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porters, which alters the strength of synaptic inhibition.
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neuropathic pain, and autism spectrum disorders (ASDs).
� Inhibition of the Cl� importing transporter NKCC1, to reduce the concentration of intracellular Cl�, has been a successful
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of neurological disorders resulting from KCC2 dysfunction.
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Abstract

Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous sys-
tem function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl�-
permeable ion channels, which means that the strength of inhibition depends on the Cl� gradient across the
membrane. In neurons, the Cl� gradient is primarily mediated by two secondarily active cation-chloride cotrans-
porters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl� gradient is critical for healthy
brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders
including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neu-
ronal chloride transporters before explaining the dependent relationship between these CCCs, Cl� regulation,
and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including
by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be
interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techni-
ques for estimating and recording intracellular Cl�, including their advantages and limitations. Although the
focus of this review is on neurons, we also examine how Cl� is regulated in glial cells, which in turn regulate
neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we
discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to
neurological disorders.
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1. INTRODUCTION

Excitability is a unique property of some cells, including
neurons. Neuronal excitability, which is foundational to
the functioning of the nervous system, is determined by
both passive and active membrane properties and syn-
aptic signaling. Passive and active membrane properties
contribute to the intrinsic excitability of the neuron
and are largely determined by the number and distri-
bution of ion channels and receptors. More dynamic
to the regulation of neuronal excitability is the

contribution of excitatory and inhibitory synaptic sig-
naling, with the inhibitory role being complex, in large
part because of the relationship between neuronal
chloride (Cl�) regulation and inhibition.
Synaptic inhibition is mediated by the neurotransmitters

c-aminobutyric acid (GABA) and glycine, which both
bind to Cl�-permeable ligand-gated ionotropic receptors
(GABAARs and GlyRs). Because of the Cl�-permeable
nature of these receptors, the strength of this inhibitory
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transmission depends upon the neuronal gradient for
Cl�, which is primarily determined by cation-chloride
cotransporters (CCCs), and the membrane permeabil-
ity for Cl� (1, 2).
Pioneering experiments starting in the 1950s, which

investigated the ionic permeability underlying inhibitory
postsynaptic potentials (IPSPs), revealed Cl� as the pre-
dominant charge carrier (1–3); however, as discussed
below, GABAARs and GlyRs are also permeable to bicar-
bonate (HCO�

3 ), but with lower permeability than Cl�. It
was not until the mid-1980s that researchers determined
that a dedicated transport mechanism was required to
maintain the Cl� gradient for neuronal inhibition (4–7).
Collectively, these historic studies led to the realization
that neuronal Cl� must be regulated by two Cl� trans-
port processes (one that accumulates and the other that
extrudes). However, it was not until more than a decade
later that the neuron-specific K1-Cl� cotransporter
(KCC2) was demonstrated to be the Cl� extrusion trans-
porter required for fast synaptic inhibition in the central
nervous system (CNS) (8). Although it has now been sev-
eral decades that we have known that CCCs are
required for inhibition and thus regulate neuronal excit-
ability, we continue to discover how even relatively small
changes in expression and function can have big
impacts on excitability (9). This review is written to be of
interest to foundational neurophysiologists and clinical
trainees and researchers interested in the impact of
CCCs on neuronal excitability, with a particular focus on
GABAergic inhibition in the healthy and diseased CNS.

2. AN OVERVIEW OF NEURONAL Cl2

TRANSPORTERS

The passive and active movement of Cl� is central to
neuronal Cl� homeostasis and plays a critical role in reg-
ulating neuronal excitability. In this section we review
the integral membrane proteins primarily responsible for
Cl� transport across the neuronal membrane, the cat-
ion-chloride cotransporters (CCCs), including the history
of their discovery and cloning, their basic biophysical
properties and molecular structures, and their develop-
mental and brain region expression patterns.

2.1. SLC12A Gene Family of Cation-Chloride
Cotransporters

Cl� is primarily transported across the neuronal mem-
brane by the CCCs, which are secondarily active trans-
porters that do not consume ATP directly but rather
derive energy from ionic gradients established by pri-
mary transporters. The sodium-potassium ATPase (Na1-
K1-ATPase) is an integral membrane protein and

primary active transporter fueled by ATP. The Na1-K1-
ATPase transports three Na1 out of the neuron in
exchange for every two K1 transported in, resulting in a
net extracellular positive charge (10). The CCCs use the
energy stored in the ionic gradients established by the
Na1-K1-ATPase to transport other ions, including Cl�,
against their electrochemical gradients.
CCCs are members of the SLC12A nine-member gene

family, which have a common evolutionary origin and
are categorized into functional paralogs (11, 12) and
include four K1-Cl� cotransporters (KCCs), two Na1-K1-
2Cl� cotransporters (NKCCs), an Na1-Cl� cotransporter
(NCC), and two orphan cotransporters, CCC9 and CIP
(13, 14); they are all predicted to have similar tertiary
structures (FIGURE 1A). CCCs are large glycoproteins
(�110–130 kDa) with 12 transmembrane segments and
intracellular amino- and carboxy-terminal domains (12,
18, 19) (TABLE 1). Readers interested in learning more
about the history, evolutionary origin, sequence homol-
ogy, and structure of the entire gene family are directed
to a comprehensive review by Hartmann and Nothwang
(12). For the purposes of this review, we focus on those
members of the SLC12A family with robust expression in
the vertebrate brain and whose function is integral to
neuronal excitability: NKCC1 and KCC2.
SLC12A2 (NKCC1) was cloned in the mid-1990s from

shark rectal gland and rabbit and mouse kidney (20–
22). This bumetanide-sensitive CCC is often referred to
as the secretory cotransporter and is found in abun-
dance in secretory epithelia (22, 23). It is also highly
expressed by multiple cell types in the brain, including
immature neurons, astrocytes, and oligodendrocytes
(24–28). NKCC1 has alternatively spliced isoforms, which
could alter the functionality of this transporter in different
brain regions and at different developmental time points
(29–31). Native NKCC1 normally exits as a dimer (�355
kDa) in the plasma membrane (32), and this dimerization
requires the COOH terminus (33, 34). The Na1-K1-
ATPase establishes an inwardly directed Na1 gradient,
and NKCC1 uses that gradient to uptake K1 and Cl� into
the cell, with a stoichiometry ratio of 1Na1:1K1:2Cl� (35).
This electroneutral NKCC1-mediated inward transport of
Cl� is responsible for the relatively high neuronal Cl�

early in development, which underlies depolarizing and
excitatory GABAergic transmission (36–38). The other
NKCC in the SLC12A family is encoded by SLC12A1 and
is primarily expressed in the apical membrane of the
thick ascending limb of Henle (19, 20, 39). NKCC1, like
the other NKCCs and KCCs, is organized into a highly
conserved 12-transmembrane domain at the NH2 termi-
nus and a conserved COOH-terminal domain (18, 40–
42). The structure of NKCC1 was recently reported with
cryo-electron microscopy (cryo-EM) (43), which helped
to reveal the ion translocation pathway, ion-binding
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FIGURE 1. Cation-chloride cotransporters (CCCs) maintain intracellular chloride concentration in neurons. A: cluster dendrogram of human SLC12A
cotransporters adapted from Ref. 15. Among CCCs in humans, the Na1-independent cotransporters (KCCs) and the Na1-dependent cotransporters
(NKCCs and NCC) form the 2 major branches, and they separated early during evolution. The Na1-independent cotransporters are more closely
related to each other than to Na1-dependent cotransporters. B: crystal structure of human KCC2 (adapted from Ref. 16, reproduced from Protein Data
Bank 10.2210/pdb6M23/pdb) and NKCC1 (adapted from Ref. 17 and reproduced from Protein Data Bank 10.2210/pdb6PZT/pdb) proteins with associ-
ated glycans. C: CCCs including KCC2 and NKCC1, the Na1-independent anion exchanger (AE3), and the Na1-coupled bicarbonate transporter (NBCE)
are active transport mechanisms that establish the chloride gradient in a mature neuron. This gradient allows for the movement of chloride across the
membrane through passive mechanisms such as the GABAA receptor (GABAAR), glycine receptor (GlyR), and ClC-2/3. D: increased NKCC1 expression
during early development leads to relatively high intracellular Cl� concentration in neurons, which underlies depolarizing and excitatory GABAergic
transmission. Decreased NKCC1 activity and increased KCC2 expression during neuronal maturation maintain a low intracellular chloride concentra-
tion, leading to chloride influx and hyperpolarization following activation of the GABAAR. EGABA, GABA equilibrium potential; Vm, membrane potential.
Figure created with BioRender.com, with permission.
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sites, and key residues for transport activity, and thus
our understanding of the structure-function relationship
of CCCs has grown significantly, as recently reviewed
by Jawhari (44).
Among the four KCC isoforms [KCC1 (SLC12A4), KCC2

(SLC12A5), KCC3 (SLC12A6), and KCC4 (SLC12A7)],
KCC2 is predominantly expressed in CNS neurons (11),
where it is necessary to extrude intracellular Cl� (8, 45).
KCC2 was cloned from rat brain shortly after the cloning
of SLC12A2 (40). KCC2 has two NH2-terminally spliced
neuron-specific isoforms (KCC2a and KCC2b), which are
generated with alternative promoters and first exons
(46–49); KCC2b protein represents �90% of the total
KCC2 protein in the mature cortex, whereas KCC2a
expression remains low throughout life (46). Despite the
fact that the KCCs show a relatively high sequence
homology, there are numerous conserved domains
within individual KCCs, including the ISO domain in the
KCC2 COOH terminus, which is required for KCC2 to
transport under isotonic conditions (50, 51).
The existence of K1-Cl� cotransport had already

been characterized well before its cloning, first in human
red blood cells (52–56) and then in nephrons (57), as an
N-ethylmaleimide (NEM)-sensitive, hypotonically acti-
vated, Cl�-driven, K1-efflux mechanism involved in regu-
latory volume decrease. The critical role of Cl� transport
in neurons was revealed in the 1970s, when Lux and
Neher (3) discovered the existence of a dedicated neu-
ronal Cl� transport mechanism required for hyperpola-
rizing inhibition. But it was not until the following decade
that the Cl� gradient was shown to be reduced by the
“loop diuretic” furosemide and to be dependent on

extracellular K1 (4–7), which together revealed a distinct
neuronal K1-Cl� transport process.
KCC2 derives energy from the outward-directed K1

gradient established by the Na1-K1-ATPase for the out-
ward transport of Cl� with a 1:1 stoichiometry (11). KCC2
is unique among its family members because of its
exclusive neuronal expression in the CNS, high affinity
for extracellular K1, and constitutive activity (58); in addi-
tion, KCC2 is unique because it is the only CCC capable
of, and required for, hyperpolarizing inhibition in pyrami-
dal neurons (8). The importance of KCC2, however, is
not exclusive to pyramidal neurons; KCC2 is also
involved in regulating Cl� homeostasis in other cell
types, including cerebellar Purkinje and granule cells as
well as retinal ganglion cells, though not exclusively
required for hyperpolarizing inhibition in these cell types
(59, 60).
KCC structures have recently been reported for KCC1

(17), KCC2 (16, 61), KCC3 (16, 61), and KCC4 (61).
Collectively these structural reports reveal that all four
KCCs have the following similar overall architecture, as
was predicted from sequence homology: 12 transmem-
brane-spanning domains with an extracellular large loop
between transmembrane helix (TM)5 and TM6 and intra-
cellular COOH and NH2 termini; the COOH-terminal do-
main contains numerous phosphorylation sites that
mediate activity and regulate expression and trafficking
(12, 39, 62–66); an NH2-terminal peptide-mediated auto-
inhibitory mechanism (61); and an inward facing confor-
mation (61) (FIGURE 1B). KCC2 exists as a monomer,
dimer, trimer, or tetramer in the mature brain (67).
However, KCC2 monomers are more common in imma-
ture brain, which suggests that an age-dependent oligo-
merization of KCC2 activates its function.
SLC12A6 (KCC3), which was cloned from both mouse

and human placenta in the late 1990s (68, 69), is also
expressed (nonexclusively) in CNS cells, where it regu-
lates intracellular Cl� concentration and mediates vol-
ume regulation (70, 71). But, unlike KCC2, KCC3 does
not appear to maintain Cl� homeostasis under resting
neurophysiological states (isosmotic conditions) (66, 72).
In addition to this, microarray mRNA expression data by
Sedmak et al. (73) showed that KCC3 is expressed at rel-
atively lower levels than KCC2 in human brain after birth,
and thus it will not be discussed further. Similarly, KCC4
is nonexclusively expressed in the CNS and is also
involved in cell volume regulation (74, 75), although its
specific role in the nervous system is not well under-
stood, and thus it will not be discussed further.
In addition to the SLC12A Cl� transporters, neurons

also move Cl� across the neuronal membrane via the
SLC4A family of anion transporters, including the Na1-
independent anion exchanger AE3 (76–79) and the
Na1-coupled bicarbonate transporter NBCE (FIGURE

Table 1. SLC12A gene family of cation-chloride
cotransporters

Human Gene
Name

Protein Name
Neuronal
Expression

Ions Transported
and Stoichiometry

Slc12a1 NKCC2 No 1Na1:1K1:2Cl�

Slc12a2 NKCC1 Yes 1Na1:1K1:2Cl�

Slc12a3 NCC No 1Na1:1Cl�

Slc12a4 KCC1 Yes 1K1:1Cl�

Slc12a5 KCC2 Yes 1K1:1Cl�

Slc12a6 KCC3 Yes 1K1:1Cl�

Slc12a7 KCC4 Yes 1K1:1Cl�

Slc12a8 CCC9 No None

Slc12a9 CIP1 No Unknown
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1C). AE3 is an electroneutral secondarily active neuronal
Cl�/HCO�

3 anion exchanger that countertransports 1
Cl� for 1 HCO�

3 and thereby accumulates Cl� in imma-
ture neurons (77, 80, 81). Interestingly, a genome-wide
linkage analysis identified the SLC4A3 locus, which
encodes AE3, as a susceptibility locus for idiopathic
generalized epilepsy (IGE) (82). Subsequent mutation
analysis of the AE3 coding region revealed a signifi-
cant increase of the Ala867Asp substitution polymor-
phism in IGE patients (83). A later study using an AE3-
knockout (KO) mouse model found that these mice
exhibited reduced seizure threshold in response to
proconvulsant substances while not exhibiting an
overt epileptic phenotype (84). These findings sug-
gest that AE3 deficiency contributes to increased sei-
zure susceptibility, thereby highlighting one of the
many roles of Cl� transport in neuronal excitation.
NBCE (SLC4A10) is also expressed in the brain (85),
where it serves as an acid-base transport mechanism
that plays a role in controlling intracellular pH (pHi). It
is electroneutral and transports Cl� out of the neuron,
thereby promoting inhibition. During bouts of neuronal
activity, which result in bicarbonate efflux via GABAARs
and consequent neuronal acidosis, activation of NBCE
will decrease intracellular Cl� and thereby help to main-
tain the inhibitory action of GABA (86). It is important to
recognize that of all the Cl� transporters and exchangers,
only KCC2 and NBCE can reduce the intracellular Cl�

concentration below equilibrium under physiological con-
ditions in mature neurons.

2.2. NKCC1 and KCC2 Expression in Brain

There are developmental, cell type-specific, and brain
region-specific variations in NKCC1 expression. In gen-
eral, it is well accepted that NKCC1 is highly expressed
early in development throughout the neuroepithelium
(87, 88). Although there are experimental discrepancies
regarding the developmental expression of NKCC1, both
postnatal declines (37, 89, 90) and increases (25, 30,
80, 88, 91, 92) in NKCC1 expression have been reported.
A recent review from Virtanen et al. (Table 1, Ref. 93) has
summarized the discrepancies in the postnatal expres-
sion of NKCC1, along with the details of differences in
the methodology used, including the cell type and the
brain region studied and the type of assay used to quan-
tify RNA or protein.
KCC2 mRNA expression largely follows neurogenesis,

with neurons born earlier showing KCC2 mRNA expres-
sion earlier (87, 88, 94). KCC2 mRNA is not expressed in
the neuroepithelium or in glutamatergic neuronal pre-
cursors or migrating glutamatergic cells (87, 88, 94) but
can be detected as early as embryonic day (E)10.5 from
the brain stem. In addition, KCC2 expression has been

observed with migrating forebrain GABAergic inter-
neuron precursors at E13.5, and KCC2’s increase coin-
cides with their migration termination (95, 96). With
regard to KCC2 protein, there is a gradient in onset of
expression from caudal to rostral CNS (87, 88, 94). In
rodents, KCC2 expression is already relatively high
before birth in the spinal cord and brain stem (47, 67, 80,
94), whereas detectable expression in the cortex does
not begin until birth or shortly thereafter, at which point it
increases dramatically throughout the first month of life
(8, 80, 87, 88, 94). In the mature nervous system, KCC2
is abundantly expressed in CNS neurons; either not
expressed or with very low expression in PNS neurons;
and not expressed in glia or other nonneuronal cells (8,
11, 40, 80, 81, 87, 88, 97–99), with the exception of its
expression in the islet cells of the pancreas (100).
This description of the timeline for KCC2 expression is

very generalized, as there is significant heterogeneity in
expression profiles across brain regions and cell types
(27, 87, 101, 102). In fact, some mature neuron types lack
KCC2 expression, including dopaminergic neurons of
the substantia nigra (103) and neurons of the thalamic
reticular nucleus (104, 105). Moreover, KCC2 expression
can vary across neuronal compartments, with the most
extreme variation being found in the axon initial seg-
ment, where KCC2 expression does not increase devel-
opmentally, and as a result this compartment has high
intracellular Cl� concentration ([Cl�]i) in the mature brain
(106) (FIGURE 1D).
Generally, the ontogeny of NKCC1 and KCC2 expres-

sion in mouse brain is similar to that in rat brain, but with
the rat being delayed �2 days; the references above
and throughout this review to “early development” and
“immature” are defined as embryonic in the rodent
brain. In the human brain, KCC2 mRNA is reported to
increase dramatically in the second half of gestation
(92), with KCC2 protein being detected in the cortex in
the 25th postconceptual week (107) and continuing to
increase in abundance throughout the first year of life
(37, 73).

2.3. CCC Posttranslational Modifications

NKCC1 and KCC2 are regulated by posttranslational
modifications, including glycosylation, (de)phosphoryla-
tion, and ubiquitination, which have been recently
described in several comprehensive reviews (11, 12, 27,
108). CCCs have glycosylation sites in the extracellular
loop, between TM7 and TM8 in NKCCs and between
TM5 and TM6 in KCCs (18, 22, 109). Glycosylation at
these sites is required for the accurate folding and mem-
brane localization of CCCs and can prevent their inter-
nalization and degradation. In the case of NKCC1,
inhibiting this N-linked glycosylation in hypothalamic
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paraventricular nucleus neurons reduced NKCC1 expres-
sion, thereby decreasing intracellular Cl� and strengthen-
ing synaptic inhibition (110). Moreover, inhibition of N-
glycan biosynthesis decreased total and plasma mem-
brane NKCC1, which significantly reduced cotransport
function in COS7 cells (111). KCC2 has six N-glycosylation
sites on the extracellular loop between TM5 and TM6
(112), and KCC2 has been found to be glycosylated in
both immature and mature neurons (67). In a study of
KCC2 loss of function in patients with severe epilepsy,
SLC12A5 mutations were found to negatively impact
KCC2 protein expression and glycosylation, which in turn
reduced synaptic inhibition (113).
Phosphorylation of key residues in the NH2- and

COOH-terminal domains is also critical for the regulation
of CCC expression, oligomerization, and function. An
extensive list of major phosphorylation sites in CCCs
and their regulatory roles was recently published in a
review by Portioli et. al. (114), and so we only highlight
here the two most well-documented types of phospho-
rylation. Protein kinase C (PKC) phosphorylates the ser-
ine 940 (S940) residue on the KCC2 COOH terminus,
which increases surface stability and transporter efficacy
(63). S940 can be dephosphorylated by protein phos-
phatase 1 (PP1), which promotes the rate of KCC2 inter-
nalization at the plasma membrane (115). CCCs are also
phosphorylated by the With no lysine kinase (WNK)-
regulated Ste20-related proline/alanine-rich kinase
(SPAK)/Oxidative stress response 1 (OSR1) kinases,
which decrease KCC2 activity while increasing NKCC1 ac-
tivity, resulting in a combined increase in intracellular Cl�

(15, 116, 117).
Ubiquitination is an important posttranslational modifi-

cation for many proteins; however, it has not been
widely studied for CCCs, even though multiple NCC
ubiquitination sites have been characterized and can
directly affect NCC endocytosis, degradation, and trans-
porter function. Ubiquitination can also cause the degra-
dation of kinases involved in phosphorylation of NCC
and indirectly affect the membrane expression (118).
However, the precise mechanisms behind this regula-
tion need further investigation.

3. THE RELATIONSHIP BETWEEN CCCS, Cl2

REGULATION, AND INHIBITION

CCC-mediated transport of Cl� is critical for regulating
the intracellular concentration of Cl� ([Cl�]i), which in
turn is responsible for the direction and strength of
Cl� currents. As we explain below, although GABAAR
currents can be either hyperpolarizing or depolarizing,
there is an important distinction between “depolariz-
ing” and “excitatory.” However, to understand the

relationship between CCCs, GABAARs and Cl� cur-
rents, and to understand whether depolarizing cur-
rents are inhibitory or excitatory, we first review some
fundamental concepts and nomenclature.

3.1. The Driving Force for Cl� and Cl� Current
Conventions

In the absence of active Cl� transport, the intracellular
chloride concentration would be set by the membrane
potential (Vm) and would equal the equilibrium potential
for Cl� (ECl). The equilibrium potential for a particular ion
can be calculated from the Nernst equation and is the
membrane potential at which there is no net flow of that
ion. Thus, in the absence of NKCC1- and KCC2-mediated
Cl� transport, Vm = ECl, which is the case for most non-
neuronal cells at isotonic conditions. However, in the
presence of Cl� transport, Vm = ECl, and the difference
between these potentials represents the driving force
for Cl� (DFCl = Vm � ECl). However, the DFCl only results
in a Cl� current when there is membrane permeability
for Cl�, allowing for passive diffusion down the electro-
chemical gradient for Cl�, thereby pulling the Vm toward
ECl. Opening of a neurotransmitter-gated Cl� channel
increases membrane permeability to Cl�, which will
result in a Cl� current (if there is a DFCl). Ionic current is
the flow of ions and is often referred to by electrophysi-
ologists as “inward” or “outward.” These conventions
depend on whether the ions flowing in the current are
positively or negatively charged (cations or anions); for
the anion Cl� an outward current occurs if Cl� flows
inward, and an inward current occurs if Cl� flows out.

3.2. GABA Receptors

GABA is a neurotransmitter in the CNS that primarily
exerts its actions by activating ionotropic GABAARs
and metabotropic G protein-coupled GABAB recep-
tors (GABABRs). Because GABABRs are metabotropic
receptors that activate an inwardly rectifying K1 chan-
nel and/or inhibit high voltage-activated Ca21 chan-
nels, and do not depend on Cl�, we will not discuss
their involvement in inhibitory neurotransmission fur-
ther, but readers interested in learning more about
GABABRs are directed to a comprehensive review
(119).
GABAARs are Cl�-permeable ligand-gated ion chan-

nels composed of five subunits, with the individual recep-
tor’s agonist affinity, conductance, and other properties
emerging from the combination of 19 different GABAAR
subunit isoforms (in humans, identified based on seq-
uence homology): a (1–6), b (1–3), c (1–3), d, r (1–3), ɛ, h,
and p (119). GABAAR function is determined primarily by
subunit composition, localization, pharmacology, and
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kinetic properties (120). GABAARs have been heavily
studied not only for their role in regulating synaptic trans-
mission in the healthy brain but also as the site of pharma-
cological treatments for neurological disorders, which
has revealed them to be the site of action of benzodiaze-
pines, barbiturates, neuroactive steroids, anesthetics, and
convulsants (121). Although GABA is often referred to as
“inhibitory,” the postsynaptic effect (excitatory vs. inhibi-
tory) does not in fact depend on the transmitter itself but
rather on the Cl� flow through the GABAAR. As we
explain below, GABA can be excitatory or inhibitory
depending on the direction of the DFCl, which in turn
depends on the expression of NKCC1 and KCC2.

3.3. The “GABA Switch” from Excitation to
Inhibition

In the immature nervous system, when the embryonic
brain is still developing, NKCC1 is highly expressed and
[Cl�]i is relatively high (�30 mM). Thus, ECl sits relatively
depolarized (approximately �35 to �40 mV) (36–38).
As a result, activation of GABAARs results in Cl� efflux
down its electrochemical gradient, and this negative
charge flowing out of the neuron (inward current) depo-
larizes Vm. The Vm will continue to depolarize as it
moves toward ECl, and because in this stage of develop-
ment ECl is depolarized with respect to the action poten-
tial (AP) threshold, an action potential(s) will be
generated. Thus, in early development, because of the
high expression of NKCC1, GABAergic transmission is
both depolarizing and excitatory (11, 18, 122, 123).
However, the excitatory effects of GABA are not sus-
tained in the healthy mature brain, as the dramatic
increase in KCC2 expression around the time of birth in
rodents rapidly decreases [Cl�]i.
Depolarizing GABAergic transmission in the devel-

oping brain contributes to the recurrent, synaptically
evoked suprathreshold depolarizations called giant
depolarizing potentials (GDPs) (123–126), which are a
type of spontaneous activity transient that is the hall-
mark of developing neuronal networks (127, 128).
However, the causality of GDPs remains unclear. Ben-
Ari and colleagues (123, 124) hypothesize and present
evidence for GABAergic interneurons pacing GDPs in
a phasic manner. However, other groups demon-
strate that depolarizing GABAergic transmission is
faciliatory to GDPs but does not drive them, and
rather they are paced by glutamatergic pyramidal
neurons in the CA3 region of the hippocampus (129).
Strikingly, it has been shown that GDP-like network
events are generated in NKCC1 knockout (NKCC1�/�)
slices (130). Moreover, a recent study demonstrates
that loss of NKCC1 in glutamatergic neurons in vivo
has little effect on synaptic development, network

dynamics, or hippocampus-dependent behaviors
largely unaffected (131).
In mature neurons, when KCC2 is the dominant Cl�

transporter, [Cl�]i = 5–10 mM, which results in a
hyperpolarized ECl (approximately �65 to �75 mV).
Now, activation of GABAARs results in Cl� influx down
its electrochemical gradient (an outward current) toward
ECl, which sits hyperpolarized to the resting membrane
potential. In this case, the outward current is hyperpolariz-
ing and prevents neuronal excitation (8, 45, 132). In fact,
this KCC2-mediated developmental switch from
GABAergic excitation to inhibition can be induced early
by overexpression of KCC2 (133–135).
Shortly after the discovery that KCC2 is responsible for

the shift from GABAergic excitation to inhibition, there
was significant investigation to determine whether neuro-
nal activity regulated this process. Although evidence
emerged that GABA itself promotes its own developmen-
tal switch from GABAergic excitation to inhibition (136),
this was not corroborated by studies demonstrating that
inhibiting glutamatergic and GABAergic transmission
(137, 138), or spiking itself, failed to alter the developmen-
tal expression of KCC2 and GABAergic switch. But
although blocking transmission and activity does not
appear to alter the upregulation of KCC2, neonatal
seizures do trigger a fast and profound enhancement
of KCC2-mediated Cl� extraction, likely via an increase
in KCC2 membrane insertion, which accelerates the
“switch” (139).
This dramatic change in neuronal Cl� regulation (from

high in embryonic development to low in mature neu-
rons) is unique among the physiologically relevant ions.
And this developmental change in ionic regulation
exemplifies that what makes a neurotransmitter excita-
tory or inhibitory is not a property of the chemical trans-
mitter itself but, rather, depends on the postsynaptic
response.
Because of the relatively rapid upregulation in KCC2,

the shift from GABAergic excitation to inhibition is often
called the “switch,” although this is somewhat of an
overstatement, especially given the brain region and
cell type variability in the upregulation of KCC2. In addi-
tion, the term “switch” suggests that there are only two
states, which is a further oversimplification because
depolarizing currents are not necessarily excitatory.
When ECl sits between the AP threshold and resting
membrane potential (Vrest), GABA is depolarizing but
usually not excitatory. GABAAR activation may still be
excitatory by virtue of activating low-threshold calcium
currents (140, 141), removing the Mg21 block of the NMDA
receptor (NMDAR) (142, 143), or inactivating hyperpolar-
ization-activated current (Ih) or K

1 currents (144). To fur-
ther add to the complexity, this inward depolarizing
current can be inhibitory by virtue of inactivating Na1
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conductance or by shunting more strongly depolarizing
synaptic or voltage-gated membrane conductances.
Shunting inhibition occurs when the opening of

ligand-gated Cl� channels reduces the input resistance
and thereby shunts other synaptic currents (145, 146).
Think of the following scenario: A GABAergic synapse
sits beside a glutamatergic synapse, and both overlap
temporally and spatially in their activity: the Cl� conduct-
ance will counteract the cation influx, resulting in smaller
excitatory synaptic potentials, thereby exerting an inhibi-
tory action. This form of inhibition is not exclusive to the
scenario where ECl sits between the AP threshold and
Vrest but also occurs when ECl is hyperpolarized with
respect to Vrest; the difference is that when ECl sits
between the threshold and Vrest, shunting is the only
form of inhibition, versus when ECl is hyperpolarized
and inhibition occurs because the membrane is pulled
away from the AP threshold and because of shunting.
Predicting the impact of a depolarizing potential on
excitability is challenging because the magnitude of the
shunting inhibition will depend on the total Cl� conduct-
ance and the magnitude of neighboring excitatory post-
synaptic potentials (EPSPs). For a more fulsome
explanation regarding the factors that will determine
whether a depolarizing GABA current is sufficient to trig-
ger an action potential, readers are directed to Kilb (147).
While GABAARs are permeable to Cl�, they are also

permeable to HCO�
3 (bicarbonate), with a reported per-

meability ratio of 0.2–0.4 (HCO�
3 /Cl

�) (1, 146, 148–150).
The equilibrium potential for HCO�

3 (EHCO3) is relatively
depolarized (approximately �10 to �20 mV), and the
HCO�

3 gradient is robustly reestablished by cytosolic
carbonic anhydrase-mediated conversion of CO2 to
HCO�

3 under constant intracellular pH (151). Therefore,
GABAA conductance is a combination of the outward
Cl� current and the inward HCO�

3 current in mature neu-
rons. Consequently, the reversal potential for GABAARs
is not equivalent to ECl but is rather a combination of ECl
and EHCO3. This results in EGABA being slightly depolar-
ized with respect to ECl. When experiments seek to re-
cord ECl, they most often do so by buffering extracellular
solutions with HEPES instead of bicarbonate and CO2

(152–156), and thus EGABA is often recorded and
reported as � ECl. However, during high-frequency
activation of GABAARs, the Cl� influx can overwhelm
KCC2-mediated Cl�-extrusion, resulting in a collapsed
Cl� gradient. In this situation, the HCO�

3 current pre-
dominates and drives Vm toward the AP threshold,
resulting in GABAergic depolarization and even exci-
tation (157, 158).
In addition to their classic role in mediating rapid

phasic inhibitory synaptic transmission, GABAARs also
mediate tonic inhibition by producing currents extra-
synaptically and perisynaptically (159). Because tonic

activation of GABAARs increases the cell’s input resist-
ance, the magnitude of any coincident excitatory post-
synaptic potential is reduced, which reduces the
probability that an action potential will be generated.
Thus, although the focus of this review is on the effect
of changes in Cl� homeostasis on neuronal excitabil-
ity, the reader should keep in mind that changes in
Cl� conductance will also affect the magnitude of
tonic inhibition.
Although Cl� flow through GABAARs is the primary

way that Cl� passively diffuses across the neuronal
membrane in the brain, there are other integral mem-
brane proteins that are also permeable to Cl�, including
a Ca21-activated Cl� channel called anoctamin-2, which
is involved in spike adaptation (160), and ClC-2 and -3,
which contribute to input resistance and vesicular neuro-
transmitter filling, respectively (161, 162).
Regardless of how Cl� passively diffuses across the

membrane, because 1) DFCl is dynamic during develop-
ment and 2) ECl sits so close to Vrest in mature neurons,
even relatively small changes in Cl� transport function
and expression can have big impacts on excitability, as
has been revealed through various types of inhibitory
synaptic plasticity.

4. INHIBITORY SYNAPTIC PLASTICITY

Similar to glutamatergic synapses, synaptic plasticity
at inhibitory synapses can occur through mechanisms
located either pre- or postsynaptically (157, 163–168).
However, unlike glutamatergic synapses, where the
mechanism of action is most commonly a change in
postsynaptic receptor conductance or abundance, in-
hibitory synaptic plasticity can also result from a post-
synaptic change in the driving force for Cl�. Changes
in postsynaptic Cl� gradients were first revealed as a
mechanism underlying inhibitory synaptic plasticity in
the hippocampus when spike timing-dependent plas-
ticity (STDP) protocols were found to reduce the
strength of inhibition through a depolarization of ECl
(169). This correlated, activity-induced depolarization
of ECl resulted from a Ca21-dependent decrease
in KCC2-mediated Cl� extrusion (FIGURE 2, A–C).
Shortly thereafter, prolonged postsynaptic spiking of
mature hippocampal neurons was also shown to
depolarize ECl in a Ca1-dependent downregulation of
KCC2 (170). Moreover, the activity-induced regulation
of the postsynaptic gradient was found to also occur
at developing synapses when ECl was still depolarized
(153, 155). However, there are two reported mecha-
nisms for this activity-induced regulation of NKCC1.
One mechanism requires a Ca21-dependent upregu-
lation of NKCC1 (155), whereas the other mechanism
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requires a thermodynamic regulation of NKCC1 itself,
whereby the rate of NKCC1-mediated Cl� transport
depends on both the conductance of, and the driving
force for, Cl� (153). Collectively, this work revealed
that NKCC1 and KCC2 can be regulated in a Ca21-de-
pendent manner by correlated activity in both the ju-
venile and mature (171, 172) hippocampus, resulting in
changes in synaptic strength, which led to coining of the
phrase “ionic shift plasticity” (164). The Ca21-dependent
regulation of Cl� transporters underlying ionic shift plas-
ticity can be achieved through Ca21 influx from L-type
and T-type voltage-gated channels (VGCCs) (155, 169,
173), VGCCs together with NMDARs (171, 172), or release
from intracellular stores (170), which appears to result in
a posttranslational modification of the transporter itself
(172) (FIGURE 2D).
Whether ionic shift plasticity is synapse specific likely

depends on a multitude of factors, including develop-
mental stage and synapse proximity. At hippocampal

synapses that have recently matured as defined by the
emergence of hyperpolarizing inhibition, plasticity was
found to spread to some, but not all, neighboring synap-
ses. In these cases in which plasticity spread from the
synapses where plasticity was induced to noninduced
synapses, the spread was likely due to the highly diffusi-
ble nature of Cl� within the soma (169). However, at
other synapses plasticity did not spread to neighboring
synapses, which is likely due to the ability of neuronal
compartments to maintain domain-specific intracellular
Cl� gradients (106, 174). Indeed, although Cl� is highly
diffusible in the cytoplasm, immobile intracellular anions
that repel Cl� from their vicinity are unevenly distributed
throughout the cell and thereby maintain domain-specific
intracellular Cl� gradients (175). Therefore, at maturing
hippocampal synapses, ionic shift plasticity demonstrates
a range of input specificity, due to the level of Cl� regula-
tion within the neuronal compartment where the plasticity
was induced. However, in the adult rodent brain plasticity

FIGURE 2. Inhibitory synaptic plasticity. A: inhibitory spike timing-dependent plasticity protocol. From Ref. 169, with permission from Neuron.
Postsynaptic spiking within 620 ms of GABAergic synapse activation results in persistent modifications to GABAergic synaptic strength. B and C:
induction of inhibitory spike timing-dependent plasticity results in a depolarizing shift in Cl� equilibrium potential (ECl) (green line) compared with prein-
duction (black line) (B) and a reduction in the inhibitory postsynaptic current (IPSC) amplitude (green dashed line) (C), thus reducing the strength of inhi-
bition. D: inhibitory synaptic plasticity induction promotes Ca21-dependent downregulation of KCC2 through unknown mechanisms. This Ca21-
dependent regulation is attained by Ca21 release from intracellular stores and influx through NMDA receptors (NMDARs) and/or voltage-gated calcium
channels (right). GABAAR, GABAA receptor. Figure created with BioRender.com, with permission.
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was found to be synapse (input) specific, through a heter-
osynaptic increase in GABAergic conductance at neigh-
boring synapses, which countered local depolarization of
ECl (171).
Ionic shift plasticity helped reveal how even relatively

modest changes in Cl� transport can have big changes
in excitability. Take for example the STDP of inhibitory
GABAergic synapses, where this activity-induced plas-
ticity shifts ECl from being hyperpolarized to Vrest to
being depolarized to Vrest, and thus flips the “polarity” of
GABAergic transmission from hyperpolarizing to depola-
rizing (169). Computational modeling combined with ex-
perimental validation has revealed that even a modest
increase in [Cl�]i of 2.5 mM in a pyramidal neuron, which
reflects the calculated increase in Cl� that results from
ionic shift plasticity, can increase the firing rate by 40%
(176).
What is the impact of ionic shift plasticity on neuronal

output? The answer involves both synaptic integration
and neural circuits. Take for example the feedforward
circuitry in the CA1 region of the hippocampus, where
activity of the Schaffer collaterals (axons from CA3 py-
ramidal neurons) produces both directly an excitatory
postsynaptic potential (EPSP) and indirectly an overlap-
ping inhibitory postsynaptic potential (IPSP) in the same
postsynaptic pyramidal neuron. This IPSP is slightly
delayed with respect to the EPSP because it is gener-
ated disynaptically by Schaffer collateral-driven activa-
tion of inhibitory basket cells (177, 178). The EPSP and
IPSP are integrated, and because of both the IPSP-
induced hyperpolarization of Vm and shunting inhibition,
the EPSP is attenuated. With this scenario in mind, it is
straightforward to conceptualize the impact of ionic shift
plasticity on that integration; the depolarization of ECl
reduces inhibition, which in turn reduces the attenuation
of the EPSP. With this inhibitory “brake” being eased,
the EPSP is more likely to generate an action potential,
and it is this phenomenon that has been termed “disinhi-
bition-mediated long-term potentiation (LTP)” (172). This
form of inhibitory plasticity was later found to be syn-
apse specific (171) and to increase pyramidal neuron
spiking as predicted (176). The significant impact of ionic
shift plasticity on synaptic integration and neuronal out-
put is well supported in the literature by the elegant
demonstrations of the critical role that GABAergic inhibi-
tion itself plays in direction of synaptic integration and
neural network activity in multiple brain regions (178–
181).
However, as described above, the situation becomes

increasingly complex when GABA is depolarizing but
not excitatory (Vrest < ECl < AP threshold). If we think
about this scenario in the CA1 feedforward example pro-
vided above, the impact of the GABAergic transmission
on the EPSP would be significantly different. While the

GABAergic transmission would still shunt the cationic
influx and therefore limit the EPSP, the GABA-induced
depolarization of Vm would facilitate the EPSP and result
in bidirectional control of neuronal firing rates (122, 182).
What happens when the GABAergic transmission is al-

ready inhibitory and then ECl hyperpolarizes even fur-
ther, thereby increasing DFCl? Increasing the driving
force will increase the magnitude of the hyperpolarizing
current, which in turn will increase the probability of acti-
vating a hyperpolarization-sensitive cation channel,
such as in the auditory brain stem, where hyperpolariz-
ing inhibition activates Ih and T-type calcium currents
that then induce rebound spiking (183).

4.1. CCCs Regulate Glutamatergic Synaptic
Transmission and Plasticity

Early in neurodevelopment, depolarizing GABA plays a
critical signaling role for migrating neurons. Although
migrating neurons express both a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA)- and N-methyl-
D-aspartic acid (or N-methyl-D-aspartate; NMDA)-type
glutamate receptors (AMPARs and NMDARs, respec-
tively), these neurons do not display the requisite
AMPAR-mediated currents required to remove the
depolarization block from NMDARs (77, 180, 184–187).
However, at these “silent” synapses, the NKCC1-de-
pendent GABA-mediated depolarization can be suffi-
cient to remove the depolarization block from NMDARs,
leading to Ca21 influx and, in turn, AMPAR insertion
(186) (FIGURE 3). Evidence for the critical role of depola-
rizing GABA in vivo can be found in the visual system of
the tadpole, where depolarizing GABA converted non-
spiking tectal neurons into spiking tectal neurons with a
visual conditioning paradigm (186). When NKCC1 was
inhibited with the antagonist bumetanide, or when
NMDARs were pharmacologically inhibited in vivo, non-
spiking tectal neurons could no longer be converted
into spiking neurons.
Depolarizing GABA also plays a critical role in the

maturation of newborn granule cells of the hippocam-
pus. These newborn cells have a high [Cl�]i for the first
2–3 wk of postmitotic development because of a rela-
tively high expression of NKCC1 (188), which results in
depolarizing GABA. During this same time period, glu-
tamatergic neurotransmission is insufficient to reach
action potential threshold, and a recent publication of
adult-born granule cells demonstrated that combined
GABAergic depolarization and NMDAR activation rap-
idly drives AMPAR insertion and glutamatergic unsi-
lencing (189, 190).
During neuronal development, KCC2 expression

plays a significant role in dendritic spine formation (191,
192) and confines postsynaptic glutamate receptors
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within those spines (193). Moreover, KCC2 also gates
long-term potentiation at glutamatergic synapses (194).
All of these interactions in spines and at glutamatergic
synapses require KCC2’s large carboxy-terminal domain
with actin-related proteins, such as the FERM domain
and 4.1N (191), and b-pix (194, 195) (FIGURE 4A).
Although these requirements for KCC2 in spines and at
glutamatergic synapses do not require ion extrusion,
it is not known whether ion extrusion occurs at these
sites. Even though KCC2 has a morphogenic role in
synapse development, KCC2 disruption in granule
cells or Purkinje cells changed neither synapse den-
sity nor spine morphology (59).
Amidst the published literature delineating KCC2’s

potential ion extrusion-independent function, KCC2
itself is reported to be regulated by proteins associated

with glutamatergic synaptic transmission (196–199). The
first demonstration of the regulation of KCC2 by gluta-
mate receptors was via tonic activation of group I metab-
otropic glutamate receptors (mGluRs) at hippocampal
CA3 synapses (196) (FIGURE 4C). More recently, a ro-
bust bidirectional regulation of KCC2 expression was
determined in cerebellar Purkinje synapses, where
genetic ablation and pharmacological inactivation of
mGluR5 decreased KCC2 expression and pharmaco-
logical activation increased KCC2 expression (200). In
addition, the GluK2 subunit of kainate receptors medi-
ates the surface trafficking and abundance of KCC2 at
the neuronal membrane, in a process that requires
phosphorylation of GluK2 that stabilizes the channel
in the membrane and mediates synaptic excitation
(201) (FIGURE 4B). Finally, GluK2-mediated excitatory

FIGURE 3. NKCC1-dependent GABA-mediated depolarization. A: early in development, migrating neurons exhibit high intracellular chloride concen-
trations due to predominant NKCC1-mediated chloride import. These migrating neurons form silent synapses that do not display AMPA receptor
(AMPAR) currents. B: at these silent synapses, binding of GABA to postsynaptic GABAA receptors (GABAARs) results in NKCC1-dependent GABA-medi-
ated depolarization. This depolarization can be sufficient to remove the depolarization block from NMDA receptors (NMDARs), resulting in Ca21 influx
and consequent AMPAR insertion into the membrane. Figure created with BioRender.com, with permission.
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transmission itself can potentiate KCC2-dependent Cl�

extrusion in CA3 pyramidal neurons (202). Is this arrange-
ment between synaptic excitation and KCC2 function re-
stricted to only glutamatergic synapses? It appears that

spontaneous cholinergic excitation mediated by a3- and
a7-subunits of nicotinic acetylcholine receptors (a3/a7-
nAChRs) can also regulate KCC2 expression. Together,
this begs the questions 1) Does KCC2-dependent Cl�

FIGURE 4. KCC2 at excitatory synapses. A: KCC2 expression restricts AMPA receptors (AMPARs) to dendritic spines, preventing AMPAR lateral diffu-
sion. This is likely accomplished through KCC2’s interaction with actin mediated by 4.1N. B: the GluK1/2 subunits of kainate receptors mediate the mem-
brane surface abundance of KCC2. In the absence of GluK1/2, oligomerization and surface expression of KCC2 decreases, resulting in an increase in
intracellular chloride concentration ([Cl�]i). C: activity of group I metabotropic glutamate receptors (mGluRs) results in the activation of PKC, which phos-
phorylates KCC2. Phosphorylation of KCC2 potentiates its chloride extrusion capacity. WT, wild type. Figure created with BioRender.com, with
permission.
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extrusion occur at excitatory synapses? and 2) Why does
a biological mechanism mediating Cl� transport at excita-
tory synapses occur during glutamatergic neurotransmis-
sion? Indeed, the role for KCC2 at excitatory synapses is
only getting more “exciting,” paving way for a more
nuanced, and reciprocal, regulation of excitation and
KCC2 function.

4.2. CCC-Protein Interactions Regulate Neuronal
Excitability

Regulation of protein function is essential for maintain-
ing neuronal homeostasis, and in addition to protein
regulation by posttranslational modifications, protein
function is also regulated by their interaction with
other proteins (203). The CCC family is no exception,
and in this section we review the literature of known
CCC-protein interactions and how those interactions
regulate CCC function and thus how they regulate
neuronal excitability.
CCC-protein interactions were first identified with tra-

ditional biochemical assays such as yeast 2-hybrid
screens (204). Early protein interaction studies revealed
that KCC2 (36, 204), but not NKCC1 (205), functionally
interacts with the Na1-K1-ATPase a2-isoform (206).
KCC2 also interacts with brain-type creatine kinase
(CKB), which is a kinase that transfers high-energy phos-
phate from phosphocreatine to ADP to rapidly generate
ATP. It is hypothesized that increased KCC2 function
depends on a concomitant increase in CKB and Na1-
K1-ATPase. Coincidentally, there is a developmental
regulation of the CKB and the a2-isoform expression
(205), which further supports the hypothesis that CKB is
critically required for KCC2 function. The identification of
these protein interactions revealed that KCC2 interacts
with proteins regulating synaptic homeostasis at the site
of excitation and thus is not solely an “inhibitory protein,”
as it was initially characterized.
KCC2 also regulates neuronal excitability through its

interaction with the tandem-pore leak K1 channel Task-
3 and regulates the traffic and expression of excitatory
proteins (207). Goutierre and colleagues (207) deter-
mined that KCC2 interacts with Task-3 channels, which
ultimately regulate membrane excitability. When total
KCC2 expression was knocked down with an RNA inter-
ference (RNAi) strategy, the result was an overall
increase in spiking and network activity in the dentate
gyrus (59). This study reveals that not only does KCC2
interact with traditional inhibitory proteins such as GABA
receptors but KCC2 also impacts the membrane target-
ing of interacting partners and thus has a profound
impact on the intrinsic excitability of neurons. In a similar
fashion, an earlier study from the Jentsch laboratory (59)
reported that a cerebellar granule cell-specific genetic

knockout of KCC2 also exhibited a depolarized resting
membrane potential and resting EGABA without altering
the driving force of GABAergic neurotransmission.
Although this study did not directly examine the role of
KCC2 protein interactions with potassium channels,
these two studies establish that KCC2 is capable of
directly regulating membrane excitability in different cell
types and brain regions.
More recently, proteomics has been used as a holistic

strategy to identify the proteins that interact with KCC2,
which is referred to as the KCC2 interactome.
Mahadevan et al. (208) used unbiased affinity purifica-
tion coupled with high-resolution mass spectrometry
(AP-MS) to identify native protein interactions. Because
of the hydrophobicity of KCC2, this protein had been
exceptionally difficult to isolate for further biochemical
and structural analysis (209), so before the application
of proteomic analysis, the authors first had to empirically
determine the optimal detergent and protocol for iso-
lating stable and active membrane-embedded native
KCC2 multiprotein complexes (MPCs) (202, 209).
Mahadevan et al. determined that nonaethylene gly-
col monododecyl ether (C12E9) and 3-[(3-cholamido-
propyl)dimethylammonio]-1-propanesulfonate hydrate
(CHAPS) were the most effective detergents to extract
native KCC2 samples for AP-MS. This approach revealed
a KCC2 interactome comprised of 181 diverse proteins,
with the predominant interactors playing important roles
in postsynaptic receptor recycling.
Large-scale proteomic studies performed with high-

throughput experimental methods such as AP-MS do
not provide an exhaustive list of protein interactors, and
each putative interacting protein needs to be thoroughly
validated to be confirmed as a true interactor (to identify
false positives). Validation can be performed with other
in vitro or in vivo assays, including coimmunoprecipita-
tion, yeast 2-hybrid, label transfer protein interaction
analysis, and proximity ligation assay. The most abun-
dant KCC2-protein interactor is the neuronal endocytic
regulatory protein termed PACSIN1 (SYNDAPIN1).
Biochemical validation of this protein interaction, com-
bined with functional characterization studies, revealed
that PACSIN1 is a negative regulator of KCC2 expression
and function (201). When PACSIN1 expression was
reduced with shRNA, KCC2 protein abundance increased
and EGABA hyperpolarized. This study is one of the first
examples illuminating how protein interactions with
KCC2 can bidirectionally regulate KCC2 function in neu-
rons (FIGURE 5).
Since the publication of the first KCC2 proteome, an

additional proteome was published by Smalley et al. in
2020 (210) combining mouse brain plasma membrane
fractionation and a classical native PAGE protocol using
the Triton X-100 extraction buffer. Although there is

CHLORIDE TRANSPORTERS AND EXCITABILITY

Physiol Rev �VOL 103 � APRIL 2023 � www.prv.org 1107

Downloaded from journals.physiology.org/journal/physrev at Univ Degli Studi Trieste Biblio Centrale Med (140.105.048.010) on July 10, 2024.

http://www.prv.org


some overlap between the proteins identified in the
KCC2 interactomes, not all proteins were found in both
proteomes. This variability is not uncommon in proteo-
mics and likely results from the extraction methods used
to isolate KCC2 and the criteria used to analyze the mass
spectrometry data. Other technical considerations, includ-
ing the affinity and the location of epitope of the antibody
used for the pulldown, can also influence the interac-
tome. For example, in the publication by Mahadevan et
al. (208), the interacting proteins varied depending on

whether the antibody used for the pulldown targeted the
NH2 or COOH terminus. However, despite the differen-
ces, both KCC2 proteomes identified interacting proteins
found at both inhibitory and excitatory synapses that
have roles in receptor trafficking, ion homeostasis, and
the dendritic cytoskeleton (208).
These proteomes highlight the potential role of KCC2

as a “hub” protein. Whereas most proteins interact with
only a few others during their life span, some proteins
interact with a very large number of other proteins and

FIGURE 5. Strategies to identify and validate KCC2 interactome. A–C: schematics showing the epitope locations of anti-KCC2 antibodies (A) and the
technique (affinity pulldown-mass spectrometry) (B) used to identify the 2 published interactomes of KCC2 (C). The interactomes by Mahadevan et al.
and Smalley et al. found a total of 181 and 246 KCC2 interacting proteins, respectively, with common proteins identified in both interactomes. D: these
interacting partners of KCC2 can be further validated by additional methods such as coimmunoprecipitation and yeast 2-hybrid assay. Figure created
with BioRender.com, with permission.
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are referred to as hub proteins (211–213). We recently
argued for the role of KCC2 as a hub protein in the CNS,
as it meets the following criteria (214): 1) KCC2 is highly
conserved (215, 216); 2) KCC2 has an extensive interac-
tome (208, 210); and 3) KCC2 is essential for survival, as
KCC2�/� are postnatal lethal (24).
To date no specific proteome has been completed for

NKCC1; however, in 2019 He et al. (217) performed a pro-
teomics analysis of the somatosensory cortex of FMR1-
knockout mice, which recapitulate symptoms of fragile X
syndrome. This mouse line exhibits delayed GABAergic
inhibition, upregulated NKCC1 expression, and altered
excitatory synaptic transmission during the first 10 days
of postnatal development in the somatosensory cortex
(217). The authors found that not only did chronic treat-
ment with the NKCC1 inhibitor bumetanide during this
critical period rescue the synaptic transmission deficits
but bumetanide treatment also altered a subset of pro-
teins identified in the proteome, including inhibitory
markers parvalbumin (PV) and TrkB (217). Although this
is the first publication investigating how the regulation of
NKCC1 during a critical period may help normalize de-
velopmental pathologies, the primary focus remains on
elucidating novel strategies for targeting KCC2 function
and expression.
Frantzi et al. (218) aptly described diseases being the

result of changes in the proteome, whether protein abun-
dance, structure, or function, and the resulting pathology
is an outcome of these changes. Proteomics research is a
burgeoning field, with several review articles highlighting
this technique as the next logical path forward in target-
ing protein interactions for drug discovery (218–220). By
characterizing pertinent KCC2 protein interactors that
negatively impact KCC2 function in pathological condi-
tions, new therapeutic strategies can be developed to
specifically target these adverse events and rescue
KCC2-related neurological conditions.

5. CHLORIDE AS AN INTRACELLULAR
SIGNALING MOLECULE

Cl� has recently been hypothesized to act as a signal-
ing molecule, analogous to known effector molecules
such as Ca21 (for comprehensive reviews see Refs.
221–224). Although studies have predominantly
framed the regulation of intracellular Cl� as a second-
ary effect of the activity of membrane proteins them-
selves, as we review below evidence exists that Cl�

itself can act as a second messenger effector. In par-
ticular, we discuss how Cl� signaling via specific ki-
nases regulates cellular excitability via NKCC and
KCC cotransporters.

5.1. Cl� Regulates Signaling Kinases

Although Cl� has been implicated in the regulation of
multiple kinases, the most highly studied Cl� regulated
signaling pathways are the With No Lysine (WNK) ki-
nases (FIGURE 6). There are four members of the WNK
kinase family, WNK1–4 (18); WNK1, 3, and 4 are
expressed by any tissue that regulates Cl� (18), whereas
WNK2 is expressed exclusively in brain tissue (225). The
WNKs are regulated by changes in [Cl�]i, osmolarity,
and/or cell volume. When the [Cl�]i is reduced, WNKs
autophosphorylate their T-loop residue and transition
into an active state; however, when Cl� is present it
physically binds to this residue and prevents activation
(226–228). Additionally, when cells become hyperos-
motic or cell volume is reduced, WNKs can also become
activated through autophosphorylation (227).
The downstream effectors of the WNKs are the ser-

ine/threonine kinase 39 (STK39)/Ste20-related proline
alanine-rich kinase (SPAK) and oxidative stress-respon-
sive kinase 1 (OSR1). The WNK-SPAK/OSR1 signaling cas-
cade was first linked to the regulation of CCCs in the
kidney, where mutating the function of WNK1 or WNK4
resulted in hypoaldosteronism type II (Gordon syn-
drome) and hyperkalemia (229). Since then, WNKs
have been shown to also regulate CCCs in the nerv-
ous system.
WNK1 and WNK3 appear to be the dominant regula-

tors of NKCCs and KCCs in brain tissue either directly or
indirectly via SPAK/OSR1. Phosphorylation by WNK-
SPAK/OSR1 activates NKCCs, whereas phosphorylation
of the KCCs inhibits them (230, 231). Various phospho-
rylation sites have been well characterized and are dis-
cussed in detail in other reviews (232–234). Because of
the ability of the WNK-SPAK/OSR1 pathway to bidirec-
tionally regulate the activity of NKCCs and KCCs, this
signaling pathway has garnered considerable experi-
mental attention in the past few years.
As members of the WNK family are highly sensitive to

small changes in Cl�, this signaling cascade provides a
unique opportunity where inhibitory synaptic currents,
and thus Cl� flux across the membrane, can regulate
the activity of NKCC1 and KCC2. This mechanism for
“fine-tuning” inhibition was demonstrated by Heubl et al.
(235), who directly linked GABAAR currents to the phos-
phorylation of KCC2 at T906 and T1007. Driving
GABAergic synaptic activity was sufficient to increase
[Cl�]i and activate WNK1, which was shown to act on
KCC2 by limiting the lateral diffusion of this protein in
the neuronal membrane and promoting KCC2-mediated
Cl� extrusion (235). Studies such as this have revealed
this signaling pathway to be a potent regulator of neuro-
nal Cl�, with targeted genetic disruption of WNK3
(resulting from partial deletion of the X chromosome that
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disrupts an additional 2 genes) implicated in some
instances of autism spectrum disorder (ASD) (236), and
a specific mutation in WNK1 contributes to neuropathic
pain (237). Accordingly, this signaling pathway has gar-
nered much attention, and considerable efforts are
underway to develop novel therapeutic targets for treat-
ing WNK-SPAK/OSR1-related neurological disorders
(232). It is currently unclear whether the scope of WNK-
dependent Cl� signaling during the regulation of neuro-
nal excitability extends beyond their currently explored
regulation of KCC family members. However, few mem-
bers of the excitatory receptors (238–240) and trans-
porters (241, 242) are known to be directly regulated by
Cl� binding in their extracellular or intracellular pockets,
and it is currently not known how this property affects
cellular excitability.

6. CHLORIDE REGULATION IN GLIA CELLS
AND THE INTERPLAY WITH NEURONAL
EXCITABILITY

All cells regulate Cl� across their plasma membrane and
within intracellular organelles (243), including the glial
cells of the CNS (astrocytes, oligodendrocytes, and
microglia). Reports on the [Cl�]i in glia vary considerably,
and it is reported to be in the range of 5–50 mM (244,

245), with the Cl� gradient being regulated by NKCC1,
GABAARs, GlyRs, voltage-gated Cl� channels, calcium-
dependent Cl� channels, BEST family proteins, cystic fi-
brosis transmembrane conductance regulator (CFTR),
and volume-regulated anion channels (VRACs) (246–
248). Glial cells are essential for maintaining a low
extracellular K1 concentration, and in doing so astro-
cytes also regulate Cl�, as this ion is often used to coun-
terbalance the movement of cations to maintain cellular
electroneutrality (243). Thus, Cl� regulation in glia is of-
ten studied in the context of cell volume regulation in
response to swelling and the maintenance of ionic equi-
librium (221). As we explain below, evidence is accumu-
lating to suggest that the regulation of Cl� in glia
contributes to neuronal excitability in a myriad of ways.

6.1. Glial NKCC1

With the advancement of RNA sequencing techniques,
glial researchers have examined the relative expression
profiles of NKCC1 in all cell types of the CNS including
astrocytes (249, 250), oligodendrocytes and oligoden-
drocyte precursor cells (26, 251), microglia (252), and
the choroid plexus (89, 253). Interestingly, NKCC1
mRNA expression is higher in glia than in neurons (254),
and although mRNA expression does not always directly
correlate with protein expression, the mRNA profile

FIGURE 6. WNK kinases regulate KCC2/NKCC1 expression and function. Changes in intracellular properties and cell phenotype including decreased
chloride concentration, increased osmolarity, and decreased cell size activate WNKs. Active WNKS, which can perform autophosphorylation, can
directly or indirectly (via SPAK/OSR1) activate NKCC1 and inhibit KCC2 via phosphorylation of key residues to reestablish homeostasis. GABAAR,
GABAA receptor. Figure created with BioRender.com, with permission.
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suggests that NKCC1 is a significant regulator of Cl� in
glia. With the realization that NKCC1 plays a functional
role in glia, a pressing preclinical question is whether
the therapeutic benefits of the NKCC1 inhibitor bume-
tanide on ameliorating neuronal excitation/inhibition
imbalances is due in part to the role of NKCC1 in glia
(255).

6.2. The Tight Coupling of Astrocytic GABA/
Glycine Receptors to Inhibitory Synaptic
Transmission and Neuronal Excitability

Astrocytes are a key component of the “tripartite syn-
apse,” which was first coined in the early 1990s to
describe the tight physical and functional coupling of
pre- and postsynaptic terminals with astrocytes (256).
Astrocytes not only encapsulate inhibitory synapses but
also express proteins critically involved in inhibition,
including GABAARs, GABABRs (257), GlyRs (257), and
the GABA transporters GAT-1 and GAT-3 (258), which
allow them to participate in inhibitory synaptic transmis-
sion (FIGURE 7A). Astrocytes use their NKCC1-mediated
Cl� gradients to regulate the extracellular [Cl�] during
periods of intense GABAergic signaling, when Cl� is rap-
idly entering into neurons via GABA/glycine receptors
(259, 260) (FIGURE 7B). Activation of astrocytic GABAA

and glycine receptors results in Cl� efflux and depolari-
zation of the astrocytic plasma membrane. The first
study to record glycine currents in astrocytes was per-
formed in the spinal cord of the developing rat and
determined that the glycinergic current was much
smaller than the GABAergic current (261). The authors
predicted that glycine-induced currents were thus not
a major signal to regulate astrocytic function. More
recently, however, a study examined the astrocytic
glycine and GABA currents in the inferior colliculus
and the hippocampus and found similar results indi-
cating that, although the GABA current often elicits a
larger membrane depolarization than glycine, the ratio
of the two currents is brain region specific (262).

6.3. Bestrophin Proteins

Finally, we briefly review the activity of the Bestrophin
(BEST) family of proteins, which are Ca21-activated Cl�

channels (263). There are four BEST proteins, BEST1–
4, with the BEST1 channel being highly expressed in
astrocytes and the most well studied in the context of
the CNS (248). BEST1 is specifically expressed in astro-
cytic endfeet surrounding inhibitory synapses of the
cerebellum, hippocampus, and striatum, where BEST1
channels have been found to regulate tonic neuronal
inhibition (244, 264). Astrocytes were discovered to
synthesize the neurotransmitter GABA using the

enzyme monoamine oxidase B (MAOB) instead of the
neuronal enzyme glutamate decarboxylase (244). This
intra-astrocytic GABA was classically thought to be
complemented by GABA uptake through GABA trans-
porters on glial cells. Remarkably, several studies
have shown that glial cells also actively release GABA.
Indeed, once produced in astrocytes, GABA can be
released via the BEST1 channels, where it is free to
bind to GABA receptors expressed on nearby neurons
and contribute to tonic inhibition (244, 264). The sig-
nificance of this signaling pathway was recently dem-
onstrated in the cerebellum, where tonic inhibition is
mediated by extrasynaptic GABAARs (265). The
impact of BEST1-mediated tonic inhibition was demon-
strated with a global BEST1 KO mouse model and by
examining the impact of tonic inhibition in cerebellar
granule cells (FIGURE 8, A and B). In the absence of
BEST1 expression, tonic inhibition was significantly
reduced, but phasic GABAA receptor currents remained
unaffected (FIGURE 8, C and D). Increasing GABA pro-
duction by driving the expression of MAOB in Bergmann
glial cells reduced overall granule cell excitability (265).
Consequentially, mice with less astrocytic GABAergic sig-
naling learned motor coordination tasks much better than
mice that had their tonic inhibition intact (265) (FIGURE
8E). VRACs have also been recently identified as GABA
and glutamate transporters (266), and with more informa-
tion being published on the role of astrocytes in the regu-
lation of excitation-inhibition balance in various brain
regions, the importance of this support cell is gaining
traction.

7. TECHNIQUES FOR MEASURING
INTRACELLULAR CHLORIDE AND
TRANSPORTER ACTIVITY

Neuroscientists use various forms of imaging and/or
electrophysiology to estimate [Cl�]i in neurons (FIGURE
9). Each of these techniques has its advantages and limi-
tations for determining [Cl�]i and CCC function, as sum-
marized in TABLE 2.

7.1. Tools for Imaging Chloride

Cl� imaging is of significant interest to neuroscientists,
but it has been challenging to optimize Cl� imaging
tools to achieve the following technical requirements:
high sensitivity to Cl�, concentration quantitation, and
low background fluorescence (269). The first Cl� imag-
ing tools included a set of three synthetic Cl� dyes [SPQ
(270), MEQ (271), and MQAE (272)], which emit reduced
fluorescence intensity as [Cl�]i increases (273–275).
Despite their multiple limitations, these indicators were
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indispensable for our early understanding of neuronal
Cl� regulation and CCC function.
A significant advancement in Cl� imaging tools came

in 2000 with the development of Clomeleon, which was
the first genetically encoded ratiometric Cl� indicator
and offered numerous advantages over Cl� dyes
(TABLE 2). Advantages of Clomeleon and its further
generations, Cl-sensor and SuperClomeleon, include
the ability to target them to specific subcellular compart-
ments and/or cell types; the ability to repeatedly mea-
sure them in vivo; their photostability compared with
chemical dyes; the ability to measure them ratiometri-
cally with or without fluorescence resonance energy
transfer (FRET); and the ability to calibrate them.

Clomeleon has been used successfully in vitro (267,
276) and in vivo (277) and is sufficient for fluorescence
lifetime imaging microscopy (FLIM), which facilitates
quantitation of [Cl�]i with good background separation
(278). However, this Clomeleon is not sensitive to [Cl�]i
changes at lower physiologically relevant levels (Kd =
�100–119 mM Cl�) (276, 279) and has several additional
limitations including relatively low Cl� affinity in the
physiological range and a relatively high signal-to-noise
ratio. Although both of these limitations were improved
in the next-generation indicators, Cl-sensor and Sup-
erClomeleon (280, 281), sensitivity to changes in pH
remained (282). In an attempt to address the limitation
of pH dependence, ClopHensor was designed to permit

FIGURE 7. Astrocytes maintain high intracellular chloride Cl� concentration ([Cl�]i) via NKCC1 and use this gradient to buffer extracellular Cl� concen-
tration ([Cl�]o) during periods of intense interneuron firing via GABAA receptors (GABAARs) and glycine receptors (GlyRs). A: glia express a variety of
channels and transporters that regulate the Cl� gradient, including GABAARs, GlyRs, GAT1/3, NKCC1, and GABAB receptors (GABABRs). B: NKCC1
expression in astrocytes maintains high [Cl�]i in astrocytes during basal levels of activity. During periods of intense GABA-mediated inhibition (right),
Cl� in the extracellular space enters the postsynaptic neuron and mediates neuronal inhibition. During this time, the [Cl�]o is maintained by the release
of Cl� from astrocytes via GABAARs and GlyRs. Figure created with BioRender.com, with permission.
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FIGURE 8. Astrocytic BEST1 channels mediate tonic inhibition at the cerebellar. A: Bergmann glia (BG) encapsulate Purkinje cells (PC) and interact
with granule cells (GC) in the cerebellum. B: tonic inhibition mediated by GABAA receptors expressed by granule cells (GCs) is abolished by the GABA
inhibitors 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; depolarizing shift indicated with yellow line) and gabazine (SR95531; depolarizing shift
indicated with blue line). From Ref. 264. Printed with permission from AAAS. C and D: BGs express both the enzyme monoamine oxidase B (MAOB),
which produces GABA, and BEST1 channels, which allow for the release of GABA into the synaptic cleft to activate extrasynaptic GABAA receptors
(GABAARs). Using the BEST1 knockout (KO) and MAOB KOmouse models, GABA release from BGs is blocked and tonic inhibition is lost. WT, wild type.
E: in the absence of tonic inhibition mediated by BGs in the BEST1 KO and MAOB KO mouse models, and when MAOB is inhibited in the control mice
using selegiline (Sele), the latency to fall is significantly increased indicative of improved motor learning on the rotor rod task. Error bars show SE;
�P<0.05, ��P<0.01. Image from Ref. 265, with permission from Proceedings of the National Academy of Sciences USA. Figure created with
BioRender.com, with permission.
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simultaneous measurements of both [Cl�]i and pH, but
detecting small changes in [Cl�]i remains challenging;
ClopHensor also has relatively complex imaging and
data analysis requirements. A future generation of this
indicator, LSSmClopHensor, has been adapted for use
with in vivo two-photon imaging, which facilitated the
direct and simultaneous measurement of neuronal
[Cl�]i and pHi at the single-cell level (283), but detect-
ing small changes in [Cl�]i remains difficult (including
with further variants, e.g., ClopHensorN). Despite
these tools having various limitations, they have been
used in a wide variety of in vitro and in vivo studies
providing valuable insights; however, neuroscientists
still await next-generation Cl� imaging tools with high
Cl� sensitivity in the physiological range (independent
of changes in pH).

7.2. Electrophysiological Estimates and Flux
Assays for the Measurement of Intracellular
Chloride and Transporter Activity

Neuronal [Cl�]i can be measured indirectly with whole
cell patch-clamp or perforated patch-clamp electrophys-
iology. For both methods, the experimenter determines
ECl and then calculates [Cl�]i from the Nernst equation.
ECl can be determined in voltage-clamp mode by evok-
ing GABAergic postsynaptic currents while step depola-
rizing the membrane potential (51). A linear regression of
the current amplitudes against the membrane potential is
plotted, and the intercept of this line with the abscissa is
taken as ECl (as explained above, ECl = EGABA, but if bi-
carbonate is buffered then ECl � EGABA). Whole cell patch
clamp is the most straightforward electrophysiological

FIGURE 9. Summary of techniques commonly used to assess Cl� regulation. Strategies include electrophysiological recordings (1), microscopy and
imaging (2), and biochemical assays (3). Images reproduced from Ref. 193, with permission from Proceedings of the National Academy of Sciences
USA; Ref. 267, with permission from the Journal of Neuroscience (licensed under Creative Commons CC-BY 3.0 license); and Ref. 208, with permission
from eLife. Image of neuron reproduced from Ref. 268, with permission from Journal of Physiology. Figure created with BioRender.com, with
permission.
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Table 2. The advantages and limitations of techniques for measuring intracellular chloride and transporter activity

Advantages Limitations

Imaging

Dyes SPQ Relatively insensitive to bicarbonate concen-
tration and pH variations; fast kinetics for
chloride association

Experimental variability due to inconsistent
dye loading; susceptibility to photobleach-
ing; regular calibration required; not
ratiometric

MEQ

MQAE

Genetically encoded
Cl� indicators

Clomeleon For Clomeleon, Cl� sensor: can be targeted to
specific subcellular compartments or cell
types; amenable to repeated measurements
in vivo; more photostable than chemical
dyes; ratiometric measurements can be per-
formed with or without FRET; more robust
estimates of the calibration parameters

The signal is pH dependent; lacks Cl� affinity
in the physiological range.

Cl� sensor Relative to Clomeleon: improved Cl� affinity in
the physiological range, improved signal-to-
noise ratio

The signal is pH dependent.

SuperClomeleon Relative to Clomeleon: improved Cl� affinity in
the physiological range, improved signal-to-
noise ratio

The signal is pH dependent.

ClopHensor Permits simultaneous measurements of both
[Cl�]i and pH, which results in more accurate
[Cl�]i measurements

Technically challenging to use because of
imaging requirements (e.g. 3 excitation
wavelengths are required; laser light sour-
ces are preferable); relatively complex data
analysis

Electrophysiology

Perforated patch-clamp recording Provides a good estimate of [Cl�]i Technically challenging (e.g. to obtain suffi-
cient electrical access); labor intensive

Whole cell patch-clamp recording The most straightforward electrophysiological
technique for measuring ECl

Does not provide an accurate estimate of [Cl�]i
because the intracellular neuronal Cl� dia-
lyzes with the Cl� in the intracellular patch
pipette solution; labor intensive.

Whole cell Cl� loading Can be used to measure the somatodendritic
Cl� gradient and CCC extrusion capacity

Endogenous KCC2 activity can be altered by
Cl� loading, via activation of SPAK and OSR1
kinases; not suitable for measuring [Cl�]i;
labor intensive.

Flux assays

86Rb1 High sensitivity and selectivity Largely restricted for use in heterologous
expression systems; low temporal and spa-
tial resolution; requires the use of a radioac-
tive isotope.

Tl1 Does not require radioactivity. Largely restricted for use in heterologous
expression systems; low temporal and spa-
tial resolution; produces complex changes in
pHi in response to application of NHþ

4 .

NHþ
4 Does not require radioactivity. Largely restricted for use in heterologous

expression systems; low temporal and spa-
tial resolution

CCC, cation-chloride cotransporter; [Cl�]i, intracellular Cl
� concentration; ECl, equilibrium potential for Cl�; FRET, fluorescence resonance energy trans-

fer; pHi, intracellular pH.
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technique for measuring [Cl�]i, but its effectiveness is lim-
ited by the fact that the intracellular neuronal Cl� dialyzes
with the intracellular patch pipette solution. Perforated
patch-clamp recordings can be used to overcome this li-
mitation, because gramicidin as the perforating agent
forms pores in the neuronal membrane that are imper-
meable to Cl� (284); however, this technique is inher-
ently more challenging than the whole cell technique,
in large part because of the time required and the
challenge in obtaining sufficient electrical access.
Another disadvantage of gramicidin perforated patch
recordings is that they dialyze ions, which is an impor-
tant consideration given that the Na1 and K1 gra-
dients provide the energy for Cl� transport via NKCC1
and KCC2, respectively.
Multiple flux assays are used to measure CCC activity,

including those based on 86Rb1 (285), Tl1 (286), and
NHþ

4 (286); however, they are largely restricted to use
in heterologous expression systems, which limits their
utility for understanding neuronal function. Transporter
activity can also be assessed with whole cell patch-
clamp electrophysiology by “loading” the cell with a
known higher concentration of Cl� from the pipette
(132). Although both flux assays and Cl� loading are cur-
rently used to assess CCC activity, neither is sufficient or
satisfactory, and thus the development of additional
technical tools for assessing neuronal Cl� and Cl� trans-
porters is eagerly anticipated by neuroscientists.

8. INTRANEURONAL CHLORIDE GRADIENTS

Intracellular Cl� homeostasis is essential for the mainte-
nance of the strength and efficacy of GABAAR-mediated
inhibition. However, there are intraneuronal differences
in [Cl�]i and EGABA, which are not well understood. Some
lines of evidence point toward differential subcellular
localization of CCCs as an explanation for the presence
of intracellular Cl� gradients. Indeed, Szabadics et al.
(174) found that GABA-mediated excitation at the axon
initial segment (AIS) is due to the absence of KCC2
expression at this compartment, where EGABA is more
depolarized than the resting membrane potential (RMP).
Thus, GABA-transmitting axo-axonic cells that exclu-
sively innervate the AIS of pyramidal cells evoke a depo-
larizing (and perhaps even excitatory) GABA-mediated
response in this compartment. In contrast, somatic and
dendritic GABAAR-mediated responses are hyperpola-
rizing. This compartmentalized EGABA has been shown
to result in part from differential subcellular localization
of KCC2; KCC2 density is significantly lower at the AIS
compared with the soma, suggesting increased intracel-
lular Cl� at the AIS and a consequent depolarizing effect
of GABA.

NKCC1 has also been shown to maintain the axo-so-
matic Cl� gradient. Using gramicidin perforated patch
recordings of dentate gyrus cells, Khirug et al. (106)
found that wild-type mice exhibit an axo-somatic DEGABA
of �5 mV, whereas this gradient is absent in NKCC1�/�

mice. In contrast, the somato-dendritic DEGABA is similar
between wild-type and NKCC1�/� mice. This suggests
that NKCC1 plays a role in maintaining the Cl� gradient
at the AIS that results in depolarizing GABA, while not
significantly contributing to dendritic EGABA.
In contrast to the CCC-mediated maintenance of intra-

cellular Cl� gradients, Glykys et al. (287) reported in
2014 that local impermeant anions establish the neuro-
nal [Cl�]. This hypothesis was supported by their obser-
vation that [Cl�]i (visualized by 2-photon imaging of
Clomeleon) was broadly distributed over a wide millimo-
lar range that was incongruent with the [Cl�]i equilibria
of both NKCC1 and KCC2 and that CCC inhibition did
not significantly alter [Cl�]i. Instead, the authors argued
that [Cl�]i was mediated by cytoplasmic impermeant
anions ([A]i) and polyanionic extracellular matrix glyco-
proteins ([A]o); changes in [A]i and [A]o resulted in corre-
sponding changes in [Cl�]i, dictated by osmotic and
ionic gradients.
Voipio et al. (288), however, strongly disputed the

conclusion that immobile anions can generate the driv-
ing force for Cl� through GABAARs. They highlighted
that immobile charges cannot affect the electrical poten-
tial gradient for Cl� current, as no energy is consumed
by these immobile anions, thus making it thermodynami-
cally impossible for immobile charges to maintain a Cl�

driving force. Glykys et al. (289) responded to this theo-
retical concern by outlining that the Cl� driving force is
not solely established by the Cl� equilibrium potential
(to which fixed anions contribute), i.e., ECl. The difference
between the membrane potential (MP) and ECl is what
creates the driving force: DF = MP � ECl. Luhmann et al.
(290) further disputed the results, raising multiple con-
cerns including the reliance on Clomeleon without more
appropriate controls, the limited range for reliably
reporting [Cl�]i, and the use of an additional technique
to substantiate the results. Glykys et al. (289) explained
that the change in fluorescence ratio per change in [Cl�]i
is sufficiently sensitive between 1 and 20 mM, and thus
sufficiently sensitive for their hypothesis.

9. CCC-MEDIATED NEURONAL EXCITABILITY
CONTRIBUTES TO NEUROLOGICAL
DISORDERS

CCC dysfunction and aberrant neuronal Cl� homeosta-
sis play a causative role in numerous neurological disor-
ders, including epilepsy (291), chronic pain (292),
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schizophrenia (92, 293), autism (294), Rett syndrome
(295–297), fragile X syndrome (92, 293), Down syn-
drome (DS) (298), and Huntington’s disease (HD) (299,
300). The CCC dysfunction normally leads to an
increase in neuronal [Cl�]i, often due to KCC2 dys-
function or reduced KCC2 expression, which renders
GABA and/or glycine as excitatory neurotransmitters.
This destabilizes the excitation-inhibition and leads to
the phenotypes observed with these disorders.

9.1. Epilepsy

Epilepsy is a continuous and often progressive condition
in which the brain circuitry becomes susceptible to
spontaneous seizures (301). Although the underlying
causes of epilepsy are diverse, risk factors for the de-
velopment of the disease include genetic conditions,
exposure to environmental risk factors, and brain
injury (113, 302). The etiology of epilepsy is complex,
with initiators of epileptic events including 1) increased
cellular excitability, 2) reduced network inhibition, and
3) network hypersynchronization. Regardless of the
driver of the event, these periods of increased net-
work activity can increase GABA neurotransmission,

which leads to intracellular Cl� accumulation; the net
result of this increase in [Cl�]i is a reduction in the
strength of inhibition and sometimes a switch in the polar-
ity of GABA from inhibitory to excitatory (7, 303–305). In
addition, KCC2 mutations have been identified in human
patients suffering from different types of epilepsy (113,
255, 305, 306) (FIGURE 10). Thus, there is a clear link
between Cl� dysregulation, CCCs, and this major neuro-
logical disorder. However, it remains unclear whether
changes in the Cl� gradient are causative of epilepsy or a
consequential phenotype. Like many big medical mys-
teries, the answer likely lies somewhere in between.
Epilepsy research uses a plethora of methods for

recapitulating epileptic events in vitro and in vivo, includ-
ing regulating network excitability with conditions of low
magnesium, high K1, application of 4-aminopyrimidine
(4-AP) (307, 308), or chemical induction paradigms
including kainic acid, pilocarpine, and pentylenetetrazol
(PTZ) to induce chronic seizures (309). More “physiologi-
cal” strategies include the in vivo kindling model, where
an electrode is implanted into a brain region and used
to repeatedly induce regional seizures with electrical
current (310, 311), and optogenetic methods using light
to regulate the activity of excitatory or inhibitory neurons
(312). These induction methods are used widely to mimic

FIGURE 10. KCC2 in epilepsy. A: mutations in KCC2 identified in various models of epilepsy. Red points demonstrate point or deletion mutations
identified in epilepsy. Purple points highlight KCC2 residues whose phosphorylation status variations have been implicated in epilepsy. B: ictal EEG of
an individual with biallelic SLC12A5mutations. Spikes over the right frontal area emerged first (bottom arrow) with accompanying eye deviations to the
left. Subsequent spikes over the left temporal area (top arrow) were accompanied by eye deviations to the right. Image modified from Ref. 306, with
permission from Scientific Reports. C, left: whole cell patch-clamp GABA equilibrium potential (EGABA) recordings and corresponding current-voltage
(I-V) curves at the soma and dendrite of cortical layer 2/3 pyramidal neurons transfected with a cosegregating variant of SLC12A5 (KCC2-R952H) impli-
cated in febrile seizures, wild-type KCC2 (KCC2-WT), or nontransfected enhanced green fluorescent protein (EGFP)-negative control neurons (control).
Neurons were somatically loaded with Cl�. VH, holding potential. Right: Cl� extrusion capacity of pyramidal neurons expressing EGFP, KCC2-WT,
KCC2-R952H, or a transport-deficient NH2-terminally deleted KCC2 (rKCC2-DNTD) was quantified as the somatodendritic EGABA gradient (DEGABA =
EGABA-soma � EGABA-dendrite). The Cl� extrusion capacity of KCC2-R952H neurons is significantly lower than that of KCC2-WT neurons. Image taken from
Ref. 255, with permission from Epilepsia. Figure created with BioRender.com, with permission.
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the events observed in a range of epileptic conditions;
however, each method has different underlying mecha-
nisms, which makes reconciling conflicting results chal-
lenging. When reconciling these results, it is important
to differentiate between ictogenesis and epileptogene-
sis. Ictogenesis is a biochemical event that rapidly
results in an electrical discharge of a brain circuit and is
highly dependent on the movement of ions, whereas
epileptogenesis is a long-term process occurring over
months and years in which progressive anatomical cir-
cuit changes result in the development of epilepsy.
Ictogenesis and epileptogenesis are mechanistically dif-
ferent, and therefore the development of therapies tar-
geting these two disorders will diverge (313–315).
A potential link between CCCs and epilepsy has

been intensively investigated since the discovery of
KCC2, which quickly revealed a causative role in epi-
lepsy-like phenotypes. Multiple research groups
developed mouse lines expressing varying levels of
KCC2 protein expression, which collectively revealed
a strong correlation between the loss of KCC2 and
hyperexcitability and the generation of spontaneous
generalized seizures (316, 317). Mice expressing only
5% of KCC2 have severe phenotypes including the
generation of spontaneous generalized seizures and
do not survive past 3 wk postnatal development.
Furthermore, the density of PV-positive interneurons
in the hippocampus is significantly reduced in the
homozygous KCC2 mutant mouse, likely because of
the generalized seizure phenotype. The KCC2 “hypo-
morphic mouse” expresses 15–20% of the normal
KCC2 compared with wild-type mice and exhibits sig-
nificantly reduced threshold to PTZ-induced seizures
(317). Thus, the loss of normal KCC2 function during
development has been directly linked to the develop-
ment of seizures and epileptic-like phenotypes.
Loss of KCC2 expression in adult animals and post-

translational regulation of KCC2 transport have also
been identified in various models of epilepsy, including
in mouse models of status epilepticus (SE), a state of
continuous seizure in which brain circuits are altered at
the biochemical and anatomical levels (318). The phos-
phorylation status of several KCC2 residues have been
reported to be altered in SE, including S940 (300),
T906/1007 (319), and Y903/1087 (62). Phosphorylation
of KCC2-S940 increases transporter function and mem-
brane expression (61), and thus this site is thought to be
an efficient mechanism that could be hijacked to rap-
idly regulate KCC2 function during SE. Silayeva et. al.
(320) investigated this prediction by injecting mice
with the chemoconvulsant kainate and then subse-
quently producing acute brain slices to examine the
impact on KCC2-S940 phosphorylation. The authors
determined that KCC2 was rapidly dephosphorylated

and internalized, resulting in less Cl� extrusion, which
consequently increased [Cl�]i. Furthermore, mice that
were genetically modified to prevent S940 phospho-
rylation showed increased susceptibility and lethality
in response to kainate injection (302).
Two additional KCC2 phosphorylation sites are also

implicated in epilepsy: Y903/1087 and T906/1007. Using a
model of SE induced with intraperitoneal injection of pilo-
carpine, researchers determined that the phosphorylation
status of Y903/Y1087 is robustly increased, resulting in
membrane KCC2 internalization and lysosomal degrada-
tion, which contributes to the hyperexcitable phenotype of
epilepsy (62). The regulatory role of T906/1007 residues
(117) in epilepsy was assessed with a genetically modified
mouse expressing a nonphosphorylatable T906A/T1007A
mutation. EGABA measurements from these mutant mice
were significantly hyperpolarized compared with wild-type
mice, suggesting enhanced GABAergic transmission, and
injection of kainate into wild-type and KCC2-T906A/
T1007A mice showed that the nonphosphorylatable KCC2
mouse exhibited resilience against the induction of seiz-
urelike activity and reduced death overall (319).
Global and cell type-specific NKCC1-knockout mice

have also been used to study the role of Cl� regula-
tion in epilepsy. The global knockout NKCC1 mouse
line has several deficits including deafness and bal-
ance perturbations (321, 322), as well as general
increases in network activity around the time of the
GABA switch (130). Knocking out NKCC1 specifically in
hippocampal CA3 neurons resulted in increased
intrinsic excitability of these neurons and increased
susceptibility to seizure induction via 4-AP application
compared with wild types. In addition to genetic strat-
egies, injections of kainate (323) or pilocarpine (324,
325) in wild-type animals caused increased NKCC1
expression in the CNS, likely contributing to depolariz-
ing GABAergic synaptic transmission and heightened
network excitability. Moreover, although bumetanide
holds the potential to be used as a therapeutic treat-
ment for epilepsy (326, 327), several studies have
demonstrated the inefficacy of this drug to rescue epi-
leptogenesis (328, 329).
Alterations of other KCCs such as KCC3 can also

contribute to seizures. KCC3-knockout mice had raised
intraneuronal Cl� concentration, especially in cell types
that abundantly express KCC3, such as the cerebellar
Purkinje cells. Even though spontaneous seizures were
absent, these animals had reduced seizure threshold.
Electrocorticograms from these animals also showed
increased irregular electrical activity similar to those
observed in patients with Andermann syndrome and
certain forms of epilepsy (330). Therefore, even though
the present review puts emphasis on KCC2 and
NKCC1, the contributions of other CCCs in maintaining
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intracellular Cl� concentration and in the pathology of
neurological disorders should not be neglected.
Altering the extracellular [K1] is an additional con-

founding factor in studying the relationship between
CCCs, Cl� regulation, and epilepsy. As the interneuron
firing rate increases to synchronize network activity at
the start of an epileptic event, the extracellular [K1] is
elevated (81, 331), which can directly regulate the func-
tion of CCCs. For example, high extracellular [K1] can
reverse the direction of KCC2 (7, 332, 333), and thus
enhancing KCC2 function in these conditions may fur-
ther contribute to the severity of the event instead of
ameliorating the symptoms (334).

9.2. Neuropathic Pain, Neuronal Trauma, and
Spinal Cord Injury

Neuronal trauma in the form of physical injury, nonphysio-
logical osmolarity, and increased temperature reverses
the polarity of GABAergic signaling in cultured hypothala-
mic neurons, resulting in excitatory GABAergic action in
mature neurons (335). It was predicted that trauma from
injury or inflammation may also underlie disrupted GABA/
glycinergic inhibition in the spinal cord. Specifically, the
lamina I neurons in the dorsal horn of the spinal cord con-
tain inhibitory circuits that are essential for gating the sen-
sory perception of pain. When these circuits become
damaged and no longer exert normal inhibition, patients
experience sharp pain sensations, tingling, pins and nee-
dles, and allodynia (336). Using an in vivo model of pe-
ripheral nerve injury (PNI), a seminal publication by Coull
et al. (337) identified that there was significant shift in the
Cl� gradient after PNI in the neurons of the dorsal horn.
The researchers modeled PNI by chronically constricting
the sciatic nerve in a rat and then used electrophysiologi-
cal patch-clamp recordings and calcium imaging to iden-
tify the site of dysregulation. After PNI, EGABA was
significantly depolarized compared with sham-injured ani-
mals because of loss of KCC2 expression in the lamina I
neurons of the dorsal spinal cord; and this KCC2 down-
regulation was demonstrated to be the mechanism for
this increased excitability.
The causative role of KCC2 in neuropathic pain tran-

scends different models of neuropathic pain, including
after spinal cord injury (SCI) (338) and trigeminal neuro-
pathic pain (339). One commonly used model of SCI
includes transecting the spinal cord at different levels
and assessing inhibition in the impacted circuitry. Using
a thoracic and lumbar transection, Boulenguez et al.
(338) discovered a progressive loss of KCC2 protein
expression in the ventral horn of the spinal cord below
the level of the SCI, with no change in NKCC1 expression
found. This loss of KCC2 is triggered by excess brain-
derived neurotrophic factor (BDNF) expression, which,

via TrkB receptors, acts to negatively regulate KCC2
protein expression. Moreover, in a model of trigeminal
neuropathic pain, chronic nerve constriction resulted in
a combined increase in NKCC1 and decrease in KCC2 in
neurons located at the site of the injury (339), resulting
in excitatory GABA, which could be reversed with the
NKCC1 antagonist bumetanide (339). Additionally, WNK1
phosphorylation of KCC2 in the spinal cord is a mecha-
nism in a model of spared nerve injury and inflammation
that mimics neuropathic pain (237). These models
induce depolarization of EGABA in lamina II neurons of
the spinal cord, which can be reversed in the presence
of WNK1 inhibitor or in the WNK1�/� mouse after SNI
(237).
Can the loss of inhibition in spinal cord circuits as a

result of downregulated KCC2 be rescued? Answering
this question could identify novel therapeutic treatment
of neuropathic pain and even paralysis as a result of SCI.
This question was recently explored when researchers
promoted the function of the remaining KCC2 in the spi-
nal cord or exogenously reexpressed KCC2 at the site
of injury. The authors discovered that application of the
KCC2 agonist CLP290 significantly improved functional
recovery after SCI (340). Furthermore, the authors identi-
fied that the specific reexpression of KCC2 in interneur-
ons expressing vesicular GABA transporter (VGAT) at
the site of the lesion was sufficient to improve scores on
stepping abilities (340). This finding provides a clear
demonstration that rescuing KCC2 expression or func-
tion after injury is sufficient to restore the excitation-inhi-
bition balance at the level of the spinal cord and can
ultimately promote recovery after injury. It will be inter-
esting to know whether a similar regulation of KCC2 in
additional models of peripheral injury and pain could
restore neuronal inhibition in the spinal cord and rescue
the symptoms associated with neuropathic pain.

9.3. Neurodevelopmental Disorders

Some forms of autism spectrum disorder (ASD) and intel-
lectual disability have been linked to aberrant Cl� gradi-
ent regulation. For example, Rett syndrome is an X-
linked disorder causing a severe form of autism (341)
due to mutations in the transcription regulatory protein
methyl-CpG binding protein 2 (MeCP2). Normal develop-
ment occurs for approximately the first 18 mo of post-
natal life, and then motor, respiratory, and cognitive
deficits appear and epilepsy develops (342, 343).
Although deficits in GABAergic inhibition have been pro-
posed as a mechanism underlying the ASD phenotypes
observed in Rett syndrome (344), the first publication to
link CCCs came a few years later. In 2013 Duarte et al.
(295) discovered that there was reduced KCC2 protein
found in CSF of human patients with Rett syndrome. The
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authors predicted that the corresponding reduction of
BDNF expression in Rett patients (345) caused a down-
regulation of KCC2, and ultimately a reduction in overall
GABAergic inhibition leading to epilepsy. Furthermore,
the motor cortex, cerebellum, Brodmann area, and the
hippocampus all showed reduced transcript expression
of KCC2 (346, 347).
Several mouse models of Rett syndrome have been

created, including global and regional knockout models,
conditional knockout, and overexpression models (348).
Conditional knockout models include the removal of
MeCP2 expression in VGAT-expressing neurons, which
models many of the symptoms observed in the human
form of the disorder (344). A more recent publication
conditionally removed MeCP2 from PV and somatosta-
tin (SST) interneurons to reveal that interneuron sub-
types contributed to the disorder in different capacities
(349). Specifically, selective loss of MeCP2 in PV inter-
neurons resulted in the development of the motor and
social abnormalities associated with Rett syndrome,
whereas the loss of MeCP2 in SST interneurons resulted
in the development of epilepsy and stereotyped behav-
iors. To further support the theory that disrupted neuro-
nal inhibition underlies many phenotypes associated
with this disorder, KCC2 expression has been shown to
be reduced in human induced pluripotent stem cells
(iPSCs), and the reexpression or upregulation of the
function of existing KCC2 in a mouse model of Rett
syndrome can rescue some of the phenotypes in
these model systems (296, 297). Tang et al. (297) used
a high-throughput screen of repurposed molecules to
identify new drugs that could increase KCC2 expression
and function, of which two identified compounds amelio-
rated the respiratory and locomotor phenotypes observed
in theMeCP2mutant (Mecp2�/y).
The most common cause of intellectual disability is

Down syndrome (DS), resulting from triplicate copies of
chromosome 21 leading to abnormal fetal development.
The Ts65Dn mouse model is commonly used to investi-
gate symptoms of intellectual disability, as this model
recapitulates symptoms of DS (350). Interestingly, some
publications identified enhanced GABAergic signaling in
the hippocampus as a mechanism for disrupted hippo-
campal learning in this model, whereas others reported
contradictory data. This argument was resolved when
Deidda et al. (298) discovered that Ts65Dn mice did in
fact display heightened GABAA-mediated signaling, and
because of increased NKCC1 expression and no change
in total KCC2, the [Cl�]i was elevated and GABA action
was depolarizing instead of inhibitory. When NKCC1 was
inhibited with bumetanide to reduce [Cl�]i, neuronal inhi-
bition was restored and the synaptic and cognitive defi-
cits in this model were ameliorated. This publication
highlights the significant potential of regulating NKCC1

activity in models where aberrant Cl� gradients are
observed, thus further supporting the need for optimizing
the current molecules to target NKCC1 expressed in the
CNS as opposed to systemic regulation, an endeavor
that is currently underway (351, 352).
Although the major focus of loss of inhibition via dys-

regulation of the CCCs has been on models of autism
spectrum disorders and intellectual disability, these
transporters are being widely investigated in almost all
neurological conditions. For example, Cl� dysregulation
has been observed in human patients with major depres-
sive disorder and schizophrenia. Investigation of postmor-
tem brain tissues has identified altered NKCC1:KCC2
expression profiles in adults diagnosed with these condi-
tions (92), with several forms of truncated KCC2 found in
some case studies (293). Postmortem human prefrontal
cortices from schizophrenia and affective mood disorders
also exhibit decreased expression of KCC2 transcripts.
These data were recently substantiated in a mouse
model of schizophrenia, where the authors demonstrate
that cortical NKCC1 knockdown or bumetanide adminis-
tration could ameliorate the depolarizing actions of GABA
and behavioral manifestations associated with schizo-
phrenia (353). Similar findings demonstrating altered CCC
function have been observed in genetic neurodegenera-
tive disorders such as Huntington’s disease (HD) (300)
and Alzheimer’s disease (AD) (354). A recent publication
investigating the cognitive deficits associated with HD
elegantly demonstrated a specific loss of KCC2 and an
upregulation of NKCC1 within the hippocampal region.
Ultimately, this altered NKCC1-to-KCC2 ratio results in net
Cl� accumulation in neurons of the hippocampus, caus-
ing reduced inhibition and cognitive deficits in mice with
HD (299, 300). A similar finding was observed in a mouse
model of AD in which the amyloid precursor protein (APP)
was genetically removed to mimic conditions in AD
where APP is cleaved and lost from the synapse (354).
Using this model, researchers observed reduced KCC2
expression and compromised neuronal inhibition in the
hippocampus, but the authors demonstrated that synap-
tic inhibition could be rescued with the KCC2 activator
CLP290. Although multiple possibilities for disrupted
GABAergic neurotransmission in neurological disorders
exist, including abnormal GABA receptor localization or
altered interneuron targeting, changes in NKCC1 and
KCC2 are prominent and consistently discovered. For
more detail on this topic, we refer the reader to recent
review articles (355).

9.4. Bumetanide as a Therapeutic Treatment for
Neurological Disorders

Benzodiazepines, which bind to the GABAARs and allos-
terically enhance their responsiveness to GABA, are
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commonly prescribed to treat neurological disorders
such as epilepsy. However, benzodiazepines have para-
doxical effects when used to treat ASD because of
the depolarizing and/or excitatory actions of GABA.
Therefore, the use of loop diuretics such as bumetanide
that can reestablish the hyperpolarizing effect of GABA
was proposed for clinical trials (356). Early pilot studies in
affected children indicated that bumetanide was effective
in improving multiple measures evaluating the severity of
the disorder, including through the Childhood Autism
Rating Scale (CARS) and Clinical Global Impressions
(357, 358). In addition to significantly improving con-
ventional behavioral and clinical symptoms with few
negative side effects, Hadjikhani et al. (356) showed
that bumetanide administration in seven affected
individuals ranging from adolescents to young adults
significantly improved activation of brain regions
involved in emotional processing.
The reported improvement in associated symptoms

with a favorable benefit-to-risk ratio (359) indicated that
alterations in GABAergic signaling may underlie the eti-
ology of autism and provided the rationale for large-
scale randomized trials. A phase 2 clinical trial by
Lemonnier et al. (358) in 60 autistic children (3–11 yr old)
showed a reduction in associated symptoms following
3-mo administration of bumetanide. Similarly, a multicen-
ter phase 2B trial by the same group in 88 ASD patients
(2–18 yr old) also showed improvement in core symp-
toms of ASD following bumetanide administration (360).
In another study by Zhang et al. (361) in 83 patients, 3-
mo administration of bumetanide resulted in a significant
reduction in the ratio of GABA and glutamate neuro-
transmitter concentrations, in addition to a previously
reported reduction in symptom severity. Apart from
being a stand-alone treatment, bumetanide also proved
to be effective in reducing symptoms of autism when
combined with other treatment methods, like applied
behavior analysis (ABA), with no serious adverse effects
(362). All of these trials also indicated that the frequency
and incidence of side effects associated with bumeta-
nide administration, including hypokalemia, dehydration,
and loss of appetite, correlated with the dose of bumeta-
nide (358, 360).
Contrary to previous trials, a single-center phase 2 trial

by Sprengers et al. (363) showed that children (7–15 yr
old) diagnosed with ASD did not show any improvement
in Social Responsiveness Scale-2 (SRS-2) scale after the
administration of bumetanide. The authors attributed the
failure of this trial to the highly heterogeneous etiology of
ASD, in which the reversed GABA polarity may not be the
underlying cause in all ASD conditions (364). Currently,
multiple phase 3 trials (365) (ClinicalTrials.gov Identifier
NCT04766177, NCT03715153; EudraCT Number 2017–
004420-30, 2017–004419-38) are evaluating the efficacy

and safety of bumetanide in ASD, which provides promis-
ing prospects for its use in autism.
In addition to autism, the efficacy of bumetanide in

treating various other neurological disorders is being
clinically tested. In a pilot study examining adult patients
with temporal lobe epilepsy (TLE), Eftekhari et al. (366)
have found that bumetanide was efficient in reducing
seizure frequency. Gharaylou et al. (367) reported that
bumetanide administration downregulated NKCC1 pro-
tein levels in patients suffering from TLE and the reduc-
tion in NKCC1 levels may underlie the antiepileptic effect
of bumetanide. Bumetanide was also found to be effec-
tive in reducing seizure burden in a multicenter, dose-
escalation study when compared to a phenobarbital-
treated control group, without increased serious side
effects (368), but in another pilot study by Jullien et al.
(369) bumetanide showed no effect in reducing seizure
burden caused by hypoxic-ischemic encephalopathy,
probably again because of the heterogeneity in etiology
of seizures. The corresponding phase 1/2 trial (370)
found that bumetanide did not improve seizure control
in newborns with hypoxic-ischemic encephalopathy,
although, importantly, this was an uncontrolled study. The
efficacy of bumetanide in treating schizophrenia is debat-
able, with Rahmanzadeh et al. (371) reporting no significant
improvement in the symptom severity, but bumetanide
was found to be effective in reducing hallucinations in
schizophrenic patients (372). Bumetanide was also found
to be effective in treating neuropathic pain after spinal
cord injury. The treatment also significantly increased
the expression of KCC2 protein, indicating a role of
GABAergic signaling in neuropathic pain (373).

10. CONCLUSIONS

Cl� is arguably one of the most important neurophysio-
logical ions, playing essential roles from neurodevelop-
ment throughout the maturity of the CNS. Not only is Cl�

required for inhibitory synaptic inhibition in the mature
nervous system, it is also a primary mechanism regulat-
ing neuronal excitability. The Cl� gradients that permit
these critical roles are generated and maintained by a
variety of ion channels, exchangers, and cotransporters
expressed in both neuronal and glial cells. In addition,
Cl� itself likely acts as a downstream signaling molecule
used to initiate phosphorylation events to finely tune
neuronal inhibition in response to changes in neuronal
activity. Dynamically altering the Cl� gradient provides a
system to regulate the overall excitatory activity within a
neuronal network, revealing the critical role of Cl� regu-
lators essential for the healthy brain.
Central to the maintenance of neuronal Cl� gradients

are the cotransporters NKCC1 and KCC2. Since their
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discovery in the late 1990s, the structure, function, and
expression profiles of these CCCs have been relatively
well characterized, despite the relative lack of techni-
ques available to directly measure cotransporter activity
or Cl� gradients. Advances in our understanding of
CCC-mediated Cl� regulation will be greatly facilitated
by an enhanced technical toolbox for interrogating and
regulating KCC2 and NKCC1 function and expression.
These advances will identify new potential therapeutic
treatments for the growing list of neurological disorders
associated with CCC dysfunction. Given the expanded
use of high-throughput screening strategies for the iden-
tification of KCC2-enhancing compounds, together with
the development of next-generation Cl� imaging tools,
the future looks promising for the study of chloride trans-
porters controlling neuronal excitability.
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