

DECIMAL METHOD

$$x^3 + x = 100.$$

La soluzione che cerchiamo, chiamiamola c, è certamente compresa tra 4 e 5: infatti, posto $f(x) = x^3 + x$, risulta

$$f(4) = 64+4=68$$

 $f(5) = 125+5 = 130$

e poiché f è continua, $c \in (4, 5)$; il primo passo consiste nel determinare la prima cifra decimale di c: calcoleremo f(x) da 4 a 5 con passo $\Delta x = 0.1$.

* ` '

In Excel impostiamo nella cella A2 il valore Δx , cioè inizialmente 0.1. Nella cella B2 scriviamo l'estremo sinistro dell'intervallo a cui appartiene c; in B3 scriviamo la formula

$$=B2+A2$$

e copiamo B2 verso il basso fino a B12, costruendo così la sequenza 4, 4.1, 4.2, ..., 5. In C2 scriviamo la formula

 $=B2^3+B2$

e la copiamo verso il basso fino a C12, calcolando così i valori f(4), f(4.1), ..., f(5).

	Α	В	С
1	dx	X	f(x)
2	0,1	4	68
3		4,1	73,021
4		4,2	78,288
5		4,3	83,807
6		4,4	89,584
7		4,5	95,625
8		4,6	101,936
9		4,7	108,523
10		4,8	115,392
11		4,9	122,549
12		5	130

Si osserva che f(4.5) < 100 mentre f(4.6) > 100. Quindi $c \in (4.5, 4.6)$ e la prima cifra decimale è dunque 5. Proseguiamo ora nello stesso modo per la seconda cifra decimale: cambiamo il passo in A2 scrivendo 0.01, e in B2 scriviamo 4.5. Il foglio si aggiorna nel seguente modo.

	Α	В	С
1	dx	X	f(x)
2	0,01	4,5	95,625
3		4,51	96,24385
4		4,52	96,86541
5		4,53	97,48968
6		4,54	98,11666
7		4,55	98,74637
8		4,56	99,37882
9		4,57	100,014
10		4,58	100,6519
11		4,59	101,2926
12		4,6	101,936

Con lo stesso ragionamento di prima scopriamo che *c* è compreso tra 4.56 e 4.57. In A2 scriviamo 0.001 e in B2 4.56, e proseguiamo così fino alla precisione desiderata, cambiando ad ogni iterazione i valori di A2 e B2.

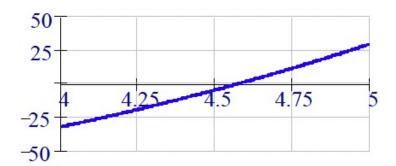
	Α	В	С
1	dx	X	f(x)
2	0,001	4,56	99,37882
3		4,561	99,44221
4	_	4,562	99,50563
5		4,563	99,56908
6		4,564	99,63256
7		4,565	99,69606
8		4,566	99,75959
9		4,567	99,82315
10		4,568	99,88674
11		4,569	99,95035
12		4,57	100,014

	Α	В	С
1	dx	X	f(x)
2	0,0001	4,569	99,95035
3		4,5691	99,95671
4		4,5692	99,96308
5		4,5693	99,96944
6		4,5694	99,97581
7		4,5695	99,98217
8		4,5696	99,98853
9		4,5697	99,9949
10		4,5698	100,0013
11		4,5699	100,0076
12		4,57	100,014

	Α	В	С
1	dx	X	f(x)
2	0,00001	4,5697	99,9949
3		4,56971	99,99553
4		4,56972	99,99617
5		4,56973	99,99681
6		4,56974	99,99744
7		4,56975	99,99808
8		4,56976	99,99872
9		4,56977	99,99935
10		4,56978	99,99999
11		4,56979	100,0006
12		4,5698	100,0013

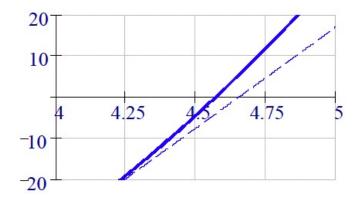
	Α	В	С
1	dx	X	f(x)
2	0,000001	4,56978	99,99999
3		4,569781	100,0001
4		4,569782	100,0001
5		4,569783	100,0002
6		4,569784	100,0002
7		4,569785	100,0003
8		4,569786	100,0004
9		4,569787	100,0004
10		4,569788	100,0005
11		4,569789	100,0006
12		4,56979	100,0006

Se ci fermiamo alla sesta cifra decimale otteniamo


c = 4.569780...

NEWTON'S ALGORITHM

L'algoritmo di Newton è uno dei più potenti metodi di approssimazione per le soluzioni di un'equazione. Lavoriamo sull'equazione


$$x^3 + x - 100 = 0$$

Posto $f(x) = x^3 + x - 100$, risulta f(4) = -32, f(5) = 30. La soluzione c è dunque compresa tra 4 e 5, e si può interpretare come l'ascissa del punto in cui il grafico di f(x) interseca l'asse x.

Prendiamo, come primo tentativo, $x_0 = 4$. In x_0 mandiamo la retta tangente a f(x) (f(x) deve dunque essere derivabile), la cui equazione è

$$y = f(4) + f'(4)(x-4) = -228 + 49x.$$

Tale retta interseca l'asse x in un punto $x_1 = 228/49 \approx 4.65$ che in generale è più vicino a c di x_0 . Si prosegue nello stesso modo partendo da x_1 , costruendo così una successione

$$x_0, x_1, x_2, \dots$$

che in generale converge (con straordinaria rapidità) a c.

Fatti i conti in generale, la successione ricorsiva che fa passare da x_n a x_{n+1} è la seguente:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Nel nostro esempio, poiché $f'(x) = 3x^2 + 1$, la successione è così definita:

$$x_{n+1} = x_n - \frac{x_n^3 + x_n - 100}{3x_n^2 + 1}$$

Non ci resta che implementare in Excel questa successione. Nella colonna A costruiamo la successione dei numeri naturali 0, 1, 2, ..., 20. In B2 scriviamo il valore iniziale $x_0 = 4$. In B3 la formula

che copiamo verso il basso fino alla riga 12. Ecco la tabella che otteniamo.

	Α	В
1	n	x[n]
2	0	4
3	1	4,6530612244898
4	2	4,5712393790314
5	3	4,5697806213763
6	4	4,5697801629327
7	5	4,5697801629327
8	6	4,5697801629327
9	7	4,5697801629327
10	8	4,5697801629327
11	9	4,5697801629327
12	10	4,5697801629327