Introduction to Artificial Intelligence

Search

Instructor: Tatjana Petrov

University of Trieste, Italy

[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to Al at UC Berkeley. All materials available at hitp:/ai.berkeley.edu Thanks to
Laura Nenzi for the course edition in summer 2023.]

http://ai.berkeley.edu/

Today

® Search Problem

® Uninformed Search Methods
® Breadth-First Search
® Depth-First Search
® Uniform-Cost Search

Search Problems

Context

= Agent: goal-based agents with
atomic representation

= Environment: episodic, single agent,
fully observable, deterministic,
static, discrete, and known

Example: Traveling in Romania

Eforie

Search Problems Are Models

Search Problems

= A search problem consists of:

= Astate space S

Actions: actions(s) lists those actions enabled in state s

A successor(/action cost) function: c(s, a,s’) where a(s) = s’

A initial state and a goal test(/state)

= Asolutionis a path, i.e. a sequence of actions (a plan) which transforms
the start state to a goal state

= An optimal solution has the lowest path cost among all solutions.

Example: Traveling in Romania

= State space: Cities

= Actions
e.g. Actions(Arad)={ToSibiu,ToTimisoara,ToZerind}

= Successor function:

= Roads: Go to adjacent city with cost = distance
e.g. c(Arad, ToSibiu, Sibiu)=140

= Start state:
= Arad
= Goal state:

[JHirsova

Eforie

= Bucharest

= Solution?

Search Problems

= A search problem consists of:

- wsre s 8 1 I O
= A successor(/action cost) function / '
(with actions, costs) .

= Asolutionis a path, i.e. a sequence of actions (a
plan) which transforms the start state to a goal state

= An initial state and a goal test(/state)

What’s in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
" Food count: 30
» Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(230-1)x(122)x4
= States for pathing?
120
= States for eat-all-dots?
120x(239)

Quiz: Safe Passage

= Problem: eat all dots while keeping the ghosts perma-scared

= What does the state space have to specify?

= (agent position, dot booleans, power pellet booleans, remaining scared time, ghosts
location)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem
* Nodes are (abstracted) world configurations 75
= Arcs represent successors (action results) Ara

» The goal test is a set of goal nodes (maybe only one) .

E'I:imismm

i Lugoj

| Inhlehnd‘ia

uobmaL_gg

State Space Graphs

= State space graph: A mathematical
representation of a search problem

* Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

» The goal test is a set of goal nodes (maybe only one)

Tiny state space graph
for a tiny search problem

State Space Graphs

= State space graph: A mathematical
representation of a search problem

* Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

» The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

~ 7 N/

K

| |
F' “ ' Ha

W

<N, S N

I

-

-

Ed
T

Search Trees

' _ This is now / start
IINII’ 10 /\ ”E”, 10
' H _ Possible futures

= Asearch tree:

= A “what if” tree of plans and their outcomes
= The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states

= For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in the
search tree is an
entire PATH in the
state space
graph.

We construct
them on demand
—and we
construct as little
as possible.

-~

Search Tree

~

_

—~—
d € p

— - /\ []
b C e h r q
1 1 _— S 1
a a h r p q f

S 1 C -

p q f q C G

] -~ -

a ¢ G a

a

/

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

(2 r

a \b\
O © 7 G a/ G
(b) 1% b

/N /N

Important: Lots of repeated structure in the search tree!

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

o OO

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Ara

Ij:

Sibiu Fagaras

49g
Vaslui

Rimnicu Vilcea

142

Pitasti

Lugoj 97
0 \ ' Hi
= Irsowva
hMehadia \”‘J 8. jcen

Dobreta L__'_f“

——

Eforie

Searching with a Search Tree

Arad

Cvad > CFagarasy COradea> @i viced)

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |mportant ideas:
= Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

S

Example: Tree Search

D=4y ()
=
@ -S>
@T @ @ s>e
s2p
/m h/\ (; s>d>b
Cﬁ)) TN A s2d>c
Tt
a a/@ CP p OI/f\ s>d>e>h
p q (D q (I: G SO /Z/ U 7 T 71
! /b s>dde>r>f>dc
a N N N N
¢ ©
a

Best-first search

o — - E\raluation function

function BEST-FIRST-SEARCH(problem, |) returns a solution node or failure
node <+~ NODE(STATE=problem.INITIAL)
[frontier < a priority queue ordered by f, with node as an element
reached + a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY(frontier) do
node <— POP(frontier)
if problem.1S-GOAL(node.STATE) then return node
for each child in EXPAND(problem, node) do
§ < child STATE
if 5 is not in reached or child PATH-COST < reached|s|.PATH-COST then
reached|s) < child
add child to frontier
return failure

function EXPAND(problem, node) yields nodes
s+ node.STATE
for each action in problem.ACTIONS(s) do
5"« problem.RESULT(s, action)
cost < node. PATH-COST + problem. ACTION-COST(s, action, s")
yield NODE(STATE=s", PARENT=node, ACTION=action, PATH-COST=cost)

Data Structure to store the frontier

= A priority queue first pops the node with the minimum cost
according to some evaluation function, f (used in best-first search)

= A FIFO queue or first-in-first-out queue first pops the node that
was added to the queue first (used in breadth-first search)

= A LIFO queue or last-in-first-out queue (also known as a stack) pops
first the most recently added node (used in depth-first search)

Search Algorithm Properties

Search Algorithm Properties

Cartoon of search tree:

bisthe b hing fact 1 node
u IS e prancnin actor
_ ks b nodes
" mis the maximum depth
. . b2 nodes
= solutions at various depths .
m tlers<
Number of nodes in entire tree?
" 1+b+b2+..bm=0(b™)
b™ nodes

Time complexity?

Space complexity?

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

Measuring problem-solving performance

Completeness: Is the algorithm guaranteed to find a solution when there is one, and to
Completeness correctly report failure when there is not?

Cost optimality: Does it find a solution with the lowest path cost of all solutions?

Time complexity: How long does it take to find a solution? This can be measured in
Time complexity seconds, or more abstractly by the number of states and actions
considered.

Space complexity: How much memory is needed to perform the search?

	Intro
	Slide 1: Introduction to Artificial Intelligence
	Slide 2: Today

	Search Problem
	Slide 3: Search Problems
	Slide 4: Context
	Slide 5: Example: Traveling in Romania
	Slide 6: Search Problems Are Models
	Slide 7: Search Problems
	Slide 8: Example: Traveling in Romania
	Slide 9: Search Problems
	Slide 10: What’s in a State Space?
	Slide 11: State Space Sizes?
	Slide 12: Quiz: Safe Passage
	Slide 13: State Space Graphs and Search Trees
	Slide 14: State Space Graphs
	Slide 15: State Space Graphs
	Slide 16: State Space Graphs
	Slide 17: Search Trees
	Slide 18: State Space Graphs vs. Search Trees
	Slide 19: Quiz: State Space Graphs vs. Search Trees
	Slide 20: Quiz: State Space Graphs vs. Search Trees
	Slide 21: Tree Search
	Slide 22: Search Example: Romania
	Slide 23: Searching with a Search Tree
	Slide 24: General Tree Search
	Slide 25: Example: Tree Search
	Slide 26: Example: Tree Search
	Slide 27: Best-first search
	Slide 28: Data Structure to store the frontier
	Slide 29: Search Algorithm Properties
	Slide 30: Search Algorithm Properties
	Slide 31: Measuring problem-solving performance

