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Chapter 4

Propagation of light in a
resonant medium

We have now developed a formalism to describe coherent and incoherent
interactions between atoms and light. These techniques will prove useful
in understanding how a resonant light beam propagates through an atomic
cloud. In particular, we have previously derived how the applied field induces
coherences and transitions in the atomic system; if the system is to be self-
consistent, we must also consider the e↵ect of the induced atomic dipole
back on the field.

An atom influences the applied field through its dipole moment

hd̂i = µ⇢21 + µ⇤⇢12. (4.1)

A single atom has a very weak e↵ect on a classical field, but a large ensemble
of atoms can drastically a↵ect light propagation, so we might seek to identify
a macroscopic polarization associated with N atoms in a volume V by

P =
N

V
(µ⇢21 + µ⇤⇢12) , (4.2)

and solve for the density matrix components using the single-atom optical
Bloch equations. However, a large ensemble of atoms may only be treated
using our single-atom formalism if the atoms evolve independently. The as-
sumption of independent atoms is valid provided that

(1) The atoms do not interact strongly on the timescales of the processes
we wish to describe.

(2) Each atom is damped by its own reservoir. More quantitatively, the
atoms must be far enough apart |ri � rj | > � that we may neglect interfer-
ence from two atoms interacting with the same mode of the reservoir.
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(3) The applied field is classical.
Mathematically, atoms comprising an atomic ensemble are independent when
the ensemble density matrix may be factorized into a direct product of in-
dividual atomic density matrices,

⇢̂ensemble =
NY

j=1

⇢̂(1) ⌦ . . .⌦ ⇢̂(N). (4.3)

Since our fields may vary in space as well as time, it is convenient to
define a macroscopic polarization,

P (ri) =
Ni

Vi

X

rj2Vi

(µ⇢21(rj) + µ⇤⇢12(rj)) , (4.4)

which depends on the total dipole moment of the set of Ni atoms at positions
{rj} within a small volume Vi centered at position ri. Using the optical
Bloch equations, we can calculate the polarization for a given field; self-
consistency requires that this polarization then act as a source term in the
Maxwell equations governing light propagation through the atomic cloud:

r⇥E = �@B

@t
(4.5)

r⇥B =
1

c2
@

@t

✓
E+

1

✏0
P

◆
. (4.6)

In principle, we could now self-consistently calculate the evolution of the
atomic medium and applied light field. In practice, we will typically deal
with nearly monochromatic light fields, for which a considerable simplifica-
tion can be obtained by using the slowly-varying envelope approximation.

4.1 The slowly-varying envelope approximation

We can rewrite the Maxwell equations (in the absence of unbound charges
and currents) as a wave equation for E: 1

r2E� 1

c2
@2E

@t2
=

1

✏0c2
@2P

@t2
. (4.10)

1
Using r⇥ (r⇥A) = r (r ·A)�r2A and the curl of Eq. (4.5) we get

r⇥ (r⇥E) = r (r · E)�r2E (4.7)

= � 1

c2

@
2

@t2

✓
E+

1

✏0
P

◆
. (4.8)
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The wave equation is second order in time and space, but application
of the slowly varying envelope approximation can reduce it to first order.
An electric field which is nearly monochromatic can be parameterized by an
envelope function and its central frequency ⌫̄,

E(r, t) = E(r, t)eik̄z�i⌫̄t + c.c., (4.11)

where E varies slowly in z and t compared to the optical frequency ⌫̄ and
wavevector k̄ = ⌫̄/c. We also introduce a slowly varying polarization ampli-
tude,

P(r, t) = P(r, t)eik̄z�i⌫̄t + c.c. (4.12)

Substituting these expressions into Eq. (4.10) and keeping only the lowest
order derivatives of the envelopes, we find the evolution equation for the
slowly varying amplitudes,

1

2ik̄
r2

?E +
@E
@z

+
1

c

@E
@t

=
ik̄

2✏0
P (4.13)

The derivation of Eq. (4.13) governing the slowly varying amplitudes is
straightforward. Using the derivatives of the electric field and polarization:

r2E =

✓
r2E + 2ik̄

@

@z
E � k̄2E

◆
eik̄z�i⌫̄t + c.c. (4.14)

@2

@t2
E =

✓
@2

@t2
E � 2i⌫̄

@

@t
E � ⌫̄2E

◆
eik̄z�i⌫̄t + c.c. (4.15)

@2

@t2
P =

✓
@2

@t2
P � 2i⌫̄

@

@t
P � ⌫̄2P

◆
eik̄z�i⌫̄t + c.c. (4.16)

we substitute into the wave equation to find

r2E + 2ik̄
@

@z
E � k̄2E � 1

c2

✓
@2

@t2
E � 2i⌫̄

@

@t
E � ⌫̄2E

◆
= (4.17)

1

✏0c2

✓
@2

@t2
P � 2i⌫̄

@

@t
P � ⌫̄2P

◆
. (4.18)

In the absence of unbound charges, r ·E = 0, so we obtain the wave equation

r2E� 1

c2

@
2

@t2
E =

1

✏0c
2

@
2

@t2
P. (4.9)
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Taking ⌫̄ = ck̄, and noting that in the slowly varying envelope approximation

|⌫̄P| >> | @
@t

P| (4.19)

|⌫̄E| >> | @
@t

E| (4.20)

|k̄E| >> | @
@z

E|, (4.21)

(4.22)

the relevant terms reduce to

r2
?E + 2ik̄

@

@z
E +

1

c2
2i⌫̄

@

@t
E = � 1

✏0c2
⌫̄2P, (4.23)

or
1

2ik̄
r2

?E +
@

@z
E +

1

c

@

@t
E =

ik̄

2✏0
P. (4.24)

Two properties of this equation should be noted:
(1) In the first term, r2

? = @2

@x2 + @2

@y2 leads to transverse e↵ects such as
focussing or di↵raction which cannot in general be neglected. However, for a
plane wave there is no transverse spatial variation so the first term vanishes
and we obtain

@

@z
E +

1

c

@

@t
E =

ik̄

2✏0
P. (4.25)

(2) The slowly varying polarization P is proportional to the positive-
frequency component of the dipole operator in the rotating frame. For
example, a two level atom leads to a polarization P = (N/V )µ⇢21(z)e�ik̄z.
(Note that ⇢21(z) itself is driven by the local electric field, which contains a
fast phase term eik̄z so that P is in fact slowly varying in space.)

Generalizations of the SVEA

Our derivation of the slowly varying envelope approximation can be gener-
alized to include multiple optical frequencies. To illustrate this idea, we will
consider the example of atomic interactions with an optical frequency comb.
This periodic train of short optical pulses can be represented in the Fourier
domain by a comb of harmonics, so that the electric field may be written

E =
X

n

En(z, t)einkz�i⌫nt. (4.26)

The spacing between harmonics ⌫n+1 � ⌫n determines the repetition rate of
the pulses, while the bandwidth occupied by the set of harmonics determines
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the duration of each pulse. Provided that each harmonic has an envelope
En(z, t) which varies slowly in space and time, we can use an extension of
the SVEA. Defining the polarization harmonics by

P =
X

n

Pn(z, t)e
inkz�i⌫nt, (4.27)

the propagation equation becomes a set of equations for each harmonic com-
ponent

1

2ik̄
r2

?En +
@

@z
En +

1

c

@

@t
En =

ik̄

2✏0
Pn. (4.28)

This treatment applies to arbitrarily short pulses, since there is no restriction
on the number of harmonics included. Note, however, that in general the
atomic response will act to couple di↵erent harmonics, i.e. Pn will depend
on all components En0 , so the coupled Maxwell-Bloch equations may be quite
complicated to solve.

4.2 Linear optical propagation

The simplest possible case of light propagation in a resonant field consists
of an applied field su�ciently weak that the atoms only respond to it lin-
early. We found earlier that when the applied field is weak, perturbation
theory may be used to solve exactly for the atomic density matrix compo-
nents in the Fourier domain. We shall take a similar approach here, where
the Fourier components of the polarization may be written in terms of the
Fourier components of the o↵-diagonal elements of the (two-level) atomic
density matrix,

P(�⌫) =
N

V
µ⇢21(�⌫)e

�ik̄z. (4.29)

If the atoms respond linearly, the polarization must be proportional to the
applied field. The proportionality constant defines the susceptibility,

�(�⌫) =
P(�⌫)

✏0E(�⌫)
. (4.30)

This quantity � entirely characterizes the atom-photon interaction in the
linear regime, and no further information is needed to find an exact solution.

For plane wave propagation (where transverse e↵ects may be disre-
garded), the SVEA equation reduces to

@E
@z

+
1

c

@E
@t

=
ik̄

2✏0
P. (4.31)
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This first order equation may be trivially solved by moving to the Fourier
domain,

@E
@z

=
i�⌫

c
E +

ik̄

2
�(�⌫)E| {z }

/P

, (4.32)

where the frequency components of the electric field obey

E(�⌫, z) = E(�⌫, 0)eiz(�⌫/c+k̄�(�⌫)/2). (4.33)

By transforming back to the time domain, we obtain a general solution for
linear propagation,

E(t, z) =
Z

d(�⌫)e�i�⌫tE(�⌫, 0)eiz(�⌫/c+k̄�(�⌫)/2). (4.34)

This solution tells us that, given the spectrum of the field at some position
in space, we can decompose the field into frequency components, propagate
each frequency component separately, and then transform back to the time
domain to obtain the full solution. Note that we only need �(�⌫) to solve
the linear propagation problem exactly. This expression encompasses three
main e↵ects:

(1) Absorption arises from the imaginary part of the susceptibility.
(2) Refraction is caused by the real part of the susceptibility.
(3) Dispersion results from frequency dependence of the susceptibility.

4.2.1 Absorption and refraction

The e↵ects of absorption and refraction can be illustrated by considering a
resonant, continuous-wave field with a delta function frequency distribution,
E(�⌫) / �(�⌫), so that

E(t, z) = Eeik̄�(0)z/2. (4.35)

In general � may be a complex quantity, and its real and imaginary parts
have qualitatively di↵erent e↵ects on the propagating field. In particular,
Im[�] leads to exponential attenuation or amplification of the beam intensity
with distance at a rate

↵ = k̄ Im[�(0)]. (4.36)

The real component Re[�] shifts the phase of the field linearly with distance,
which can be understood as a modification of the wavevector k̄ ! k̄ +
k̄Re[�]/2, or a change in the index of refraction

n = 1 +
Re[�(0)]

2
. (4.37)
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Note that these formulae are only valid when the slowly varying envelope
approximation holds, i.e. |Im[�(0)]|, |Re[�(0)]| ⌧ 1.

4.2.2 Dispersion

If the applied field has a finite bandwidth, the frequency dependence of
the susceptibility begins to matter. For nearly monochromatic fields, the
susceptibility may be expanded around its resonant value,

�(�⌫) ⇡ �(0) +
d�

d⌫
�⌫ + . . . (4.38)

Each term leads to di↵erent e↵ects: the first corresponds to refraction, the
second to group velocity, the third to group velocity dispersion, and so on.
For example, if we keep only the second order terms, we find

E(t, z) =

Z
d(�⌫)E(�⌫, 0)e�i�⌫teiz(�⌫/c+k̄(�(0)+ d�

d⌫ �⌫)/2 (4.39)

= eizk̄�(0)/2
Z

d(�⌫)E(�⌫, 0)e�i�⌫(t�z/vg) (4.40)

= eizk̄�(0)/2E(t� z/vg, z = 0), (4.41)

so the envelope propagates at the so-called group velocity

vg =
c

1 + ⌫̄
2
d�
d⌫

. (4.42)

4.2.3 Two level systems

Consider light propagation through a dilute gas of identical, noninteracting
two-level atoms. In the steady state, we can solve the optical Bloch equations
for the o↵-diagonal density matrix elements to obtain the polarization and
thus the susceptibility,

�(�⌫) = i
N

V

µ2

~✏0
�
⇢011 � ⇢022

� 1

�12 � i�⌫
. (4.43)

Clearly, the susceptibility exhibits a Lorentzian lineshape with linewidth �12.

Identifying the dipole moment with the spontaneous emission rate (� =
µ2k30
3⇡✏0~

and k0 = 2⇡/�), we can also express the susceptibility as

�(�⌫) = i
3

8⇡2

N

V
�3

�
⇢011 � ⇢022

� �

�12 � i�⌫
. (4.44)
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Figure 4.1: The real (refractive) and imaginary (absorptive) parts of the
susceptibility for a two-level atom near resonance

Resonant fields

The magnitude of the susceptibility on resonance is

�(0) = i
3

8⇡2

N

V
�3 �

�12
. (4.45)

Here we have set ⇢011 = 1, ⇢022 = 0, since it is in the regime where the
upper state is negligibly populated that the atom responds linearly to the
field. Since �(0) is purely imaginary, there is no refraction on resonance,
but there is absorption. The electric field amplitude propagates as

E(z) = E(0)e(�Im[�(0)]+iRe[�(0)])k̄z/2 (4.46)

and we define the corresponding intensity loss

I(z) = I(0)e�N �̃z/V (4.47)

in terms of the absorption cross-section

�̃ =
3

4⇡
�2 �

�12
(4.48)

! 3

2⇡
�2 for purely radiative broadening. (4.49)

Surprisingly, in the case of radiative broadening the resonant cross section
is independent of the atomic dipole moment and depends only on �2; this
maximal absorption cross section is known as the “unitary limit”.
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Far-detuned fields

Far from resonance, �⌫ � �12, the imaginary (absorptive) component Im[�] /
1/�⌫2 is much smaller than the real (reactive) component Re[�] / 1/�⌫, so
the medium is almost entirely refractive and causes little absorption.

4.2.4 Line-broadening mechanisms

The existence of the unitary limit shows that di↵erent line broadening mech-
anisms (e.g. radiative vs non-radiative) can have di↵erent e↵ects on the
behavior of a system. It is particularly important to distinguish between
processes which a↵ects every atom equally and processes which broaden the
linewidth of an ensemble but not its constituent atoms. The former “homo-
geneous” linewidth may not be visible in an ensemble exhibiting the latter
“inhomogenous” broadening. Two important examples of systems exhibit-
ing inhomogeneous broadening are

(1) Optical emitters (e.g. color centers or quantum dots) in a solid state
environment. Local fields have a strong influence on the optical transitions,
so each emitter will exhibit di↵erent transition strengths and frequencies.

(2) Atoms with a thermal velocity distribution. The Doppler e↵ect shifts
their resonant frequency, so each atom interacts di↵erently with applied
fields.

Doppler broadening

To illustrate how inhomogenous broadening a↵ects linear optical propaga-
tion, we will examine the Doppler broadened atoms in more detail. In
particular, we consider atoms in a thermal gas which are illuminated in the
z direction by a field of frequency ⌫. Each atom experiences an apparent
frequency ⌫ � kvz + O(v2) which is Doppler shifted due to the atomic ve-
locity vz. Equivalently, one can view this as a shift in the atomic resonance
frequency ! ! !+ kvz. For a Doppler-broadened medium an incident light
beam will only be on resonance with a subset of atoms with the appropriate
velocity class, but the absorption spectrum will be very broad, with width
on order kvT where vT is the characteristic velocity corresponding to the
atomic temperature. In order to calculate the susceptibility, we will de-
termine the atomic response of each velocity class, and then sum over all
velocity classes. The susceptibility is thus approximately

�(�⌫) ⇡
Z

dvz
n(vz)

�12 � i(�⌫ � kvz)
(4.50)
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where the thermal velocity distribution is

n(vz) =
N

V
e�v2z/v

2
T

1p
⇡vT

. (4.51)

The integral in Eq. (4.50) cannot be solved exactly, but we will consider
two limiting cases where it can be approximately evaluated. For very cold
atoms, �12 � kvT , there is no inhomogeneous broadening, and the observed
ensemble absorption spectrum is Lorentzian, matching the intrinsic atomic
linewidth. In the opposite limit, inhomogeneous broadening dominates, and
the ensemble spectrum is Gaussian with width ⇠ kvT . Note that inhomo-
geneous broadening also reduces the �⌫ = 0 cross section by ⇠�12/kvT , so
that

�inhom.(0) =
3

4⇡
�2

p
⇡�

kvT
. (4.52)

As a quantitative example, atomic Rb at T = 300K has an inhomogeneous
linewidth of ⇠ 500MHz, which is far greater than its radiative linewidth of
� ⇡ 5MHz. For a Maxwell-Boltzmann thermal distribution of velocities, the
Doppler width scales as the square root of the temperature. By laser cooling
atoms (for example in a magneto-optical trap), it is possible to reduce the
Doppler broadening to less than the radiative linewidth.

Doppler broadening 

homogeneous

linewidth

 Frequency

Absorption 

spectrum

Figure 4.2: The absorption spectrum for a Doppler broadened ensemble of
atoms is much broader than the absorption spectrum of a single velocity
class, which has a linewidth set by the dephasing rate �12.
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In general, however, it is impossible to tell whether an ensemble is ho-
mogenously or inhomogeneously broadened with linear measurements. Such
properties can be probed only by measuring the nonlinear response of the
medium.

4.3 Nonlinear atomic response

The perturbative methods used in the linear regime cannot be used to treat
strong applied fields. A general approach in the nonlinear regime requires
a time-varying solution for the density matrix components as a function of
the time-dependent applied field, ⌦(t). As the system complexity increases,
such solutions become increasingly di�cult to obtain even numerically.

As a special case, we will consider only continuous-wave fields of fixed
frequency, and look for the steady-state behavior of the system. To start
with, consider a homogeneous ensemble of two-level atoms illuminated by
photons with frequency detuned from atomic resonance by � = ⌫̄�!. Recall
that the steady-state solution for the o↵-diagonal density matrix components
is

⇢21 = �i
⌦

�12 � i�
(⇢11 � ⇢22). (4.53)

For strong fields, we can no longer neglect changes in the atomic populations,
so we should substitute (in the steady state)

⇢11 � ⇢22 =
�

� + 2Ropt
(4.54)

where

Ropt =
2|⌦|2�12
�212 + �2

. (4.55)

We can use the steady state coherence to find the nonlinear susceptibility
in the Fourier domain:

�n(�) =
P(�)

✏0E(�)
(4.56)

=
1

✏0E(�)
N

V
µ⇢21(�). (4.57)

Proceeding in the same manner as before, we find that

�n(�) =
3

8⇡2

N

V
�3 i�

�12 � i�

�

� + 2Ropt
. (4.58)
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Note that, whereas the linear susceptiblity provided a complete solution
to all time-dependent linearly propagating fields, the nonlinear susceptiblity
�n(�) we have just derived is applicable only to continuous wave, steady state
solutions. For this special situation we are considering, the susceptibility
determines the nonlinear propagation equation for the applied field. Since
we are working with continuous wave fields, we may disregard the time
derivatives in the wave equation, so the only remaining terms are

@E
@z

= ik̄�n(�)E (4.59)

= ik̄

✓
3

8⇡2

N

V
�3 i�

�12 � i�

�

� + 2Ropt

◆
E . (4.60)

The nonlinear susceptibility is itself a function of the strength of the applied
field ⌦ = µE/~, which enters through Ropt. As the applied field grows, � is
diminished, an e↵ect known as saturating absorption. In the limit of a weak
field, Ropt ⌧ �, this expression reduces to the linear susceptibility obtained
earlier. We will now examine the nonlinear susceptibility in a few special
cases.

Resonant fields

For a perfectly resonant field, � = 0, the real part of the susceptibility
vanishes and the imaginary part becomes

Im[�n(0)] =
3

8⇡2

N

V
�3 �

�12

1

1 + s
(4.61)

where

s =
4|⌦|2
�12�

. (4.62)

When this saturation parameter s is large, s � 1, the applied field bleaches
the medium, and the transmitted power grows nonlinearly as the incident
intensity is increased. In this saturated regime, the spatial profile of ab-
sorption changes qualitatively from a linear decay in strong fields to the
exponential decay characteristic of weak fields.

Far-detuned fields

It is possible to define a saturation parameter as a function of the detuning,

s =
2Ropt

�
. (4.63)
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Figure 4.3: An incident field with intensity equal to the saturation intensity
initially decays linearly with distance. Once the field is su�ciently weak
that nonlinear e↵ects are negligible, the intensity decays exponentially.

Since Ropt decreases as detuning increases, greater power is required to sat-
urate an o↵-resonant transition. For very large detunings , � � ⌦, �, the
imaginary part of the susceptibility is negligible, with the real part given by

�n ⇡ � 3

8⇡2

N

V
�3 �

�

✓
1� 4|⌦|2�12

�2�

◆
. (4.64)

The refractive index of the medium is determined by Re[�], and consequently
depends on the intensity. The physics of an intensity dependent refractive
index (known as the Kerr e↵ect) may be captured by defining an index
which is linear in intensity, n = n0 + n2I. Such e↵ects have important
physical consequences, including intensity-dependent phase shifts which are
often referred to as “self-phase modulation”. In addition, the medium will
act as a lens for a beam with finite transverse extent, since the refractive
index is a function of power and thus transverse position, leading to so-called
self-focussing or de-focussing.

Weakly saturated regime

In some situations we will be working with relatively weak fields, and wish
only to calculate the leading order corrections to linear propagation. In such
cases, it is useful to expand the susceptibility

�n = �+ �(3)|E|2 + . . . , (4.65)
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where � is the linear susceptibility and �(3) is the next order correction (at
least for a system exhibiting inversion symmetry). In terms of the suscepti-
bility for the two-level system, this expansion looks like:

�n(�) =
3

8⇡2

N

V
�3 i�

�12 � i�

�

� + 2Ropt

⇡ 3

8⇡2

N

V
�3 i�

�12 � i�

✓
1� 2Ropt

�

◆

⇡ 3

8⇡2

N

V
�3 i�

�12 � i�
�
✓

3�3

2⇡2~2
N

V

i

�12 � i�

|µ|2�12
�212 + �2

◆
|E|2,

where we identify the first term as the linear susceptibility and the second
term as the leading nonlinear correction.

Experimental considerations

For practical purposes, it is useful to estimate the intensity needed to satu-
rate a transition at resonance. In a radiatively broadened system, �12 = �/2,
Ropt = 4|⌦|2/�, so the saturation threshold s = 1 corresponds to 8|⌦|2 ⇡ �2,
or an intensity of a few mW/cm2 for the alkali atoms. In a Doppler broad-
ened system, kvT � �12, a much larger power is required, since an applied
field satisfying 8|⌦|2 ⇡ �2 will only saturate a velocity class of atoms. How-
ever, in this intermediate regime where a small subset of velocity groups
are saturated, nonlinear spectroscopy such as pump-probe or hole-burning
experiments may be performed with sub-Doppler resolution.

In practice, real systems can saturate much faster than these calculations
would predict because the existence of other atomic levels means that the
system doesn’t necessarily decay back into its original state. For instance,
consider an atom with two long-lived hyperfine levels and a third excited
level. When a field is applied which is resonant with the transition from one
of the hyperfine levels to the excited state, most of the atomic population
will end up in the other hyperfine level, an e↵ect known as optical pumping.
Now saturation of the resonant transition only requires that Ropt exceed the
(slow) decay between hyperfine levels, making it much easier to saturate.
This example illustrates how the two-level model is often not a very good
approximation, especially in situations related to nonlinear interactions of
atoms with light.
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4.3.1 Saturation spectroscopy

Saturation spectroscopy is an important example of incoherent nonlinear
multi-photon interactions. It provides a simple method for probing the
natural linewidth of an inhomogenously broadened medium (unlike linear
interactions which cannot distinguish between a homogeneously and inho-
mogeneously broadened resonance). Saturation spectroscopy is typically
performed with two counterpropagating beams at the same frequency ⌫,
near resonance with the atomic transition energy �. The beams create an
electric field profile in the cloud of thermal atoms,

E = E+e�i⌫t+ikz + E�e�i⌫t�ikz + c.c, (4.66)

where E+ represents a strong field in the forward direction and E� represents
a weak field in the backward direction.

kv =0
kv =ν−∆kv =∆−ν

zz z

strong field

saturated 

absorption

weak field

linear 

absorption

Distinct velocity classes: ∆−ν>γ

kv =ν−∆kv =∆−νz z

strong field

saturated 

absorption

weak field

linear 

absorption

Overlapping velocity classes: ∆−ν<γ

Figure 4.4: The forward and backward propagating beams interact with the
velocity class of atoms for which they are resonant. The velocity classes
begin to overlap as the optical frequency ⌫ approaches the bare atomic
resonance

Due to Doppler shifts in the thermal atoms, these two beams each in-
teract with a certain velocity class. The strong field interacts with atoms
satisfying ⌫ = �+ kvz, saturating their transition, while the weak field in-
teracts with atoms Doppler shifted by ⌫ = �� kvz. For generic detunings,
⌫ 6= �, the two fields do not interact with the same group of atoms. As
the frequency approaches the bare atomic resonance, however, vz ! 0 and
the two velocity classes begin to overlap. On resonance, both fields inter-
act with stationary atoms. Consequently, we expect that the absorption
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spectrum for the weak field E� will show sharp features near ⌫ = � due to
stationary atoms saturated by the strong field.

Qualitative saturated absorption spectrum for the weak probe

frequency
bare atomic
resonance 
frequency

Doppler-broadened
background

Figure 4.5: The absorption spectrum for the weak probe in the presence of
a counterpropagating strong field of the same frequency.

The saturated absorption spectrum

The qualitative picture of saturated spectroscopy may be verified quantita-
tively by calculating the absorption coe�cient for the probe beam, ↵� =
kIm[��] = kIm[P�/✏0E�]. To separate out the forward and backward prop-
agating fields, we decompose the atomic polarization into two running waves
in the ±ẑ direction,

P = P+e
�i⌫t+ikz + P�e

�i⌫t�ikz + c.c. (4.67)

In order to account for the inhomogenous Doppler broadening, this total
polarization can be further broken down into contributions from atoms with
di↵erent velocities. A particular velocity group vz contributes a polarization
P (vz) proportional to the atomic coherence induced by the two counterprop-
agating beams,

⇢(vz)21 = ⇢(vz)+21| {z }
⇠E+

+ ⇢(vz)�21| {z }
⇠E�

. (4.68)
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Once we have calculated the polarization for the appropriate density n(vz)

of atoms, P (vz)
± = n(vz)µ⇤⇢(vz)±21 , we can sum over velocity classes and divide

by ✏0E± to obtain the probe beam susceptibility.
We can use our previous results from analysis of linear interactions to

find this coherence ⇢(vz)�21 because the probe beam E� is weak. In particular,
we find

⇢(vz)�21 ⇡ i⌦�(⇢11 � ⇢22)(vz)

�12 � i(� + kvz)
, (4.69)

where ⌦± = µE±/~. Note that the detuning � = ⌫ � ! is Doppler shifted
due to the atomic velocity along the axis of light propagation. For the
probe, atoms propagating to the right see the field at a higher frequency
(blueshifted) so the net detuning is � + kvz.

Our previous linear analysis required no further calculations because the
population distribution ⇢11 � ⇢22 was independent of ⌦� for a su�ciently
weak field. To accurately model the nonlinear aspects of saturated absorp-
tion spectroscopy, however, we must incorporate the e↵ects of the strong
field |⌦+|2 on ⇢11 � ⇢22. We saw earlier that strong, nonlinear interactions
can saturate a transition by redistributing the atomic population:

(⇢11 � ⇢22)
(vz) =

1

1 + S(� � kvz)
, (4.70)

where the saturation parameter is

S(� � kvz) =
4|⌦+|2(�12/�)
�212 + (� � kvz)2

. (4.71)

Note that the sign of the Doppler shift is reversed for ⌦+ because it is
propagating in the opposite direction to ⌦�. Substituting into Eq. (4.69),
we obtain the backward-propagating coherence induced by ⌦+ and ⌦� in
atoms with velocity vz:

⇢(vz)�21 ⇡
✓

�212 + (� � kvz)2

�212 + (� � kvz)2 + 4|⌦+|2(�12/�)

◆✓
i⌦�

�12 � i(� + kvz)

◆
. (4.72)

We are now prepared to calculate the absorption coe�cient for the probe
beam ↵� = k Im[��] = k Im[P�/✏0E�] by summing over contributions to
the polarization from all atomic velocity classes,

P� =

Z
dvzµ

⇤⇢(vz)�21 n(vz), (4.73)
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where each velocity class is weighted by the thermal distribution n(vz).

�� =
|µ|2
✏0~

Z
dvzn(vz)

i

�12 � i(� + kvz)

✓
1� S(� � kvz)

1 + S(� � kvz)

◆
(4.74)

The first term describes the usual Doppler-broadened absorption of a weak
probe; the second term describes the saturated e↵ect we wish to calculate.
By approximating the thermal velocity distribution as constant over the
velocities which contribute to the saturated absorption dip, n(vz) = n, we
can calculate the integral of the second term in closed form. The resulting
expression is rather convoluted, and to elucidate the e↵ects of the strong
field we will expand it to lowest order in ⌦+:

�� ⇡ |µ|2
✏0~

Z
dvzn(vz)

i

�12 � i(� + kvz)

✓
1� 4|⌦+|2(�12/�)

�212 + (� � kvz)2

◆

=
|µ|2
✏0~

Z
dvzn(vz)

i (�12 + i(� + kvz))

�212 + (� + kvz)2

✓
1� 4|⌦+|2(�12/�)

�212 + (� � kvz)2

◆

The saturated absorption feature is thus given by

Im[��]sat ⇡ � |µ|2
✏0~

Z
dvzn

�12
�212 + (� + kvz)2

4|⌦+|2(�12/�)
�212 + (� � kvz)2

= � |µ|2n
✏0~k

2⇡|⌦+|2(�12/�)
(�212 + �2)

, (4.75)

where we have used n(vz) = n and

Z 1

�1

1

1 + (x� a)2
1

1 + (x+ a)2
=

⇡

2(1 + a2)
. (4.76)

The expression for the saturated absorption feature, in the limit that ⌦+

is weak and n(vz) is slowly varying, indicates that we should see a sharp
dip in the absorption with a characteristic width given by the Doppler-free
linewidth �12.
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