
Insertion and Merge Sort

Chapters 2.1, 2.3.1 of Cormen’s book

Giulia Bernardini

giulia.bernardini@units.it

Algorithmic Design a.y. 2024/2025

mailto:giulia.bernardini@units.it

Why Sorting?
• Endless obvious applications

• Many problems become easy when the input is sorted (e.g.,
finding the median of a set of items, finding the location of a
specific item in the set)

• Not-so-obvious applications: e.g., data compression

Insertion Sort

Quiz Time
Please go to www.wooclap.com, use the code

BERNARDINI02 and answer the question (it is anonymous
unless you decide to use your name). You do not need to

create an account!

Insertion Sort

 comparisons and swapsΘ(n2)

Merge Sort
It is a divide and conquer algorithm.

Input: an array A and two indices that determine the
subarray to be sorted.

Merge-sort recursively calls itself on smaller and smaller
subarrays, until they are of size 1.

Then it merges the solutions to the smaller subarrays until the
solution to the whole A is obtained.

p ≤ q
A[p…q]

Merge Sort

Copy the two portions of A to be
merged into two new arrays L and R

Two fingers merge algorithm

Merge Sort: Analysis
The time complexity of Merge Sort can be written as

 which is a recurrence equation.
T(n) = c1 + cn + 2T (n
2)

T(n) = Θ(n log n)

1 + log n

Divide and Conquer Technique
Divide and conquer is a recursive algorithm design technique.

The approach is to break the problem into subproblems that are
similar to the original problem but smaller in size, solve the
subproblems recursively calling the algorithm itself, and then
combine these solutions to solve the original problem.

Divide and conquer algorithms have three main steps:

• Divide

• Conquer

• Combine

Insertion vs Merge Sort
Difference between and time.

To sort numbers on a machine that executes
instructions per second with Insertion Sort takes roughly

 seconds, which is more than 100 days.

To sort the same numbers with Merge Sort takes roughly

 seconds.

Implemented in Python, I.S. can take about microseconds,
while M.S. can take about microseconds.

Θ(n2) Θ(n log n)

n = 107 107

(107)2

107
= 107

107

107 log 107

107
≤ 28

0.2n2

2.2n log n

Insertion vs Merge Sort
Insertion Sort sorts A in place: it rearranges the numbers within A,
with only a constant number of them stored outside the
array at any time.

This is not the case for Merge Sort, which makes copies of parts
of A into new arrays L and R. Merge Sort needs auxiliary
space to store L and R, so it is not in place.

Since the constants for Insertion Sort are very small, it
outperforms Merge Sort on short arrays.

If you are sure you will sort only small arrays, using Insertion Sort
is a good idea; otherwise, Merge Sort or other sorting algorithms
we will see are much better suited.

Θ(1)

Θ(n)

Compare Sorting Algorithms
https://visualgo.net/en/sorting

Play with it!

https://visualgo.net/en/sorting

Heaps and Heapsort

Chapter 6 of Cormen’s book

Giulia Bernardini

giulia.bernardini@units.it

Algorithmic Design a.y. 2024/2025

mailto:giulia.bernardini@units.it

Heaps
Heaps are data structures that model priority queues: sets of
elements each associated with a key (their priority). Desired
operations on a priority queue are:

• Pick the element with the max priority (key)

• Pick the element with the min priority

• Insert elements

• Delete elements

• Change the priorities of the elements

A heap is a visualization of an array as a nearly-complete binary
tree.

Max Heaps
In a heap we have:

• Index 1 is the root

• parent(i)=i/2

• left(i)=2i

• right(i)=2i+1

Max heaps are heaps with the additional property that the key of
each node is than the keys of its children.≥

Quiz Time
Please go to www.wooclap.com, use the code

BERNARDINI02 and answer the question (it is anonymous
unless you decide to use your name). You do not need to

create an account!

Building Max Heaps

Building Max Heaps

Complexity of max_heapify: (length of a root-to-leaf path)O(log n)

Building Max Heaps

Building Max Heaps

Straightforward analysis: time

Refined analysis with power series: time

O(n log n)

O(n)

Heapsort

Time complexity: because we call max_heapify
times.

https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

O(n log n) n

https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

Quiz Time
Please go to www.wooclap.com, use the code

BERNARDINI02 and answer the question (it is anonymous
unless you decide to use your name). You do not need to

create an account!

