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Chapter 1 introduced us to data mining, and the CRISP-DM standard process for

data mining model development. In Phase 1 of the data mining process, business
understanding or research understanding, businesses and researchers first enun-
ciate project objectives, then translate these objectives into the formulation of a data

mining problem definition, and finally prepare a preliminary strategy for achieving

these objectives.

Here in this chapter, we examine the next two phases of theCRISP-DMstandard

process, data understanding and data preparation. We will show how to evaluate
the quality of the data, clean the rawdata, dealwithmissing data, and perform transfor-

mations on certain variables. All of Chapter 3, Exploratory Data Analysis, is devoted
to this very important aspect of the data understanding phase. The heart of any data
mining project is the modeling phase, which we begin examining in Chapter 4.

2.1 WHY DO WE NEED TO PREPROCESS THE DATA?

Much of the raw data contained in databases is unpreprocessed, incomplete, and

noisy. For example, the databases may contain

� Fields that are obsolete or redundant,
� Missing values,
� Outliers,
� Data in a form not suitable for the data mining models,
� Values not consistent with policy or common sense.

In order to be useful for data mining purposes, the databases need to undergo

preprocessing, in the form of data cleaning and data transformation. Data mining
often deals with data that have not been looked at for years, so that much of the data

contain field values that have expired, are no longer relevant, or are simply missing.

The overriding objective is tominimize GIGO, to minimize the Garbage that gets Into
our model, so that we can minimize the amount of Garbage that our models give Out.

Depending on the data set, data preprocessing alone can account for 10–60%

of all the time and effort for the entire data mining process. In this chapter, we shall

examine several ways to preprocess the data for further analysis downstream.

2.2 DATA CLEANING

To illustrate the need for cleaning up the data, let us take a look at some of the kinds

of errors that could creep into even a tiny data set, such as that in Table 2.1.

Let us discuss, attribute by attribute, some of the problems that have found their

way into the data set in Table 2.1. The customer ID variable seems to be fine. What
about zip?

Let us assume that we are expecting all of the customers in the database to have

the usual five-numeral American zip code. Now, Customer 1002 has this unusual (to

American eyes) zip code of J2S7K7. If we were not careful, we might be tempted to
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TABLE 2.1 Can you find any problems in this tiny data set?

Marital Transaction

Customer ID Zip Gender Income Age Status Amount

1001 10048 M 78,000 C M 5000

1002 J2S7K7 F −40,000 40 W 4000

1003 90210 10,000,000 45 S 7000

1004 6269 M 50,000 0 S 1000

1005 55101 F 99,999 30 D 3000

classify this unusual value as an error, and toss it out, until we stop to think that not all

countries use the same zip code format. Actually, this is the zip code of St. Hyacinthe,

Quebec, Canada, and so probably represents real data from a real customer. What

has evidently occurred is that a French-Canadian customer has made a purchase, and

put their home zip code down in the required field. In the era of globalization, we

must be ready to expect unusual values in fields such as zip codes, which vary from

country to country.

What about the zip code for Customer 1004? We are unaware of any countries

that have four digit zip codes, such as the 6269 indicated here, so this must be an
error, right? Probably not. Zip codes for the New England states begin with the

numeral 0. Unless the zip code field is defined to be character (text) and not numeric,
the software will most likely chop off the leading zero, which is apparently what

happened here. The zip code may well be 06269, which refers to Storrs, Connecticut,
home of the University of Connecticut.

The next field, gender, contains a missing value for customer 1003. We shall
detail methods for dealing with missing values later in this chapter.

The income field has three potentially anomalous values. First, Customer 1003

is shown as having an income of $10,000,000 per year. While entirely possible,

especially when considering the customer’s zip code (90210, Beverly Hills), this
value of income is nevertheless an outlier, an extreme data value. Certain statis-
tical and data mining modeling techniques do not function smoothly in the pres-

ence of outliers; therefore, we shall examine methods of handling outliers later in

the chapter.

Poverty is one thing, but it is rare to find an income that is negative, as our

poor Customer 1002 has. Unlike Customer 1003’s income, Customer 1002’s reported

income of −$40,000 lies beyond the field bounds for income, and therefore must be
an error. It is unclear how this error crept in, with perhaps the most likely explanation

being that the negative sign is a stray data entry error. However, we cannot be sure,

and should approach this value cautiously, and attempt to communicate with the

database manager most familiar with the database history.

So what is wrong with Customer 1005’s income of $99,999? Perhaps nothing;

it may in fact be valid. But, if all the other incomes are rounded to the nearest $5000,

why the precision with Customer 1005? Often, in legacy databases, certain specified

values are meant to be codes for anomalous entries, such as missing values. Perhaps

99999 was coded in an old database to mean missing. Again, we cannot be sure and
should again refer to the database administrator.
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Finally, are we clear regarding which unit of measure the income variable is

measured in? Databases often get merged, sometimes without bothering to check

whether such merges are entirely appropriate for all fields. For example, it is quite

possible that customer 1002, with the Canadian zip code, has an income measured in

Canadian dollars, not U.S. dollars.

The age field has a couple of problems. Though all the other customers have
numeric values for age, Customer 1001’s “age” of C probably reflects an earlier
categorization of this man’s age into a bin labeled C. The data mining software will
definitely not like this categorical value in an otherwise numeric field, and we will

have to resolve this problem somehow. How about Customer 1004’s age of 0? Perhaps

there is a newborn male living in Storrs, Connecticut who has made a transaction
of $1000. More likely, the age of this person is probably missing and was coded as

0 to indicate this or some other anomalous condition (e.g., refused to provide the age

information).

Of course, keeping an age field in a database is a minefield in itself, since the
passage of time will quickly make the field values obsolete and misleading. It is better

to keep date-type fields (such as birthdate) in a database, since these are constant,
and may be transformed into ages when needed.

The marital status field seems fine, right? Maybe not. The problem lies in the
meaning behind these symbols. We all think we know what these symbols mean, but

are sometimes surprised. For example, if you are in search of cold water in a restroom

in Montreal, and turn on the faucet marked C, you may be in for a surprise, since the
C stands for chaude, which is French for hot. There is also the problem of ambiguity.
In Table 2.1, for example, does the S for Customers 1003 and 1004 stand for single
or separated?

The transaction amount field seems satisfactory, as long as we are confident
that we know what unit of measure is being used, and that all records are transacted

in this unit.

2.3 HANDLING MISSING DATA

Missing data are a problem that continues to plague data analysis methods. Even

as our analysis methods gain sophistication, we nevertheless continue to encounter

missing values in fields, especially in databases with a large number of fields. The

absence of information is rarely beneficial. All things being equal, more information

is almost always better. Therefore, we should think carefully about how we handle

the thorny issue of missing data.

To help us tackle this problem, we will introduce ourselves to a new data

set, the cars data set, originally compiled by Barry Becker and Ronny Kohavi
of Silicon Graphics, and available for download at the book series website

www.dataminingconsultant.com. The data set consists of information about 261

automobiles manufactured in the 1970s and 1980s, including gas mileage, number

of cylinders, cubic inches, horsepower, and so on.

Suppose, however, that some of the field valuesweremissing for certain records.

Figure 2.1 provides a peek at the first 10 records in the data set, with two of the field

values missing.
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Figure 2.1 Some of our field values are missing.

A common method of “handling” missing values is simply to omit the records

or fields with missing values from the analysis. However, this may be dangerous,

since the pattern of missing values may in fact be systematic, and simply deleting

the records with missing values would lead to a biased subset of the data. Further,

it seems like a waste to omit the information in all the other fields, just because one

field value is missing. In fact, Schmueli, et al. [1] state that if only 5% of data values
are missing from a data set of 30 variables, and the missing values are spread evenly

throughout the data, almost 80% of the records would have at least one missing value.

Therefore, data analysts have turned to methods that would replace the missing value

with a value substituted according to various criteria.

Some common criteria for choosing replacement values for missing data are as

follows:

1. Replace the missing value with some constant, specified by the analyst.

2. Replace the missing value with the field mean1 (for numeric variables) or the
mode (for categorical variables).

3. Replace the missing values with a value generated at random from the observed
distribution of the variable.

4. Replace the missing values with imputed values based on the other character-
istics of the record.

Let us examine each of the first three methods, none of which is entirely

satisfactory, as we shall see. Figure 2.2 shows the result of replacing the missing

values with the constant 0 for the numerical variable cubicinches and the label
missing for the categorical variable brand.

Figure 2.3 illustrates how themissing valuesmaybe replacedwith the respective

field means and modes.

Figure 2.2 Replacing missing field values with user-defined constants.

1See the Appendix for the definition of mean and mode.
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Figure 2.3 Replacing missing field values with means or modes.

The variable brand is categorical, with mode US, so the software replaces the
missing brand value with brand = US. Cubicinches, on the other hand, is contin-
uous (numeric), so that the software replaces the missing cubicinches values with
cubicinches = 200.65, which is the mean of all 258 non-missing values of that
variable.

Isn’t it nice to have the software take care of your missing data problems like

this? In a way, certainly. However, do not lose sight of the fact that the software is

creating information on the spot, actually fabricating data to fill in the holes in our

data set. Choosing the field mean as a substitute for whatever value would have been

there may sometimes work out well. However, the end-user needs to be informed that

this process has taken place.

Further, the mean may not always be the best choice for what constitutes a

“typical” value. For example, Larose [2] examines a data set where the mean is

greater than the 81st percentile. Also, if many missing values are replaced with the

mean, the resulting confidence levels for statistical inference will be overoptimistic,

since measures of spread will be artificially reduced. It must be stressed that replacing

missing values is a gamble, and the benefits must be weighed against the possible

invalidity of the results.

Finally, Figure 2.4 demonstrates how missing values can be replaced with

values generated at random from the observed distribution of the variable.

One benefit of this method is that the measures of center and spread should

remain closer to the original, when compared to the mean replacement method.

However, there is no guarantee that the resulting records would make sense. For

example, the random values drawn in Figure 2.4 has led to at least one car that does

not in fact exist! There is no Japanese-made car in the database which has an engine

size of 400 cubic inches.

Figure 2.4 Replacing missing field values with random draws from the distribution of the

variable.
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We therefore need data imputation methods that take advantage of the knowl-
edge that the car is Japanese when calculating its missing cubic inches. In data

imputation, we ask “What would be the most likely value for this missing value,

given all the other attributes for a particular record?” For instance, an American

car with 300 cubic inches and 150 horsepower would probably be expected to have

more cylinders than a Japanese car with 100 cubic inches and 90 horsepower. This is

called imputation of missing data. Before we can profitably discuss data imputation,
however, we need to learn the tools needed to do so, such as multiple regression or

classification and regression trees. Therefore, to learn about the imputation of missing

data, please see Chapter 13.

2.4 IDENTIFYING MISCLASSIFICATIONS

Let us look at an example of checking the classification labels on the categorical

variables, to make sure that they are all valid and consistent. Suppose that a frequency

distribution of the variable brand was as shown in Table 2.2.
The frequency distribution shows five classes, USA, France, US, Europe, and

Japan. However, two of the classes, USA and France, have a count of only one

automobile each. What is clearly happening here is that two of the records have

been inconsistently classified with respect to the origin of manufacture. To maintain

consistency with the remainder of the data set, the record with originUSA should have
been labeledUS, and the record with origin France should have been labeled Europe.

2.5 GRAPHICAL METHODS FOR
IDENTIFYING OUTLIERS

Outliers are extreme values that go against the trend of the remaining data. Identifying
outliers is important because they may represent errors in data entry. Also, even if an

outlier is a valid data point and not an error, certain statistical methods are sensitive

to the presence of outliers and may deliver unreliable results.

One graphical method for identifying outliers for numeric variables is to exam-

ine a histogram2 of the variable. Figure 2.5 shows a histogram of the vehicle weights
from the (slightly amended) cars data set. (Note: This slightly amended data set is
available as cars2 from the series website.)

TABLE 2.2 Notice anything strange about this
frequency distribution?

Brand Frequency

USA 1

France 1

US 156

Europe 46

Japan 51

2See the Appendix for more on histograms, including a caution on their interpretation.



2.6 MEASURES OF CENTER AND SPREAD 23

0

0

10

20

C
o

u
n

t

30

40

1000 2000 3000

weight
4000 5000

Figure 2.5 Histogram of vehicle weights: can you find the outlier?

There appears to be one lonely vehicle in the extreme left tail of the distribution,

with a vehicle weight in the hundreds of pounds rather than in the thousands. Further

investigation (not shown) tells us that the minimum weight is 192.5 pounds, which

is undoubtedly our little outlier in the lower tail. As 192.5 pounds is rather light for

an automobile, we would tend to doubt the validity of this information.

We can surmise that perhaps the weight was originally 1925 pounds, with

the decimal inserted somewhere along the line. We cannot be certain, however, and

further investigation into the data sources is called for.

Sometimes two-dimensional scatter plots3 can help to reveal outliers in more

than one variable. Figure 2.6, a scatter plot of mpg against weightlbs, seems to have
netted two outliers.

Most of the data points cluster together along the horizontal axis, except for two

outliers. The one on the left is the same vehicle we identified in Figure 2.6, weighing

only 192.5 pounds. The outlier near the top is something new: a car that gets over

500 miles per gallon! Clearly, unless this vehicle runs on dilithium crystals, we are

looking at a data entry error.

Note that the 192.5 pound vehicle is an outlier with respect to weight but

not with respect to mileage. Similarly, the 500-mpg car is an outlier with respect

to mileage but not with respect to weight. Thus, a record may be an outlier in a

particular dimension but not in another. We shall examine numeric methods for

identifying outliers, but we need to pick up a few tools first.

2.6 MEASURES OF CENTER AND SPREAD

Suppose that we are interested in estimating where the center of a particular variable

lies, as measured by one of the numerical measures of center, the most common

3See the Appendix for more on scatter plots.
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Figure 2.6 Scatter plot of mpg against Weightlbs shows two outliers.

of which are the mean, median, and mode. Measures of center are a special case

of measures of location, numerical summaries that indicate where on a number line
a certain characteristic of the variable lies. Examples of measures of location are

percentiles and quantiles.

The mean of a variable is simply the average of the valid values taken by
the variable. To find the mean, simply add up all the field values and divide by the

sample size. Here we introduce a bit of notation. The sample mean is denoted as

x̄ (“x-bar”) and is computed as x̄ =
∑
x/n, where

∑
(capital sigma, the Greek letter

“S,” for “summation”) represents “sum all the values” and n represents the sample
size. For example, suppose that we are interested in estimating where the center of

the customer service calls variable lies from the churn data set that we will explore
in Chapter 3. IBM/SPSS Modeler supplies us with the statistical summaries shown

in Figure 2.7. The mean number of customer service calls for this sample of n =
3333 customers is given as x̄ = 1.563. Using the sum and the count statistics, we can
verify that

x̄ =
∑
x

n
= 5209

3333
= 1.563

For variables that are not extremely skewed, the mean is usually not too far

from the variable center. However, for extremely skewed data sets, the mean becomes

less representative of the variable center. Also, the mean is sensitive to the presence of

outliers. For this reason, analysts sometimes prefer to work with alternative measures

of center, such as the median, defined as the field value in the middle when the field
values are sorted into ascending order. The median is resistant to the presence of

outliers. Other analysts may prefer to use the mode, which represents the field value
occurring with the greatest frequency. The mode may be used with either numerical

or categorical data, but is not always associated with the variable center.
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Figure 2.7 Statistical summary of customer service calls.

Note that measures of center do not always concur as to where the center of the

data set lies. In Figure 2.7, the median is 1, which means that half of the customers

made at least one customer service call; the mode is also 1, which means that the

most frequent number of customer service calls was 1. The median and mode agree.

However, the mean is 1.563, which is 56.3% higher than the other measures. This is

due to the mean’s sensitivity to the right-skewness of the data.

Measures of location are not sufficient to summarize a variable effectively. In

fact, two variables may have the very same values for the mean, median, and mode,

and yet have different natures. For example, suppose that stock portfolio A and stock

portfolio B contained five stocks each, with the price/earnings (P/E) ratios as shown

in Table 2.3. The portfolios are distinctly different in terms of P/E ratios. Portfolio A

includes one stock that has a very small P/E ratio and another with a rather large P/E

ratio. On the other hand, portfolio B’s P/E ratios are more tightly clustered around the

mean. But despite these differences, the mean, median, and mode of the portfolios,

P/E ratios are precisely the same: The mean P/E ratio is 10, the median is 11, and the

mode is 11 for each portfolio.

Clearly, these measures of center do not provide us with a complete picture.

What ismissing aremeasures of spread ormeasures of variability, whichwill describe
how spread out the data values are. Portfolio A’s P/E ratios are more spread out than

those of portfolio B, so the measures of variability for portfolio A should be larger

than those of B.

Typical measures of variability include the range (maximum − minimum),

the standard deviation, the mean absolute deviation, and the interquartile range. The

TABLE 2.3 The two portfolios have the same mean,
median, and mode, but are clearly different

Stock Portfolio A Stock Portfolio B

1 7

11 8

11 11

11 11

16 13
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sample standard deviation is perhaps the most widespread measure of variability and
is defined by

s =

√∑
(x − x̄)2

n − 1

Because of the squaring involved, the standard deviation is sensitive to the

presence of outliers, leading analysts to prefer other measures of spread, such as the

mean absolute deviation, in situations involving extreme values.
The standard deviation can be interpreted as the “typical” distance between a

field value and the mean, and most field values lie within two standard deviations of

the mean. From Figure 2.7 we can state that the number of customer service calls

made by most customers lies within 2(1.315) = 2.63 of the mean of 1.563 calls. In
other words, most of the number of customer service calls lie within the interval

(−1.067, 4.193), that is, (0, 4). (This can be verified by examining the histogram of
customer service calls in Figure 3.14 in Chapter 3.)

More information about these statistics may be found in the Appendix. A more

complete discussion of measures of location and variability can be found in any

introductory statistics textbook, such as Larose [2].

2.7 DATA TRANSFORMATION

Variables tend to have ranges that vary greatly from each other. For example, if we

are interested in major league baseball, players’ batting averages will range from zero

to less than 0.400, while the number of home runs hit in a season will range from

zero to around 70. For some data mining algorithms, such differences in the ranges

will lead to a tendency for the variable with greater range to have undue influence

on the results. That is, the greater variability in home runs will dominate the lesser

variability in batting averages.

Therefore, data miners should normalize their numeric variables, in order to
standardize the scale of effect each variable has on the results. Neural networks benefit

from normalization, as do algorithms that make use of distance measures, such as the
k-nearest neighbor algorithm. There are several techniques for normalization, and we
shall examine three of the more prevalent methods. Let X refer to our original field
value, and X∗ refer to the normalized field value.

2.8 MIN-MAX NORMALIZATION

Min-max normalization works by seeing how much greater the field value is than the
minimum value min(X), and scaling this difference by the range. That is

X∗
mm = X − min(X)

range(X)
= X − min(X)
max(X) −min(X)

The summary statistics for weight are shown in Figure 2.8.
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Figure 2.8 Summary statistics for weight.

The minimum weight is 1613 pounds, and the range = max (X) − min (X) =
4997 − 1613 = 3384 pounds. Let us find the min-max normalization for three auto-
mobiles weighing 1613 pounds, 3384 pounds, and 4997, respectively.

� For an ultra-light vehicle, weighing only 1613 pounds (the field minimum), the

min-max normalization is

X∗
mm = X − min(X)

range(X)
= 1613 − 1613

3384
= 0

Thus, data values that represent the minimum for the variable will have

a min-max normalization value of zero.
� The midrange equals the average of the maximum and minimum values in a
data set. That is,

midrange(X) = max(X) + min(X)
2

= 4997 + 1613
2

= 3305 pounds

For a “midrange” vehicle (if any), which weighs exactly halfway between

the minimum weight and the maximum weight, the min-max normalization is

X∗
mm = X − min(X)

range(X)
= 3305 − 1613

3384
= 0.5

So the midrange data value has a min-max normalization value of 0.5.
� The heaviest vehicle has a min-max normalization value of

X∗
mm = X − min(X)

range(X)
= 4497 − 1613

3384
= 1

That is, data values representing the field maximum will have a min-max nor-

malization of 1. To summarize, min-max normalization values will range from 0 to 1.

2.9 Z-SCORE STANDARDIZATION

Z-score standardization, which is very widespread in the world of statistical analysis,
works by taking the difference between the field value and the field mean value, and

scaling this difference by the standard deviation of the field values. That is

Z-score = X −mean(X)
SD(X)
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Figure 2.8 tells us that mean(weight) = 3005.49 and SD(weight) = 852.49.
� For the vehicle weighing only 1613 pounds, the Z-score standardization is

Z-score = X −mean(X)
SD(X)

= 1613 − 3005.49
852.49

≈ −1.63

Thus, data values that lie below the mean will have a negative Z-score
standardization.

� For an “average” vehicle (if any), with a weight equal to mean(X) = 3005.49
pounds, the Z-score standardization is

Z-score = X −mean(X)
SD(X)

= 3005.49 − 3005.49
852.49

= 0.

That is, values falling exactly on the mean will have a Z-score standard-
ization of zero.

� For the heaviest car, the Z-score standardization is

Z-score = X −mean(X)
SD(X)

= 4997 − 3005.49
852.49

≈ 2.34.

That is, data values that lie above the mean will have a positive Z-score
standardization.4

2.10 DECIMAL SCALING

Decimal scaling ensures that every normalized value lies between −1 and 1.

X∗
decimal

= X
10d

where d represents the number of digits in the data value with the largest absolute
value. For the weight data, the largest absolute value is |4997| = 4997, which has
d = 4 digits. The decimal scaling for the minimum and maximum weights is

Min: X∗
decimal

= 1613

104
= 0.1613 Max: X∗

decimal
= 4997

104
= 0.4997

2.11 TRANSFORMATIONS TO ACHIEVE NORMALITY

Some data mining algorithms and statistical methods require that the variables be

normally distributed. The normal distribution is a continuous probability distribution
commonly known as the bell curve, which is symmetric. It is centered at mean 𝜇

(“myu”) and has its spread determined by standard deviation 𝜎 (sigma). Figure 2.9

shows the normal distribution that has mean 𝜇 = 0 and standard deviation 𝜎 = 1,
known as the standard normal distribution Z.

4Also, for a given Z-score, we may find its associated data value. See the Appendix.
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Figure 2.9 Standard normal Z distribution.

It is a commonmisconception that variables that have had the Z-score standard-
ization applied to them follow the standard normal Z distribution. This is not correct!
It is true that the Z-standardized data will have mean 0 and standard deviation 1 (see
Figure 2.14), but the distribution may still be skewed. Compare the histogram of

the original weight data in Figure 2.10 with the Z-standardized data in Figure 2.11.
Both histograms are right-skewed; in particular, Figure 2.10 is not symmetric, and so

cannot be normally distributed.

We use the following statistic to measure the skewness of a distribution5:

Skewness = 3 (mean −median)
standard deviation

For right-skewed data, the mean is greater than the median, and thus the skew-

ness will be positive (Figure 2.12), while for left-skewed data, the mean is smaller
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Figure 2.10 Original data.

5Find more about standard deviations in the Appendix.
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Figure 2.11 Z-Standardized data are still right-skewed, not normally distributed.

MeanMedian

Figure 2.12 Right-skewed data have positive skewness.

than the median, generating negative values for skewness (Figure 2.13). For perfectly

symmetric data (such as in Figure 2.9) of course, the mean, median, and mode are all

equal, and so the skewness equals zero.

Much real-world data are right-skewed, including most financial data. Left-

skewed data are not as common, but often occurs when the data are right-censored,

such as test scores on an easy test, which can get no higher than 100. We use the

statistics for weight and weight_Z shown in Figure 2.14 to calculate the skewness for
these variables.

For weight we have

Skewness = 3 (mean −median)
standard deviation

= 3(3005.490 − 2835)
852.646

= 0.6
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Mean Median

Figure 2.13 Left-skewed data have negative skewness.

For weight_Z we have

Skewness = 3 (mean −median)
standard deviation

= 3(0 − (−0.2))
1

= 0.6

Thus, Z-score standardization has no effect on skewness.
To make our data “more normally distributed,” we must first make it sym-

metric, which means eliminating the skewness. To eliminate skewness, we apply a

transformation to the data. Common transformations are the natural log transfor-
mation ln(weight), the square root transformation

√
weight, and the inverse square

root transformation 1∕
√
weight. Application of the square root transformation (Fig-

ure 2.15) somewhat reduces the skewness, while applying the ln transformation
(Figure 2.16) reduces skewness even further.

Figure 2.14 Statistics for calculating skewness.
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Figure 2.15 Square root transformation somewhat reduces skewness.

The statistics in Figure 2.17 is used to calculate the reduction in skewness:

Skewness(sqrt (weight)) = 3 (54.280 − 53.245)
7.709

≈ 0.40

Skewness(ln (weight)) = 3 (7.968 − 7.950)
0.284

≈ 0.19

Finally, we try the inverse square root transformation 1∕
√
weight, which gives

us the distribution in Figure 2.18. The statistics in Figure 2.19 gives us

Skewness (inverse sqrt (weight)) = 3 (0.019 − 0.019)
0.003

= 0

which indicates that we have eliminated the skewness and achieved a symmetric

distribution.
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Figure 2.16 Natural log transformation reduces skewness even further.
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Figure 2.17 Statistics for calculating skewness.

Now, there is nothing magical about the inverse square root transformation; it

just happened to work for the amount of skewness present in this variable.

Though we have achieved symmetry, we still have not arrived at normality. To

check for normality, we construct a normal probability plot, which plots the quantiles
of a particular distribution against the quantiles of the standard normal distribution.

Similar to a percentile, the pth quantile of a distribution is the value xp such that p%
of the distribution values are less than or equal to xp.

In a normal probability plot, if the distribution is normal, the bulk of the points

in the plot should fall on a straight line; systematic deviations from linearity in this

plot indicate nonnormality. Note from Figure 2.18 that the distribution is not a good

fit for the normal distribution curve shown. Thus, we would not expect our normal

probability plot to exhibit normality. As expected, the normal probability plot of
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Figure 2.18 The transformation inverse sqrt (weight) has eliminated the skewness, but is still
not normal.
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Figure 2.19 Statistics for inverse sqrt (weight).

inverse_sqrt(weight) in Figure 2.20 shows systematic deviations from linearity, indi-
cating nonnormality. For contrast, a normal probability plot of normally distributed

data is shown in Figure 2.21; this graph shows no systematic deviations from linearity.

Experimentation with further transformations (not shown) did not yield accept-

able normality for inverse_sqrt(weight). Fortunately, algorithms requiring normality
usually do fine when supplied with data that is symmetric and unimodal.

Finally, when the algorithm is done with its analysis, do not forget to “de-
transform” the data. Let x represent the original variable, and y represent the trans-
formed variable. Then, for the inverse square root transformation, we have

y = 1√
x

“De-transforming,” we obtain: x = 1

y2
. Results that your algorithm provided on

the transformed scale would have to be de-transformed using this formula.6
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Figure 2.20 Normal probability plot of inverse_sqrt(weight) indicates nonnormality.

6For more on data transformations, seeData Mining Methods and Models, by Daniel Larose (Wiley, 2006)
or Data Mining and Predictive Analytics, by Daniel Larose and Chantal Larose (Wiley, 2015, to appear).
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Figure 2.21 Normal probability plot of normally distributed data.

2.12 NUMERICAL METHODS FOR
IDENTIFYING OUTLIERS

The Z-score method for identifying outliers states that a data value is an outlier if
it has a Z-score that is either less than −3 or greater than 3. Variable values with
Z-scores much beyond this range may bear further investigation, in order to verify
that they do not represent data entry errors or other issues. On the other hand, one

should not automatically omit outliers from analysis.

We saw that the minimum Z-score was for the vehicle weighing only 1613
pounds, and having a Z-score of −1.63, while the maximum Z-score was for the
4997-pound vehicle, with a Z-score of 2.34. Since neither Z-score is either less than
−3 or greater than 3, we conclude that there are no outliers among the vehicle weights.

Unfortunately, the mean and standard deviation, which are both part of the

formula for the Z-score standardization, are both rather sensitive to the presence of
outliers. That is, if an outlier is added to (or deleted from) a data set, the values

of mean and standard deviation will both be unduly affected by the presence (or

absence) of this new data value. Therefore, when choosing a method for evaluating

outliers, it may not seem appropriate to use measures which are themselves sensitive

to their presence.

Therefore, data analysts have developed more robust statistical methods for
outlier detection, which are less sensitive to the presence of the outliers themselves.

One elementary robust method is to use the interquartile range (IQR). The quartiles
of a data set divide the data set into four parts, each containing 25% of the data.

� The first quartile (Q1) is the 25th percentile.
� The second quartile (Q2) is the 50th percentile, that is, the median.
� The third quartile (Q3) is the 75th percentile.
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Then, the interquartile range (IQR) is a measure of variability, much more
robust than the standard deviation. The IQR is calculated as IQR = Q3 – Q1, and
may be interpreted to represent the spread of the middle 50% of the data.

A robust measure of outlier detection is therefore defined as follows. A data

value is an outlier if

a. It is located 1.5(IQR) or more below Q1 or

b. It is located 1.5(IQR) or more above Q3.

For example, suppose for a set of test scores, the 25th percentile was Q1 = 70
and the 75th percentile was Q3 = 80, so that half of all the test scores fell between 70
and 80. Then the interquartile range, or the difference between these quartiles was
IQR = 80 − 70 = 10.

A test score would be robustly identified as an outlier if

a. It is lower than Q1 – 1.5(IQR) = 70 – 1.5(10) = 55 or
b. It is higher than Q3 + 1.5(IQR) = 80 + 1.5(10) = 95.

2.13 FLAG VARIABLES

Some analytical methods, such as regression, require predictors to be numeric. Thus,

analysts wishing to use categorical predictors in regression need to recode the categor-

ical variable into one or more flag variables. A flag variable (or dummy variable
or indicator variable) is a categorical variable taking only two values, 0 and 1.
For example, the categorical predictor sex, taking values female and male, could be
recoded into the flag variable sex_flag as follows:

If sex = female = then sex flag = 0; if sex = male then sex flag = 1.

When a categorical predictor takes k ≥ 3 possible values, then define k − 1
dummy variables, and use the unassigned category as the reference category. For
example, if a categorical predictor region has k = 4 possible categories, {north,
east, south, west}, then the analyst could define the following k − 1 = 3 flag

variables.

north flag : If region = north then north flag = 1; otherwise north flag = 0.
east flag : If region = east then east flag = 1; otherwise east flag = 0.
south flag : If region = south then south flag = 1; otherwise south flag = 0.

The flag variable for the west is not needed, since, region = west is already
uniquely identified by zero values for each of the three existing flag variables. (Further,

inclusion of the fourth flag variable will cause some algorithms to fail, because of the

singularity of the (X′X)−1 matrix in regression, for instance.) Instead, the unassigned
category becomes the reference category, meaning that, the interpretation of the value

of north_flag is region = north compared to region = west. For example, if we are
running a regression analysis with income as the target variable, and the regression

coefficient (see Chapter 5) for north_flag equals $1000, then the estimated income
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for region = north is $1000 greater than for region = west, when all other predictors
are held constant.

2.14 TRANSFORMING CATEGORICAL VARIABLES INTO
NUMERICAL VARIABLES

Would not it be easier to simply transform the categorical variable region into a single
numerical variable rather than using several different flag variables? For example,

suppose we defined the quantitative variable region_num as follows:

Region Region_num

North 1

East 2

South 3

West 4

Unfortunately, this is a common and hazardous error. The algorithm now

erroneously thinks the following:

� The four regions are ordered,
� West > South > East > North,
� West is three times closer to South compared to North, and so on.

So, in most instances, the data analyst should avoid transforming categorical

variables to numerical variables. The exception is for categorical variables that are

clearly ordered, such as the variable survey_response, taking values always, usually,
sometimes, never. In this case, one could assign numerical values to the responses,
though one may bicker with the actual values assigned, such as:

Survey

Survey response Response_num

Always 4

Usually 3

Sometimes 2

Never 1

Should never be “0” rather than “1”? Is always closer to usually than usually
is to sometimes? Careful assignment of the numerical values is important.
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2.15 BINNING NUMERICAL VARIABLES

Some algorithms prefer categorical rather than continuous predictors7, in which case

we would need to partition any numerical predictors into bins or bands. For example,
we may wish to partition the numerical predictor house value into low, medium, and
high. There are four common methods for binning numerical predictors:

1. Equal width binning divides the numerical predictor into k categories of equal
width, where k is chosen by the client or analyst.

2. Equal frequency binning divides the numerical predictor into k categories,
each having k/n records, where n is the total number of records.

3. Binning by clustering uses a clustering algorithm, such as k-means clustering
(Chapter 10) to automatically calculate the “optimal” partitioning.

4. Binning based on predictive value. Methods (1)–(3) ignore the target variable;
binning based on predictive value partitions the numerical predictor based on

the effect each partition has on the value of the target variable. Chapter 3

contains an example of this.

Equal width binning is not recommended for most data mining applications,

since the width of the categories can be greatly affected by the presence of outliers.

Equal frequency distribution assumes that each category is equally likely, an assump-

tion which is usually not warranted. Therefore, methods (3) and (4) are preferred.

Suppose we have the following tiny data set, which we would like to discretize

into k = 3 categories: X = {1, 1, 1, 1, 1, 2, 2, 11, 11, 12, 12, 44}.

1. Using equal width binning, we partition X into the following categories of equal
width, illustrated in Figure 2.22a:
� Low: 0 ≤ X < 15, which contains all the data values except one.
� Medium: 15 ≤ X < 30, which contains no data values at all.
� High: 30 ≤ X < 45, which contains a single outlier.

2. Using equal frequency binning, we have n = 12, k = 3, and n/k = 4. The

partition is illustrated in Figure 2.22b.
� Low: Contains the first four data values, all X = 1.
� Medium: Contains the next four data values, X = {1, 2, 2, 11}.
� High: Contains the last four data values, X = {11, 12, 12, 44}.

Note that one of the medium data values equals a data value in the low
category, and another equals a data value in the high category. This violates
what should be a self-evident heuristic: Equal data values should belong to

the same category.

3. Finally, k-means clustering identifies what seems to be the intuitively correct
partition, as shown in Figure 2.22c.

7For further information about discrete and continuous variables, as well as other ways of classifying

variables, see the Appendix.
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Figure 2.22 Illustration of binning methods.

We provide two examples of binning based on predictive value in Chapter 3.

2.16 RECLASSIFYING CATEGORICAL VARIABLES

Reclassifying categorical variables is the categorical equivalent of binning numerical

variables. Often, a categorical variable will contain too many field values to be

easily analyzable. For example, the predictor state could contain 50 different field
values. Data mining methods such as logistic regression and the C4.5 decision tree

algorithm perform suboptimally when confronted with predictors containing too

manyfield values. In such a case, the data analyst should reclassify the field values. For

example, the 50 states could each be reclassified as the variable region, containing field
values Northeast, Southeast, North Central, Southwest, andWest. Thus, instead of 50
different field values, the analyst (and algorithm) is faced with only 5. Alternatively,

the 50 states could be reclassified as the variable economic_level, with three field
values containing the richer states, the midrange states, and the poorer states. The data

analyst should choose a reclassification that supports the objectives of the business

problem or research question.

2.17 ADDING AN INDEX FIELD

It is recommended that the data analyst create an index field, which tracks the sort

order of the records in the database. Data mining data gets partitioned at least once

(and sometimes several times). It is helpful to have an index field so that the original

sort order may be recreated. For example, using IBM/SPSS Modeler, you can use the

@Index function in the Derive node to create an index field.

2.18 REMOVING VARIABLES THAT ARE NOT USEFUL

The data analyst may wish to remove variables that will not help the analysis,

regardless of the proposed data mining task or algorithm. Such variables include
� Unary variables
� Variables which are very nearly unary
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Unary variables take on only a single value, so a unary variable is not so much
a variable as a constant. For example, data collection on a sample of students at an
all-girls private school would find that the sex variable would be unary, since every
subject would be female. Since sex is constant across all observations, it cannot have
any effect on any data mining algorithm or statistical tool. The variable should be

removed.

Sometimes a variable can be very nearly unary. For example, suppose that

99.95% of the players in a field hockey league are female, with the remaining 0.05%

male. The variable sex is therefore very nearly, but not quite, unary. While it may be
useful to investigate the male players, some algorithms will tend to treat the variable

as essentially unary. For example, a classification algorithm can be better than 99.9%

confident that a given player is female. So, the data analyst needs to weigh how

close to unary a given variable is, and whether such a variable should be retained or

removed.

2.19 VARIABLES THAT SHOULD PROBABLY
NOT BE REMOVED

It is (unfortunately) a common—though questionable—practice to remove from anal-

ysis the following types of variables:

� Variables for which 90% or more of the values are missing.
� Variables which are strongly correlated.

Before you remove a variable because it has 90% or more missing values, con-

sider that there may be a pattern in the missingness, and therefore useful information,

that you may be jettisoning. Variables which contain 90% missing values present

a challenge to any strategy for imputation of missing data (see Chapter 13). For

example, are the remaining 10% of the cases are truly representative of the missing

data, or are the missing values occurring due to some systematic but unobserved

phenomenon? For example, suppose we have a field called donation_dollars in a
self-reported survey database. Conceivably, those who donate a lot would be inclined

to report their donations, while those who do not donate much may be inclined to skip

this survey question. Thus, the 10% who report are not representative of the whole.

In this case, it may be preferable to construct a flag variable, donation_flag, since
there is a pattern in the missingness which may turn out to have predictive power.

However, if the data analyst has reason to believe that the 10% are representa-

tive, then he or she may choose to proceed with the imputation of the missing 90%. It

is strongly recommended that the imputation be based on the regression or decision

tree methods shown in Chapter 13. Regardless of whether the 10% are representative

of the whole or not, the data analyst may decide that it is wise to construct a flag

variable for the non-missing values, since they may very well be useful for prediction

or classification. Also, there is nothing special about the 90% figure; the data analyst



2.21 A WORD ABOUT ID FIELDS 41

may use any large proportion he or she considers warranted. Bottom line: one should

avoid removing variables just because they have lots of missing values.

An example of correlated variables may be precipitation and attendance at a

state beach. As precipitation increases, attendance at the beach tends to decrease, so

that the variables are negatively correlated8. Inclusion of correlated variables may at

best double-count a particular aspect of the analysis, and at worst lead to instability of

the model results. When confronted with two strongly correlated variables, therefore,

some data analysts may decide to simply remove one of the variables. We advise

against doing so, since important information may thereby be discarded. Instead, it

is suggested that principal component analysis be applied, where the common vari-

ability in correlated predictors may be translated into a set of uncorrelated principal

components9.

2.20 REMOVAL OF DUPLICATE RECORDS

During a database’s history, recordsmay have been inadvertently copied, thus creating

duplicate records. Duplicate records lead to an overweighting of the data values in

those records, so, if the records are truly duplicate, only one set of them should

be retained. For example, if the ID field is duplicated, then definitely remove the

duplicate records. However, the data analyst should apply common sense. To take

an extreme case, suppose a data set contains three nominal fields, and each field

takes only three values. Then there are only 3 × 3 × 3 = 27 possible different sets
of observations. In other words, if there are more than 27 records, at least one of

them has to be a duplicate. So, the data analyst should weigh the likelihood that the

duplicates represent truly different records against the likelihood that the duplicates

are indeed just duplicated records.

2.21 A WORD ABOUT ID FIELDS

Because ID fields have a different value for each record, they will not be helpful

for your downstream data mining algorithms. They may even be hurtful, with the

algorithm finding some spurious relationship between ID field and your target. Thus it

is recommended that ID fields should be filtered out from the data mining algorithms,

but should not be removed from the data, so that the data analyst can differentiate

between similar records.

In Chapter 3, Exploratory Data Analysis, we apply some basic graphical and
statistical tools to help us begin to uncover simple patterns and trends in the data

structure.

8For more on correlation, see the Appendix.
9For more on principal component analysis, see Data Mining Methods and Models, by Daniel Larose
(Wiley, 2006) or Data Mining and Predictive Analytics, by Daniel Larose and Chantal Larose (Wiley,
2015, to appear).


