26 BCAMR B, lbeo) Vienno « Sincich ISTA C (LINTZ) CERNÉ Moodle Brezis Topological vector spoces Det. A vector poce X on a field K= TR, C us colled a * T.V.S

Lemme Given a TVS X on K on V20 e neigh. of 0 there exists a bolonced neight of O V with V S V, $P_{f} | (\times X \longrightarrow X)$ is continuous $in(0,0) \Rightarrow 7 570$ a Vneigh. of om Xst. il $|\lambda| \leq S$ and $\times \in V$ we have $\lambda x \in \mathcal{V}$. Set $\sqrt{-2\lambda x}$: $|\lambda| \leq S$ or $x \in V[$ VD(SV)-is æneigh. of o in X It is easy to see that V is bolonced $(X \times G \vee X \in V)$

 $c \lambda x \qquad |c| \leq 1$ $[c \lambda] = |\lambda| \leq c$ \square Det Given two TVS X ond Y we denote $\mathcal{L}(X, Y)$ the set of Flineor motor L(X) $X \longrightarrow Y$ which one Y = Xcontinuous We denote by $X' = X = \mathcal{L}(X, K)$ the proce of functionals, Remark Suppose that X is a T.V.S on I and v; X -> TR Then we condefine

 $a) T \in \chi'$ b) kert is closed c) kert is not dense d) I (Dreigh. of de ot X s.t. TV EK is bounded $P_{\perp} a \Rightarrow b^{*} \Rightarrow c^{1}$ c) _> d) kert not dense => × ond a neigh. Of X disjount from bert $(x + [V]) \cap kut = p$ V neigh of D V boloned $(\lambda V \leq V)$ $[\lambda] \leq 1$ TUEK y bolonced in K · le (2) < 1 メイレーインレミイレ

 $\left\lceil \left\lceil \right\rangle \right\rceil < \varepsilon$ $\forall x \in V_{\varepsilon}$ Def ATVS X is metrizilol if there is metric on X which induces the topology of X. A metric d on X is invoront by tronglotion if d(x+z,y+z) = d(x,y)red complex. out $4x, y, z \in X$ Rudin Funct onol. Theorem A topslogical VS X is metryskele and admits a translation invorient metric if and only it every point of X admits a concertable bohy of mergh. J