̂ in the position representation
is given by:

p̂ = −iℏ
∂

∂x

and the position operator x̂ is simply:

x̂Ψ(x) = xΨ(x)
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
Fourth Postulate: Measurement and Eigenvalues

Postulate

The only possible result of a measurement of an observable A is one of the
eigenvalues of the corresponding operator Â.

The totality of the eigenvalues of an operator Â is called the
spectrum of Â: Â|ψn⟩ = an|ψn⟩.
Since the results of measurements are real numbers, the spectrum
must also be real.

⟨ψn|Âψn⟩ = an⟨ψn|ψn⟩
⟨Âψn|ψn⟩ = a∗n⟨ψn|ψn⟩

Since an must equal a∗n, Â must satisfy ⟨Âψn|ψn⟩ = ⟨ψn|Âψn⟩
Such operators are called Hermitian.
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
Fourth Postulate: Measurement and Eigenvalues

The Hermitian conjugate of an operator is defined via

⟨ϕ|Â†|ψ⟩ = ⟨ψ|Â†|ϕ⟩

A Hermitian operator then satisfies

Â† = Â

where Â† is the Hermitian adjoint (or conjugate transpose) of Â.

Example: The Hamiltonian operator Ĥ is Hermitian and represents
the total energy of the system.
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
Fourth Postulate: Measurement and Eigenvalues

When measuring an observable, the system collapses to an eigenstate
of the corresponding operator.

If Â is an operator with eigenfunctions ψn and eigenvalues an, then:

Âψn = anψn

The probability of obtaining the measurement value an is given by:

P(an) = |⟨ψn|Ψ⟩|2

where ⟨ψn|Ψ⟩ is the projection of the wavefunction Ψ onto the
eigenfunction ψn.

This concept is central to quantum mechanics, where each
measurement yields one of the eigenvalues of the corresponding
operator.
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
Fifth Postulate: The expectation value of an operator

Postulate

If a series of measurements is made of the observable A on an ensemble of
systems, described by the wave function Ψ, the expectation or average
value is

⟨Â⟩ = ⟨Ψ|Â|Ψ⟩
⟨Ψ|Ψ⟩

The probability of obtaining an eigenvalue an when measuring an
observable A is given by the square of the inner product of the state
|ψ⟩ with the eigenstate |an⟩:

P(an) = |⟨an|ψ⟩|2

After measurement, the system collapses into the eigenstate |an⟩.
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Postulates of Quantum Mechanics

Postulates of Quantum Mechanics
Sixth Postulate: Time Evolution of a System

Postulate

The system evolves in time according to the time-dependent Schrödinger
equation:

iℏ
d

dt
|ψ(t)⟩ = Ĥ|ψ(t)⟩

where Ĥ is the so-called Hamiltonian of the system.

The Hamiltonian operator is given by

Ĥ = T̂ + V̂

where T̂ = ℏ2
2m∇2 is the kinetic energy operator and V̂ is the

potential energy operator.
The eigenvalues of the Hamiltonian operator are the energy spectrum
of the system:

Ĥ|ψn⟩ = En|ψn⟩
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Heisenberg Uncertainty Principle and Commutators

Heisenberg Uncertainty Principle and Commutators
Motivation

Classical physics suggests that we can measure the position and
momentum of any object with unlimited precision.

In quantum mechanics, once, say, the momentum is measured, the
wave function collapses to a momentum eigenstate and the particle
then has equal probability of being at any point in space

This means that momentum and position cannot be measured
simultaneously.
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Heisenberg Uncertainty Principle and Commutators

Heisenberg Uncertainty Principle and Commutators
The Uncertainty Principle

The Heisenberg Uncertainty Principle states that certain pairs of
physical quantities, such as position and momentum, cannot both be
precisely measured at the same time.

For two operators Â and B̂, this principle is expressed as:

(∆A)2(∆B)2 ≥ −1

4
(⟨[A,B]⟩)2

where ∆A is the uncertainty in observable A and ∆B is the
uncertainty observable B.

This inequality defines a fundamental limit to the precision of
measurements in quantum mechanics.

This can be understood from the wave nature of particles: a wave
localized in space has a wide spread in momentum.

It also means that the order in which the momentum and position is
measured also matters → non-commutativity.
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Heisenberg Uncertainty Principle and Commutators

Heisenberg Uncertainty Principle and Commutators
Commutativity

The Commutator

For two operators Â and B̂, the commutator is defined as:
[Â, B̂] = ÂB̂ − B̂Â

The commutator is also an operator itself.
For position and momentum, we apply the commutator to a free
particle in one-dimension

[x̂ , p̂]Ce ikx = Cx

(
−iℏ

d

dx

)
e ikx − C

(
−iℏ

d

dx
(xe ikx)

)
= iℏCe ikx .

The commutator between x̂ and p̂ is then

[x̂ , p̂] = iℏ −→ ∆x∆p ≥ ℏ
2

Those operators whose commutators are zero are said to commute
and can be measured simultanously, e.g. T̂ and p̂
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Matrix Representation

Matrix Representation
Expanding a Wavefunction in a Basis

Consider a Hermitian operator with normalized eigenstates {ϕn} such
that

⟨ϕn|ϕn⟩ = 1

Now consider two separate eigentates with two unequal eigenvalues:

Â|ϕn⟩ = an|ϕn⟩ and Â|ϕm⟩ = am|ϕm⟩

Next, using the Hermiticity of Â, let us develop the expression

(an − am)⟨ϕn|ϕm⟩ = ⟨Âϕn|ϕm⟩ − ⟨ϕn|Âϕm⟩ = 0

Since an ̸= am, then it must be true that ⟨ϕn|ϕm⟩ = 0.

The two eigenstates are then said to be orthonormal:

⟨ϕn|ϕm⟩ = δnm =

{
0 n ̸= m

1 n = m
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Matrix Representation

Matrix Representation
Expanding a Wavefunction in a Basis

Using the basis introduced in the previous slide, let us write a general
wave function as

Ψ(x) =
∑
n

cnϕn(x)

Here, the coefficients cn are the projection of Ψ(x) onto the basis
functions:

cn = ⟨ϕn|Ψ⟩ =
∫
ϕ∗n(x)Ψ(x)dx

The choice of basis depends on the problem at hand. Common bases
include:

Energy eigenstates (for the Hamiltonian)
Position or momentum eigenstates
Harmonic oscillator states, etc.
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Matrix Representation

Matrix Representation
Operators in a Basis Representation

In the basis {ϕn(x)}, operators can be represented by matrices.

Consider an operator Â acting on the wavefunction Ψ(x). The action
of Â on a basis function is given by:

Âϕn(x) =
∑
m

Amnϕm(x)

where Amn are the matrix elements of Â in this basis:

Amn = ⟨ϕm|Â|ϕn⟩

The operator Â, therefore, becomes a matrix A with elements Amn in
this basis.

The matrix representation simplifies the computation of observables,
eigenvalues, and eigenstates.
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Matrix Representation

Matrix Representation
Vector Representation of the Wavefunction

Once a basis is chosen, the wavefunction Ψ(x) is represented by a
vector of expansion coefficients:

Ψ(x) =
∑
n

cnϕn(x) → |Ψ⟩ =

c1
c2
...


Similarly, an operator Â is represented by a matrix A:

Â|Ψ⟩ = Ac

For example, applying Â to |Ψ⟩ results in a new wavefunction:

A

c1
c2
...

 =


∑

j A1jcj∑
j A2jcj
...


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