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Measurements. Since we are working within the quantum formalism, the possible outcomes of a (ideal) measure-
ment of an observable A correspond to the eigenvalues an of the corresponding self-adjoint operator Â, whose
spectrum is assumed to be discrete for simplicity. The outcomes are randomly distributed according to the Born
rule. In the language of the density matrix, these statements translate as follows. Given the state

⇢̂ =
X

k

pk | ki h k| (1.29)

one has that the probability of having an as an outcome of the measurement is given by

P[an] =
X

k

pk| han| ki |2 =
X

k

pk han| ki h k|ani = han|⇢̂|ani , (1.30)

where the first equality encodes the Born rule (| han| ki |2) with an average over our ignorance about the state of
the system (the sum over k with weights pk). Let us consider the projection operator P̂n = |ani han| associated
to the eigenvalue an. It is quite simple to see that an equivalent way of writing Eq. (1.30) is

P[an] = Tr
h
P̂n⇢̂

i
. (1.31)

In a similar way, one can show that the expectation value of an observable is

hÂi = Tr
h
Â⇢̂
i
. (1.32)

State collapse. The density matrix allows to describe two di↵erent types of measurements, with associated state
collapse. The first type is called selective measurement, and corresponds to that usually described in textbooks.
Assuming that the outcome of the measurements of the observable Â is an, then the state collapses to the
corresponding eigenstate, whatever the initial state was. In the density matrix formalism, this corresponds to:

⇢̂before ) ⇢̂after = |ani han| , (1.33)

which can be rewritten as

⇢̂before ) ⇢̂after =
P̂n⇢̂P̂n

Tr
h
P̂n⇢̂

i . (1.34)

Note that the e↵ect of the collapse is nonlinear, and it cannot be deduced from the Schrödinger equation, which
is linear. Notably, an initially mixed state becomes pure, indeed one has that (⇢̂after)2 = ⇢̂after. This property
of the collapse is well known, and it is important as it gives the means to prepare a system in a given state.

The other possibility is a non-selective measurement, where all outcomes are retained and distributed ac-
cording to the Born rule. Correspondingly, one has

⇢̂before ) ⇢̂after =
X

n

pn
P̂n⇢̂P̂n

Tr
h
P̂n⇢̂

i , (1.35)

with pn = P[an] = Tr
h
P̂n⇢̂

i
. Note that, conversely to the previous case, this operation is linear since the above

equation can be trivially expressed as

⇢̂before ) ⇢̂after =
X

n

P̂n⇢̂P̂n. (1.36)

Finally, we note that a non-selective measurement can turn an initially pure state into a statistical mixture.
Indeed, one has that
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n
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= 1.

(1.37)

To summarise, selective measurements are nonlinear operations which generate pure states, while non-selective
measurements are linear operations which generate statistical mixtures.

Example 1.6
Consider a two dimensional system whose Hamiltonian is Ĥ = �̂z, where we set ~ = 1 and in the compu-
tational basis { | 0i, | 1i } is represented by

H = �z =

✓
1 0
0 �1

◆
.

In the Bloch representation with ⇢̂ = 1
2 (1̂ + r · �̂), the von Neumann-Liouville equation d

dt ⇢̂ = �i
h
Ĥ, ⇢̂

i

reads
ṙ · �̂

2
= � i

2

⇥
�̂z, 1̂

⇤
� i

2

X

k

rk [�̂z, �̂k] .

Given that
⇥
�̂z, 1̂

⇤
= 0 and [�̂z, �̂k] = 2i

P
j ✏zkj �̂j, and that the set of matrices { 1̂, �̂x, �̂y, �̂z } is a basis

of space of 2 ⇥ 2 matrices, we obtain three equations for the coe�cients of the Bloch vector

ṙx = �2ry, ṙy = 2rx, ṙz = 0,

whose solution is
rx = cos 2t, ry = sin 2t, rz = const.

The Hamiltonian �̂z makes the Bloch vector rotate around the z axis of the Bloch sphere, both for pure
states and for statistical mixtures. Similarly, �̂x makes the Bloch vector rotate around the x axis and �̂y
around the y axis.



Chapter 2

The Reduced Density Matrix

We introduce the concept of reduced density matrix in the context of open quantum systems. We describe the
general structure for operations on density matrices, which are distilled in the Kraus-Stinespring theorem. We
show possible applications in the framework of two-level systems.

2.1 Open Quantum Systems, Partial Trace and the Reduced Density Matrix

One of the most important applications of the density matrix formalism is the description of the dynamics of a
subsystem of a larger composite system, where one considers the interaction between the former and the later.
This is called an open quantum system.

More formally, consider two quantum systems A and B, with associated Hilbert spaces HA and HB, whose

dimensions are respectively N and M . Let { | �An i }Nn=1 be a basis of HA and { | �Bmi }Mm=1 a basis of HB. The
Hilbert space associated to the composite system AB is the tensor product space HA ⌦ HB of dimension N ·M ,
and a natural basis is the tensor product basis { | �AB

nmi = | �An i ⌦ | �Bmi }n,m.
The statistical operator describing the state of the composite system has the general form

⇢̂AB =
X

nmk`

⇢k`nm |�AB
nmi h�AB

k` | , (2.1)

and it can be represented by a (N · M) ⇥ (N · M) square density matrix with matrix elements ⇢k`nm.
Suppose — and this is the crucial point in what follows — that we are interested only in the properties of

subsystem A. For example, this can be motivated by the fact that one cannot control, one does not have direct
access to, or one is not interested in the properties of the subsystem B. Then, the observable quantities we are
interested in have the following form

Â ⌦ 1̂B, (2.2)

where Â is an Hermitian operator pertaining to system A, and 1̂B is the identity for system B. The expectation
value is:

hÂi = hÂ ⌦ 1̂Bi = Tr
h
(Â ⌦ 1̂B)⇢̂AB

i
=
X

n

h�An |Â
"
X

m

h�Bm|⇢̂AB|�Bmi
#

|�An i , (2.3)

where, in the last equality, we explicitly used the form in Eq. (2.2). The above relation can be written as:

hÂi = Tr(A)

h
Â ⇢̂(A)

i
, (2.4)

where we defined the reduced density matrix

13
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⇢̂(A) = Tr(B) [⇢̂AB] =
X

m

h�Bm|⇢̂AB|�Bmi , (2.5)

and Tr(B) [·] denotes the partial trace with respect to system B.
In more formal terms, given the density matrix ⇢̂AB acting on HAB as in Eq. (2.1), the partial trace with

respect to B is the map defined as

Tr(B) [·] : ⇢̂AB =
X

nmk`

⇢k`nm |�AB
nmi h�AB

k` | 7! ⇢̂(A) =
X

nk

X

m

⇢kmnm |�An i h�Ak | . (2.6)

Contrary to the usual trace, which maps a square matrix into a number, the partial trace maps a density matrix
of higher dimensionality into a density matrix of lower dimensionality. In our case, a density matrix of dimension
N · M , relative to the system AB, into a density matrix of dimension N , relative to system A alone. It can be
easily shown that the above definition does not depend on the choice of basis { | �AB

nmi = | �An i ⌦ | �Bmi }n,m or

{ | �Bmi }m.
In order for ⇢̂(A) in Eq. (2.6) to represent a valid (reduced) density matrix, it should be a linear, positive

operator with trace equal to 1. Linearity is obvious from the definition. Positivity is easily checked. Given an
arbitrary state | Ai 2 HA:

h A|⇢̂(A)| Ai = h A| Tr(B) [⇢̂AB] | Ai ,

=
X

m

h A| h�Bm|⇢̂AB|�Bmi | Ai . (2.7)

Now, the state |�Bmi | Ai 2 HA ⌦ HB, and since ⇢̂AB is a positive operator, then h A|⇢̂(A)| Ai � 0. The trace
of ⇢̂(A) is:

Tr(A)

h
⇢̂(A)

i
=
X

n

h�An |⇢̂(A)|�An i =
X

n

h�An | Tr(B) [⇢̂AB] |�An i ,

=
X

nm

h�An | h�Bm|⇢̂AB|�Bmi |�An i = Tr [⇢̂AB] = 1.
(2.8)

This justifies the term reduced density matrix for ⇢̂(A).

Example 2.1
Let us consider a factorized state for A and B:

⇢̂AB = ⇢̂A ⌦ ⇢̂B.

Then, the partial trace with respect to B gives:

⇢̂(A) = Tr(B) [⇢̂AB] = Tr(B) [⇢̂A ⌦ ⇢̂B] = ⇢̂A · Tr(B) [⇢̂B] = ⇢̂A.

As it will become clearer in what follows, the reduced density matrix is meant to encode the information
about system A, when system B is not accessible. The previous example confirms this: when A and B are
uncorrelated, i.e. their states are factorized, the reduced density matrix ⇢̂(A) returns the density matrix ⇢̂A of
system A alone. A more interesting case is when A and B are entangled, as the following example shows.

Example 2.2
Let us consider two qubits A and B, in the following entangled state:

| +i =
|0Ai |0Bi + |1Ai |1Bip

2
.

The associated density matrix ⇢̂AB is
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⇢̂AB = | +i h +| ,

=
1

2
[|0Ai |0Bi h0A| h0B| + |0Ai |0Bi h1A| h1B| + |1Ai |1Bi h0A| h0B| + |1Ai |1Bi h1A| h1B|] .

Then, the partial trace over qubit B returns the following reduced density matrix for qubit A:

⇢̂(A) = Tr(B) [⇢̂AB] = h0B|⇢̂AB|0Bi + h1B|⇢̂AB|1Bi ,

=
1

2
[|0Ai h0A| + |1Ai h1A|] =

1

2
1̂A,

where all the information about the initial composite state is lost.

In the example above, the two qubits A and B are in a pure state ⇢̂AB, while the reduced density matrix ⇢̂(A) of
qubit A represents a statistical mixture (the same is true for the reduced density matrix ⇢̂(B) of qubit B). This
shows that the partial trace can transform pure states into statistical mixtures, a property with far reaching
consequences, which in many respects is the essence of the theory of open quantum systems.

Equation (2.4) states a very important property: when computing physical predictions regarding subsystem
A alone, neglecting B, it is not necessary to consider the full density matrix ⇢̂AB. It is su�cient to consider the
smaller reduced density matrix ⇢̂(A). In other words, ⇢̂(A) contains all physical information about subsystem A,
when we are not interested in the properties of subsystem B, which is expressed by the mathematical fact that
the observables have the form Â ⌦ 1̂B. It is also important to remark that what said above holds true only if
observations are limited to the system A alone. This is not the only possibility. It is always possible, at least in
principle, to consider both systems and measure correlations among them. To do this, the full density matrix
⇢̂AB is needed. Indeed, the physical predictions cannot be derived only from the two reduced density matrices
⇢̂(A) and ⇢̂(B).

We conclude the section by showing that the partial trace is the only way of defining a physically appropriate
reduced density matrix. The result is contained in the following theorem.

Theorem 2.1. Consider two quantum systems A and B, with associated Hilbert spaces HA and HB respectively,
whose dimensions are N and M . Consider a generic map between the space of density matrices of the composite
systems AB, and the space of density matrices of the subsystem A:

⇢̂AB ! F (⇢̂AB), (2.9)

such that, for any observable Â of A:

Tr(A)

h
Â F (⇢̂AB)

i
= Tr

h
(Â ⌦ 1̂B)⇢̂AB

i
. (2.10)

Then, the map F (⇢̂AB) is unique and corresponds to the partial trace defined in Eq. (2.5), i.e. F (⇢̂AB) = ⇢̂(A),
with ⇢̂(A) being the reduced density matrix.

Proof. The space of the bounded Hermitian operators is a Hilbert-Schmidt space B(H) associated to the Hilbert
space H, where B stands for bounded operators space. B(H) is defined as

B(H) = H ⌦ H
⇤,

where H
⇤ is the dual Hilbert space associated to H. In B(H) the inner product is defined as

hX,Y i = Tr [XY ] ,

Let {Mn }n be a basis of B(HA), so we can decompose F (⇢̂AB) with respect to this basis:

F (⇢̂AB) =
X

n

M̂n Tr(A)

h
M̂nF (⇢̂AB)

i
. (2.11)

This is equivalent to the decomposition of a state vector | i 2 H on a basis { | �ni }n of H:
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| i =
X

n

|�ni h�n| i . (2.12)

Then, Eq. (2.10) sets Tr(A)

h
M̂nF (⇢̂AB)

i
= Tr

h
(M̂n ⌦ 1̂B)⇢̂AB

i
and we can write:

F (⇢̂AB) =
X

n

M̂n Tr
h
(M̂n ⌦ 1̂B)⇢̂AB

i
. (2.13)

Therefore, given the basis { M̂n }n, the coe�cients Tr
h
(M̂n ⌦ 1̂B)⇢̂AB

i
are uniquely identified by ⇢̂AB, which

in turn uniquely identify the map F (⇢̂AB). Clearly, the mapping is independent from the chosen basis. By
construction, Eq. (2.10) is satisfied for any operator Â. We have proved that the map F (⇢̂AB) satisfying Eq. (2.10)
is unique. The partial trace defined in Eq. (2.5) satisfies Eq. (2.10), and therefore it is the only map with this
property.
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