Our aim is to numerically solve Newton’s equations of motion

m;a; = Fi(r;) = =0V (r)/0r;. (1)

Given the impossibility for a computer to deal with the continuum, it is
necessary to discretize the time axis; we will take equal intervals of width ¢,
which will therefore be the time step of our algorithm. The time values we
consider are therefore those, assuming we start at ¢ = 0, corresponding to
t; = 10,1 € {0,1,...,n}. The simulated time, therefore, it will be 7 = nd.
It is therefore obvious that it is in our interest to choose a § value as large
as possible compatibly with an acceptable accuracy of the integration of the
equation, in order to minimize the number of steps n with 7 being equal. For
simplicity we will consider here a system with only one degree of freedom,
and we will call the current position z, the one at the next step z,, etc.
Likewise Fy will be the force at the current time and so on for all quantities.

If we assume conservative forces, we have in principle a system with con-
stant energy (microcanonical ensemble). The numerical solution obviously
may not respect, given the inevitable approximations and truncations, this
criterion. From the point of view of calculating equilibrium properties, how-
ever, a moderate violation (within a few percentage points) of this condition
can be accepted; remember that in any case the simulated system is with ev-
ery probability chaotic and we cannot hope to follow its evolution perfectly.
The really important condition is the absence of a secular variation (drift)
of the energy, given that this would lead to a simulation not belonging to a
well-defined ensemble and making it impossible to locate with certainty the
position of the simulated system in the thermodynamic phase space.

As is known from Theoretical Mechanics, the conservation of energy is
strictly linked to the absence of a dependence of the Lagrangian/Hamiltonian
of the system from time, therefore to the property of temporal reversibility.
It is also linked (Liouville’s theorem) to the conservation of the volume
of representative points of the system in phase space. It can therefore be
thought that the algorithms for solving the equations of motion will have to
belong to a category (symplectic algorithms) that respects these important
properties. We can therefore imagine that an algorithm apparently adequate
like Euler’s

Ty = o+ ved + Fyd?/2m
vy = vy + Fod/m,



obtained by developing the solutions of the equations of motion in series at
the lowest possible order in § (in this case in Hamiltonian form) doesn’t work
well. Certainly the solutions tend towards the correct ones for § — 0, with
error O(6%), but the temporal non-reversibility of the resulting algorithm
causes an energy drift that is unacceptable unless 0 is chosen to be extremely
small. In fact the algorithm is “unbalanced” towards the future; that is, the
derivatives are not centered at the current instant. This makes the algorithm
such that reversing the sign of time (6 — —J) does not make the system to
retrace backwards exactly the same points, and therefore violates the time
reversal property.

However, we can easily create an algorithm that respects the time
inversion condition exactly. Writing the second derivative of x with respect
to t centered, Newton’s equation becomes, once discretized:

Fo/m = [(xy —20)/6 — (vo —2-) /0] /6 = (24 — 2x0 + 2-) /67,
that is

Ty =210 — x_ + Fyd*/m, (2)

which, as it was obtained, is invariant under time inversion. To convince
yourself of this, you maychange the sign of ¢ and invert x, and x_. This
algorithm is known as Verlet algorithm. It can also be achieved by developing
in series x, “forward” and x_ “backward”:

Ty = a9+ 06+ agd?/2+ x/0t|y/5° /6 + O(6*)
r_ = x0— 10 + agd?/2 — Px/0t3|y /5% /6 + O(6*)

and adding them. The result will evidently be invariant under time inversion.
The odd terms are all canceled and we remain with the algorithm 2. We can
also see how, in addition to the time reversal property, the order of the
algorithm is one higher than Euler, since the neglected terms are O(6*) and
not O(5%).

This algorithm has many good properties. It is time-reversible, simple to
implement, and requires neither more memory nor more computation time
than the strict necessary. It will have been observed, however, that along the
way the velocity has disappeared and is now implicit and does not appear
among the variables. This can be inconvenient, given that many things,



starting from kinetic energy, depend on velocities, and as we will see there
the ability to manipulate velocities easily is crucial for various applications.
We therefore look for an algorithm that explicitly includes v. Choosing to
symmetrically discretize the equations in Hamiltonian form:

r = v
mo = F

we can obtain two equations like the following:

(T4 —20)0 = wvi)9
(U1/2—U—1/2)5 = Fo/m

where the first is centered around the point ¢ + §/2, while 1/2 and —1/2
indicate points halfway between ¢t and ¢ + 0 and t — § respectively, and the
second is centered around ¢. That is, the velocities are calculated at time
points staggered by §/2 with respect to to the coordinates. The resulting
algorithm is

Vi = U_l/g—i-Fo/m(S
Ty = 5L'0+U1/2(5 (3)

and is called leapfrog, a term which in English indicates the “game of
leapfrog”, because positions and speed in a certain sense they “jump over”
each other by taking turns. Note that the memory usage is the same as
Verlet’s algorithm, since it is necessary to remember the velocities from one
step to the other but it is no longer necessary to remember the previous
positions.

The fact of having two distinct temporal discretizations leads to some
inconveniences. For example, potential and kinetic energies are calculated at
different instants and this leads to an apparent non-conservation of energy,
which, however, is not serious, and if desired can be corrected by calculating
at each instant vy = (vi/2 + v_1)2)/2. However, it is possible to develop
an algorithm (velocity Verlet) that explicitly uses the velocities at the same
moments as the positions:

Ty = o+ s+ Fyd?/2m
vo + (Fy + Fp)d/2m. (4)

Uy



The second equation is evidently time-symmetric with respect to ¢ + /2.
It is not immediately obvious that the entire algorithm is, since the first of
the equations 4 is identical to the unsatisfactory one of Euler. However, it is
possible to show that the algorithm is equivalent to the original Verlet. In
fact, let’s write the 2 equation for the next step and insert the second of the
4:

Tyy =2w, —xo+ Fr6%/m =21, — 29 + FL6%/2m — Fyd?/2m + (vy — 1)0
Tyop —x4 —vp0 — Fr6%/2m = xy — 29 — v90 — Fyd?/2m.

But if one also satisfies the first of the equation 4 the last equation written
will be identically satisfied, so the algorithms are equivalent.

Note that the second of the 4 involves the use of forces both at the current
instant and at the next instant. This doesn’t mean that the calculation
of the forces has doubled, which would be an unacceptable computational
burden given that this calculation is the most burdensome part of the entire
algorithm: actually the force F{ is nothing other than the force F, of the
previous step and it will therefore be sufficient to keep it in memory. But
we have to update the velocities “piecewise”: first Fyd/2m is calculated by
assigning it to vy, then the positions are updated, finally F, is calculated
and the term F,¢/2m is added to vy, obtaining the final values.

It has been said that the time step 9 is the result of a compromise between
the need to accurately integrate the 1 equation, which requires in principle
0 — 0, and that of limiting the computational cost, which requires long
0. Symplectic algorithms are quite robust in this respect: a drift in energy
usually appears when fluctuations around an equilibrium value, which in
themselves are harmless as said at the beginning, reach substantial values,
sometimes 10% or even more. The optimal value must be obtained through
experimentation on each specific system, but we can generally consider that
the time step will have to be much shorter than the typical oscillation times
of the system. One can say that, if w is the maximum frequency found
in the system, then § << 1/w, typically a few percentage points of the
oscillation time. Note that these frequencies change depending on the state
of the system, as a very hot or very compressed system will have closer
approaches between atoms than a colder or less dense one, and this will lead
to forces that vary rapidly. We will therefore need to check the adequacy of
0 not only to every change of system, but also to every significant change of
thermodynamic coordinates.



