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The Redox Tower

Redox couples are arranged from the strongest e-
donors at the top (Eo'<0) to the strongest e- acceptors
at the bottom (Eq>0)

The larger the difference in reduction potential
between electron donor and electron acceptor, the
more free energy is released (AGo can be computed
via Nernst equation from reduction potential)

Redox reactions

(reduction-oxidation reactions)

Reduced compound A  Oxidized compound B

(reducing agent) (oxidizing agent)
A6 B
A is oxidized, B is reduced,

gaining electrons

G

B
Oxidized @ Reduced
compound A compound B

losing electrons

A

The Redox Tower
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Electron transport chain (ETC), |

Cytoplasm

Complex | Complex I Complex Il Complex IV Complex V
NADH NAD™ + H" ATP . 4

N, A

Succinate ADP +Pi

Fumarate
+ 2H"

2H*

Matrix

+

4H
Periplasmic space

In the membrane

Intimate interaction between proteins (dehydrogenase, flavoproteins, iron-sulfur
proteins) and diffusible molecules (quinons and cytochromes)

Electrons are swapped

Protons are pumped outside the cell (cytoplasm —> periplasmic space)
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Electron transport chain, Il

- A set of membrane-bound electron carriers (4) organized from high to low redox potentials —>
spontaneous flow of electrons to the terminal electron acceptor

- The membrane carriers are not structurally linked so they can diffuse laterally in the

membrane and collide with one another to promote the rapid exchange of electrons

 Escherichia coli uses lipophilic organic molecules called quinones to electronically link a
dehydrogenase enzyme complex to a specific terminal reductase

Electrons enter the
chain from a primary

CYTOPLASM

electron donor. Succinate Fumarate

NAD* NADH + H*

Complex Il

AU 4H*+ 10, HO
Pt .4 K A ¥y ’_bt',' g
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When FMNHZ redUCE‘S an FE/S Free energy releasedlze_
protein (an electron-only 0" _ e .y
E, (V) carrier), protons are extruded. LB st ) e
0

Electrons exit the chain
by reducing the terminal
electron acceptor (0O,).

XComple)k v Q) |

AE, =1.14V
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Electron transport chain, il

General features:

(1) Carriers are arranged in order of increasingly more positive Eo’ (reduction potential)

(2) Alternation of electron-only and electron-plus-proton carriers in the chain

(3) Net result is reduction of terminal electron acceptor (such as O2) + generation proton motive force

(PMF, thanks to harnessing e- flow)

(4) ATP production by PMF (ATP synthesis is driven by an ion gradient through the activity of ATP synthase)

CYTOPLASM

Electrons enter the
chain from a primary
electron donor.

Electrons exit the chain
by reducing the terminal

Succinate Fumarate electron acceptor (0O,).

NAD* NADH + H*

{¢ Q-cycle reactions 7, 5.

QP e
7 X 8 3§ 5T
+ ) o
5 3
. <
When FMNH, reduces an Fe/S Free energy released/2e-
protein (an electron-only 0’ /
: AG” =-nFAEy' =-2(96.5)(1.14) = -220 kJ
' carrier), protons are extruded. 0
Ey'(V) . - Eo'(V)

-
-

-

+0.39 ~

Madigan et al. 2018
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Electron transport chain, il

General features:
(1) Carriers are arranged in order of increasingly more positive Eo’ (reduction potential)
(2) Alternation of electron-only and electron-plus-proton carriers in the chain

(3) Net result is reduction of terminal electron acceptor (such as O2) + generation proton motive force
(PMF, thanks to harnessing e- flow)

(4) ATP production by PMF (ATP synthesis is driven by an ion gradient through the activity of ATP synthase)
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H+ flow
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10( r il v AS
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» N ADP + P;
-
NADH FADH, 2H®+ 30, ATP
NAD“+H® FAD+2H® H,0 he

Madigan et al. 2018 7 e flow



Structural orientation for ATP
production

Redox potentials and free energies in the respiratory chain
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http:/watcut.uwaterloo.ca/webnotes/Metabolism/RespiratoryChain.html
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(Fe-S)N-2 FADH,

CYTOPLASM

Heme c; CytC
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Spontaneous flow of electrons (Eo’)

H+ are separated from e- across membrane
(spatial localization ETC)

Inner and outer surfaces of the membrane
differ in charge, pH, and electrochemical
potential

Electrochemical potential is proton motive
force (PMF) and energizes the membrane,
much like a battery

Only three of the four mentioned electron

carriers are capable of transporting protons
from the matrix to the intermembrane space:
I, lll, and IV
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Rotation of y
and Fo subunits

Siegfried Engelbrecht-Vandré

N proton flow
@ (0)

- H+ gradient that drives phosphorolation of ADP to ATP as well as several other
important transport systems (nutrient transport, flagellar rotation, and other
energy-requiring reactions)

- 3 H+ —> ATP (Noguchi et al., 2004): F1 is the catalytic complex responsible for
the interconversion of ADP + Pi and ATP. Fo, the rotor, is integrated in the

membrane


https://www.frontiersin.org/articles/10.3389/fmicb.2015.00575/full#B87
http://watcut.uwaterloo.ca/webnotes/Metabolism/RespiratoryChain.html

Rotation of y
and Fo subunits

Siegfried Engelbrecht-Vandré

o proton flow
@ ©

Madigan et al. 2018
o1 o
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- In analogy to how dissipation of the pmf applies torque that rotates the
bacterial flagellum, the pmf also creates torque in the large membrane protein
complex that synthesizes ATP

- This complex is called ATP synthase (ATPase)

- The activity of ATPase is driven by the pmf, and the formation of ATP from
respiratory electron flow is called oxidative phosphorylation (contrast this
with substrate-level phosphorylation in fermentation)
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Microbial Redox couples

Redox couples and potentials (mV) for elements common in biology at pH 7 and temperature 25 C *
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>Ope;/|:ez(pH2)  2NO/NO C|O /CIO
i ,‘E @ONOO/NO - #1199 8 C[O | Ct
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* For teaching purposes only. Consult the scientific literature for exact values.
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Image produced by Tyler Barnum @tylerbarnumphd



Microbial Redox couples structure
the metabolism

Examples of enegertically favorable redox metabolisms
Fermentation

DONOR
o Pyruvate / Glucose

Aerobic Respiration

prRODUCT DONOR
o CO, /Glucose

Anaerobic Respiration
Denitrification DONOR

0 CO. /Glucose
s 2
‘| o
is an excellent
o Pyruvate [ Lactate e- 840
530 life almost always o N /NO
-~ ACCEPTOR O NO/NO-
The ccepto PRODUCT 933 2
i 00, /2HO
e 168¢
~ ACCEPTOR d2NO/NO
O /N Den
1850 2 accept
ACCEPTOR

*For teaching purposes only. Consult the scientific literature for exact values.

Methanogenesis Chemolitoautotrophy
DONOR Nitrification (nitrite)
e_g 2H*/H, 713 0 CO_/ Acetate
174 C( /CH4 5 Energy r t be spent
' to fix carbon dioxide
\ﬁ e_? NO3./NOz- DONOR
00, /[2H,0
ACCEPTOR 3R
ACCEPTOR
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Photolitoautotrophy
Sulfide oxidation DONOR
DONOR O Photosystem | (excited state)
e-

S°/HS o O CO [ Acetate

e ACCEPTOR

O Photosyster ground
ACCEPTOR

il Tor an electron

donor of g*iu.[r\z,wtl;:‘u Il In cyanobacterna
water to b

allowed
ye oxidized to oxyger

Image produced by Tyler Barnum @tylerbarnumphd



Microbial diversity and metabolic
pathways to survive in the environment

F Cy Cx
/ A .\
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|
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it
l‘ \'
¥ Euk
I
i 1:\ ".;ﬂf‘
I: I( ki
il i
=
Metabolic pathway Domains
0 Sulfur reduction Il Anoxygenic photosynthesis Eukarya
[ Sulfate reduction 7 Oxygenic photosynthesis Bacteria
I Denitrification Bl Methanogenesis Archaea
Il Nitroaen fixation
Figure 1

Distribution of selected metabolic pathways on the 16S rRNA tree of life. The tree (constructed with ARB; 104) was edited for clarity
and shows selected bacterial and archaeal taxa. The area of each branch is proportional to the total number of 16S rRNNA sequences
present in the database. Metabolic pathways were assigned based on physiological data (Supplemental Table 2). Sulfate reduction
includes sulfite and thiosulfate reduction pathways. *Euryarcheata are capable of bacteriorhodpsin-based photosynthesis only.
Abbreviations: A, Aquificae; Alpha, Alphaproteobacteria; Beta, Betaproteobacteria; C, Crenarchaeota; Ch, Chlorobi; Cx, Chloroflexi; Cy,
Cyanobacteria; Delta, Deltaproteobacteria; E, Euryarchaeota; Epsilon, Epsilonproteobacteria; Euk, Eukarya; ¥, Firmicutes; Gamma,
Gammaproteobacteria; N, Nitrospirae; T, Thermodesulfobacteria. 14
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Microbial diversity and metabolic
pathways to survive in the environment
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Reduction potential

ranges of microbial ™ ¥ §:
0.72 - =
N o T 5
respiration e
060~ 2 5 =
0.48 - ? E = s
5 2 l 5 3
- The achievable energy yield of ETC asg s = > g
depends on the difference in electrical 5 ¢ *

] 2 = Oxidized HS
potential between electron donor and Det = .
acceptor S 5 85 g

 Microbes able to respire in multiple ways 223 = M3
will always choose available acceptors with %%~ 5 . T
: . e P
the biggest potential difference to the o l = |
donor (e.g., E. coliO2 > NO3-> fumarate) " |
—-0.36
-0.48 — l
Reduced HS
—-0.60 —

16 Kliipfel et al., 2014
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Proton reduction;
Pyrococcus furiosus,
obligate anaerobe

Carbonate respiration;
acetogenic bacteria,
obligate anaerobes

Sulfur respiration;
facultative aerobes and
obligate anaerobes

Carbonate respiration;
methanogenic Archaea;
obligate anaerobes

Sulfate respiration
(sulfate reduction);

obligate anaerobes

(SO, —S05, Eol -0.52)

Fumarate respiration;
facultative aerobes

Arsenate respiration;
facultative aerobes and
obligate anaerobes

Trimethylamine oxide/
dimethyl sulfoxide
respiration;

facultative aerobes

Iron respiration; facultative
aerobes and obligate
anaerobes

Reductive dechlorination;
facultative aerobes and
obligate anaerobes

Nitrate respiration;
facultative aerobes (some
reduce NO5™ to NH,*)

Selenate respiration;
facultative aerobes

Denitrification;
facultative aerobes

Manganese respiration;
facultative aerobes

Aerobic respiration;
obligate and
facultative aerobes

suonesidsaa o1qoseeuy

Anaerobic
respiration

Microbially mediated reactions
[ Microaerophiles

| 4Fe?* + 10H,0 + O, — 4Fe(OH), + 8H"

Gallionella spp., Leptothrix spp.,
Mariprofundus spp.. Sideroxydans spp.

| Photoferrotrophs
HCO," +Fe?* + 10H,0 ™
(CH,0) + 4Fe(OH), + TH"*

Rhodopseudomonas palustris TIE-1
Rhodobacter sp. SW2
Chlorobium ferrooxidans (KoFox)

' Thiodictyon sp. F4

NO, -reducing Fe(n)-oxidizers

10Fe?* + 2NO," + 24H,0 —
10Fe(OH), + N, + 18H"

Acidovorax spp., KS, 2002
| Thiobafillus denim‘ﬁcags

Fe-ammox

NH,’ + 6FeOOH + 10H* —
NO, +6Fe’ + 10H,0

Unknown

| Fe(m)-reducing organic C and/or
H,-oxidizers

4FeOOH + CH,CHOHCOO" + 7H'—
4Fe’ + CH,COO + HCO, +6H,0
2Fe(OH) + H, — 2Fe’* + 2H,0

Geobacter spp., Shewanella spp,
Albidoferax ferrireducens, Geothrix spp.

Melton et al., 2014
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Fermentation/Respiration

Fermentation is a form of anaerobic catabolism in which organic compounds both
donate electrons and accept electrons, and redox balance is achieved without the
need for external electron acceptors

ATP is made from these energy-rich compounds by substrate-level phosphorylation,
a process whereby the energy-rich phosphate bond on the organic compound is
transferred directly to ADP to form ATP

Glucose fermentation into alcoholic or lactic acid: 2 ATP

Respiration is a form of aerobic or anaerobic catabolism in which an organic or inorganic
electron donor is oxidized with O2 (in aerobic respiration) or some other compounds (in
anaerobic respiration) functioning as electron acceptors

ATP is made by PMF

Glucose aerobic respiration into CO2: 38 ATP

18



Fermentation, Il

TABLE 3.4 Common fermentations and some of the organisms carrying them out
Reaction (substrate — products) Organisms
Alcoholic Hexose® — 2 ethanol + 2 CO, Yeast, Zymomonas
Homolactic Hexose — 2 lactate™ + 2 H* Streptococcus, some Lactobacillus
Heterolactic Hexose — lactate™ + ethanol + CO, + H* Leuconostoc, some Lactobacillus
Propionic acid 3 Lactate™ — 2 propionate™ + acetate™ + CO, + H,0 Propionibacterium, Clostridium propionicum
Mixed acid®< Hexose — ethanol + 2,3-butanediol + succinate?~ + lactate™ acetate™ Enteric bacteria including Escherichia, Salmonella,
+ formate™ + H, + CO, Shigella, Klebsiella, Enterobacter
Butyric acid® Hexose — butyrate™ + 2 H, + 2 CO, + H* Clostridium butyricum
Butanol® 2 Hexose — butanol + acetone +5 CO, +4 H, Clostridium acetobutylicum
Caproate/Butyrate 6 Ethanol + 3 acetate™ — 3 butyrate™ + caproate™ +2 H, +4 H,0 + H* Clostridium kluyveri
Acetogenic Fructose — 3 acetate™+ 3 H* Clostridium aceticum

a_. . . N . - B . . FER . = . . . - .. e . B . . B =, - —

- Not all compounds are inherently fermentable, but sugars (e.g. glucose, other hexoses, most
disaccharides, other relatively small sugars) —are fermentable

« Polysaccharides (e.g. cellulose, starch, chitin) are also fermentable by bacteria that produce enzymes
that attack these large molecules and produce sugars from them if the latter are not glucose, they must
first be converted to glucose before they enter glycolysis

« 2 net ATP molecules in glycolysis

- More ATP synthesis by substrate-level phosphorylation if fatty acid because the fatty acid is formed from

its coenzyme-A precursor (energy-rich molecules) o
’



Fermentation

Figure 3.14 The essentials of
fermentation.

Uptake

Excretion

gusunmNAD* euumy,

“assPp NADHEmmus®

Substrate-level
phosphorylation

Madigan et al. 2020

ADP ATP

» An organic compound is oxidized

Both organic compounds
accept and donate e-

No need to external e-
acceptor to achieve
balance

- e- are recycled back to one of the oxidized organic products because an external e-

acceptor is lacking

- Product is exceed from the cell and ATP is produced by substrate-level

phosphorylation



Fundamentals in Metabolisms

Transfer e- and conserve energy

Reactions are not performed in single-step —>
consecutive reactions in different part of the cells

Need of soluble e- carriers: NAD+/NADH, FAD+/FADH2

Reactants Products
[ | | |
e donor,,4 € acceptor,, e donor,, € acceptor,.g
l 24 e l l l
CeH1206 + 6 O < = 6 CO2 + 6 HO

Madigan et al. 2020

Oxidized to CO, Reduced to H,O
(CO,/glucose) (5 O,/H,0)



Substrate-Level-Phosphorylation

- @lycolysis can generate ATP in the absence of oxygen:
anaerobic metabolism

+ Glycolysis and citric acid cycle (CAC) result from substrate-
level phosphorylation (SLP)

- SLP is distinct from oxidative phosphorylation that occurs in
ETC

- Substrate-level phosphorylation refers to the formation of ATP
from ADP and a phosphorylated intermediate, rather than from
ADP and inorganic phosphate, Pi, as is done in oxidative
phosphorylation (ET)



Figure 3.21 Energeticsin

fermentation and aerobic
respiration.

Lactic acid fermentation

Glycolysis
Glucose » 2 pyruvate > 2 lactate

oNAD*” “2NADH 2NADHY ‘2 NAD*
2ATP+2P/ \2ATP
SLP

Net: Glucose + 2 ADP + 2 P; —> 2 lactate + 2 ATP

Aerobic respiration

Glycolysis CAC
Glucose > 2 pyruvate > 6 CO,

2 NAD*/ ‘2 NADH,— 8 NAD*/_ 8 NADH | ET

10 NAD*

2ATP+2P” N2 ATP 2FAD” 2 FADH,
SLP

/X
SLP 34 ADP +34P,7 \34ATP

\ \ Ox. Phos.

> 2 FAD

7

Net: Glucose + 6 O, + 38 ADP + 38 P, —> 6 CO, + 6 H,0O + 38 ATP

Madigan et al. 2020



Figure 3.22 Metabolic

diversity and its relationship to
oxygen.

Organic electron donor

(a) Chemoorganotrophy

Chemotrophs

Inorganic electron donor
(H,, H,S, Fe?*, NH,*, etc.)

(b) Chemolithotrophy

Madigan et al. 2020
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Photo
Synthesis: Calvin-Benson-Bassham

S-layer
Outer
membrane

Peptidoglycan
Layer

Periplasm

Plasma
membrane

Carboxysome
Chromosomes (

Perpipheral /
cytoplasm

Central

cytoplasm \

Thylakoid
membrane

Thylakoid lumen

Ribosome

Phycobilisome

Mills et al. 2020

Carboxysomes are made
of polyhedral protein shells
about 80 - 140 nm in
diameter

Concentrate carbon dioxide
to overcome the
inefficiency of RuBisCo
(ribulose bisphosphate
carboxylase/oxygenase)

RuBisCO predominant
enzyme in carbon fixation
and the rate limiting
enzyme in the Calvin-
Benson-Bassham cycle



Oxygenic photosynthesis
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- Physical location within the cell (Cyanobacteria)

- Bilayer w. proteins and complex that capture light, phycobilisome



Reactants Products
I ] | l
e donor,,y € acceptor,, e donor,, e~ acceptor,.y

L/ |
P h Oto CsH12/0;}02 = 6C02+6 H20

NN

Oxidized to CO, Reduced to H,0
(CO,/glucose) (% 0,/H,0)

cytoplasm
3 (NADP* + H*) NADPH
Light \/ Stroma

e %% s
'.’0‘.‘.‘.‘0‘.’.‘ . 3 X
Photosynthetic 2
{ membrane |

}
2 $ 3! | |
OO IINION SO0

Water-oxidizing

complex
3 H0 + O+ H* H* Sk
PSlI Cyt bgf PSI ATP synthase
Splitting of H20 Madigan et al. 2020

Generation H+ motive force

Generation of NADPH —> C fixation (from CO2) via Calvin—Benson—Bassham cycle
ATP production



Light driven processes
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Energy generating metabolic
pathways
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Integrative approach, |
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Metabolic pathways evolved to
utilize available substrates
produced as end products of
other types of microbial
metabolism, either by
modification of existing
metabolic pathways or by using
established ones in reverse


https://www.genome.jp/

Integrative approach, li

Oxidative reactions
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r Reductive reactions

A, ammonification; AP, anoxygenic photosynthesis; AR, aerobic respiration; AU, autotrophy; D, denitrification; Exox, other elements oxidation; Exred, other elements reduction; H,

heterotrophy; M, methanogenesis; MO, methane oxidation/methanotrophy,; N/AQO, nitrification/ammonia oxidation; NF, nitrogen fixation; OP, oxygenic photosynthesis; SDO, sulfide
oxidation; SO, sulfur oxidation; SR, sulfur reduction; STR, sulfate reduction
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Energy conservation

- The achievable energy gain (Gibbs free energy, AG) of ETC depends on the redox
potential difference (AE) of all reactions between electron donor and acceptor

« Microbes able to respire in multiple ways will always choose available acceptors with
the biggest potential difference to the donor (e.g., E. coli O2 > NO3-> fumarate)

- Cellular metabolism coordinate the production, management and re-distribution
of carbon building blocks and energy (ATP and NADPH) between various
electron and carbon sinks

- ATP and NAD(P)H are essential energy carriers for numerous biochemical reactions
occurring

- With the exception of fermentation, in which substrate-level phosphorylation occurs all
other mechanisms of microbial energy conservation are linked to the proton motive
force (or gradient of sodium ions, Na+, instead of protons)

- Whether electrons come from the oxidation of organic or inorganic chemicals or are
mediated by light-driven processes, in both respiration and photosynthesis, energy
conservation is the result of electron transport reactions and the formation of a
PMF —> ATP

- The oxidation of NADH and FADH, to NAD+ and FAD, respectively, is linked to
energy conservation via ETC
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Inference: LUCA lived ~4.2 Ga (4.09-4.33 Ga) through divergence time analysis of pre-LUCA gene
duplicates, calibrated using microbial fossils and isotope records under a new cross-bracing
implementation
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Earth redox state
changes

Oxygenic photosynthesis
Moore et al., 2017 . f\/\/qoo
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The availability of different metals and substrates has changed over the course of
Earth’s history as a result of secular changes in redox conditions of the mantel

Solar energy used by early microbes
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Coevolution of geosphere and biosphere through time as depicted
by change in planetary redox state, availability of redox couples

10! T T T T T T ; T
100 @ Great Oxygenic photosynthesis |
g oxygenation g0 SO?2- .
10 Fe2t CO;, A CO, 4 | 0,
—~ 1021 H,S : ; < i
E| 10 2 0 H, NH3 NO; : NO3 N
& 103 SO, NHE CH, : SO4 a
QO': > CH, NO; 0, : CO,
4 L .
10 o
- More Planetary More
107~ reduced /\l surface oxidized | i}
10 : i
L | L L L | f L
4.0 3.5 3.0 2.5 2.0 1.3 1.0 0.5 0.0
Age (Ga)
| | | I | | |
b Carbon fixation Sulfate reduction
St A Selenate reduction | | Oxygen respiration Standard reduction potential
L | e q e 3 O)/H O
Methanogenesis | | Iron reduction ' ' e i i
© coych, | ez : . at pH 7 (E 0) of biologically
o = o I ; g Nivous oxide | relevant redox pairs. Redox
Nitrogen fixation | : ; : reduction )
N_\ r?lz/NH3 - -l Arsenate reduction ! i N2O/N; halfreactions represent the
_— i % : AsO;/AsO3" : . : . . :
= N——— ' _AsOZ/AsO3 | T —— | reductive side (i.e., terminal
T Ha/H* i | | Fermentation i i L | electron \acceptor) of given
o ; .1 |pyruvate/lactate : Nitrate reduction ) :
S L L iy : | NO;{NO; | Nitric oxide i pathways
Q Acetogenesis | 1 |Sulfite reduction | | ' ' reduction :
Q CO,/CH;C00" | | SO3/HS- ! ; | Lo NO/N,O :
- IR I | I § L i L L |
-750 =500 -250 0 250 500 750 1,000

35



Emerging microbial
metabolisms

Moore et al., 2017
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The oxidoreductases responsible for these metabolisms
incorporated metals that were readily available in Archaean
oceans: iron and iron-sulfur clusters
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Phylogenetic tree of the main lineages of Bacteria and
Archaea and their putative divergence times
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Goldman et al. 2023

OXIdatlve respiration (e.g. mitochondria)
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Electron transport chains as a window into the earliest
stages of evolution

Signatures of early evolution across different types of chemiosmotic
energy conservation.

Electron flow is shown as blue arrows.

Likely ancestry from the LUCA is reflected by either direct phylogenetic
evidence or the number of different LUCA proteome studies (out of
eight total) that predict a component of the complex to be descended

from the LUCA.

Protein cofactors that are potential relics of prebiotic mineral catalysis or
ribozyme catalysts are highlighted in green and purple, respectively.

Homology across different ETC components is indicated by a dashed
line.

Electron carrier proteins that are components of ETC complexes such
‘as cytochrome B are not shown.



Falkowski, Fenchel and Delong, 2008

Biosphere model of energy
fluxes and elemental cycles
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Microbial microscale
actions structure planet-
scale functioning



