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Block diagram digital connection

Air and satellite networks F. Babich

▪ Source coding: compression.

▪ Channel coding: Redundancy is added in a systematic way, for 

protection against errors (coding rate: Rc (information bits/coded bits)).

▪ Modulation: Operation by which a continuous time signal is associated 

with the symbols (numbers) emitted by the source, after compression 

and channel coding.
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Digital signal
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▪ Message: discrete succession of numbers the values of which are chosen in set 

of dimension M=2b. Each value represents b bits. 

▪ Modulation: operation that associates each of the possible values with a 

waveform. A continuous time signal, continuous amplitude is obtained, used to 

transfer the numeric information.

▪ A modified signal reaches the receiver (delay, attenuation, distortion, noise, 

interference) and can be misinterpreted by the receiver (detection/decoding 

error).

▪ The performance of a digital transmission system is measured in terms of error 

rate or, more in general, by error statistic.  



Digital Modulator
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• It associates to the sequence of numbers to transmit a succession of selected 

waveforms in a finite dimensional set M=2b, being b a integer. Each waveform 

is associated with a group of b consecutive bits (mapping).

• Modulation operates baseband, if the produced signal has Fourier transform in 

baseband, or it is defined passband otherwise.

• Parameters:

– T [s]: Signaling (or symbol) interval, (waveform emission period).

– 1/T [baud] o [symbol/s]: transmission rate in symbols per second.

– W [Hz]: bandwidth. It is proportional to 1/T.



A mathematical model
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• Consider a set of N orthonormal functions,                                   ,                    .

• A generic waveform can be expressed as a linear combination of the 

orthonormal functions i(t),                               , being                          .

• A generic waveform, x(t), is, therefore, represented by a vector 

x=(x1, x2 ,…, xN), whose components can be used to determine some quantities 

of interest.

– Norm:                           .

– Scalar product:                                 .

– Distance:                                   . 

• It is N≤M.

Passband Amplitude modulation: N=1, 

Phase, amplitude and phase modulation: N=2, 
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Linear Passband Modulations
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• Amplitude modulation: N=1.

Complex envelope:

• Phase, amplitude and phase modulations: N=2. 

Complex envelope:

PSK (M4):

QAM (M=22b):  
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Power spectrum

Air and satellite networks F. Babich

• Linear modulation 

Complex envelope:                                         ,  (*)

where the complex coefficients an (information) are random variables belonging 

to a stationary process, characterized by the mean value                      and the 

autocorrelation function

• Autocorrelation function of the complex envelope (cyclostationary process of 

period T):

• Wiener-Khintchine theorem: the power spectrum is given by the Fourier 

transform of the average autocorrelation function                           . We have

being                                  . 

(*)  The actual signal is                                   , being fc the carrier frequency. 
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Power Spectrum
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• A useful equality : 

• Power spectrum (general expression):

• Independent data, with non-zero mean value:

being                                   the data variance.

•

• Independent data, with zero mean value
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Raised Cosine
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• The Raised Cosine pulse allows one to obtain a strictly limited bandwidth.

• As  increases, the bandwidth increases, but also the speed with which the 

impulse response is damped increases (and therefore the problems arising from 

imperfect synchronism decrease). It is commonly adopted
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Power spectra
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Phase Shift Keying example (M-PSK)
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• Scattering diagram (8-PSK, with Gray mapping)
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Gray mapping
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Bit Ordine  Ordine 

0 0 0 0 0 0 1 1 0 0 0 16 

0 0 0 0 1 1 1 1 0 0 1 17 

0 0 0 1 1 2 1 1 0 1 1 18 

0 0 0 1 0 3 1 1 0 1 0 19 

0 0 1 1 0 4 1 1 1 1 0 20 

0 0 1 1 1 5 1 1 1 1 1 21 

0 0 1 0 1 6 1 1 1 0 1 22 

0 0 1 0 0 7 1 1 1 0 0 23 

0 1 1 0 0 8 1 0 1 0 0 24 

0 1 1 0 1 9 1 0 1 0 1 25 

0 1 1 1 1 10 1 0 1 1 1 26 

0 1 1 1 0 11 1 0 1 1 0 27 

0 1 0 1 0 12 1 0 0 1 0 28 

0 1 0 1 1 13 1 0 0 1 1 29 

0 1 0 0 1 14 1 0 0 0 1 30 

0 1 0 0 0 15 

 

1 0 0 0 0 31 
 



Phase, Amplitude-Phase modulator
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• Modulator PSK, QAM

• The phase component, I(t), and the quadrature components, Q(t), are 

baseband, amplitude modulated signals.

• fc is the carrier frequency (specified by the standard).

• Complex envelope: 
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Correlator (coherent) demodulator
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• Determines the received vector components. 

Assume to transmit, in a generic signaling interval of duration T the waveform 

sm(t), and to receive r(t)= sm(t)+ n(t), being n(t) the receiver noise (Additive 

White Gaussain AWGN model), with power N0W watts. The correlator 

evaluates: 

• The noise vector components, nn, are Gaussian, independent, zero mean random 

variables, having variance N0/2.

• Therefore, the received vector components,  rn, are Gaussian, independent, 

random variables with mean smn (corresponding to the transmitted symbol vector 

components), and variance N0/2
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Matched filter demodulator
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• Coherent matched filter demodulator

The channel introduces delay, td. Neglecting the effects of the distortion 

introduced by the channel and of the noise introduced by the receiver we have

therefore the delay introduces a phase shift                    which must be 

compensated.
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Received scattering diagrams
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• 8 PSK

• 16 QAM



Hard Detection Theory
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• The N-dimensional vector space to which r belongs, it is divided into M

disjointed regions, Am (Voronoi regions).

• Correct decision probability: 

• MAP criterion:

• Binary choice                                                    , equivalent to :

(the relationship between the conditional probabilities is called the likelihood 

ratio).

• If p(s0)=p(s1), or if the two probabilities are not known, the ML (Maximum 

Likelihood or Minimum Distance) criterion is adopted:                          .
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Minimum distance detection regions
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• 8-PSK                                                  16 QAM



Hard detection performance (AWGN)
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ce• Binary antipodal modulation (BPSK):

• M-ASK:

• M-QAM:

• M-PSK

• M-FSK: 
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M-APSK
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• Define Ri the radium of the i-th circle (square root of energy) and ii the distance 

between two adjacent points on the same energy level.

• Constellation  examples                                                         4-12 APSK

• 16-QAM comparison

2 energy levels instead of 3;

the required average energy

is 0.68 dB higher.
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A comparison
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• Eb/N0 and Eav/N0 required for obtaining a symbol error rate Pe=10-6, as a 

function of the number of bits b, for different modulations with relevant energy 

levels /observe that, for PSK we have a single energy level).  For all the 

modulation in the table rmax=b.

b PSK QAM APSK

Eb/N0 Eav/N0 Eb/N0 Eav/N0 Levels Eb/N0 Eav/N0 Levels

1 10.53 10.53

2 10.78 13.78 10.78 13.79 1

3 14.36 19.13

4 18.96 24.98 15.00 21.02 3 15.68 21.70 2

5 23.97 30.96 17.65 24.64 3

6 29.19 36.97 19.47 27.25 6 20.28 28.06 4



Shannon's theorem on capacity

• Channel capacity, C, limits the maximum rate, R (in information bits per 

channel use), at which information can be reliably transmitted over the channel. 

Consider an encoded source that emits information at a rate R.

• Negative statement: if R>C, considered a sufficiently long sequence of bits of 

length N,                 equiprobable messages are obtained. Whichever way the 

associated waveforms are chosen, the probability of error tends towards 1.

• Positive statement: if R<C, considered a sufficiently high sequence of bits of 

length N, it is possible to identify a set of waveforms that allows obtaining an 

arbitrarily small error probability.

• Alternative formulation: If R<C, given e, there exists a code of sufficiently long 

length for which pe< e, pe being the error probability conditioned on the 

transmission of the i-th message.

2NRM =

Air and satellite networks F. Babich



Hard capacity: symmetric binary channel
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• Binary discrete input (symbols ‘0T’ e ‘1T’, with probability p and 1-p). 

• Discrete binary output (‘0R’ e ‘1R’) (hard detection).

• Error probability: e=P(‘0R’| ‘1T’)=P(‘1R’| ‘0T’).

Antipodal binary modulation:                             being 
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The Erasure Channel
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• Binary discrete input (symbols ‘0T’ e ‘1T’, with probability p and 1-p). 

• An input value may be received correctly or it may be erased with probability e.

p(0R)=p(1-e)

• Capacity: information bits
 =1-   

channel use
C e
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Soft detection

• Square root energy signal space:

•

• Change of variable:                   ,                    . 

• Square root SNR signal space:

• Log-Likelihood Ratio antipodal binary modulation:

(to be used as the input of the channel decoder)  

( )
( )

( ) 







−−= 

=

N

h
jhhNj sr

NN
f

1

2

0
2

0

1
exp

1


sr

0

h
h

r
y

N
=

0

jh

jh

s
x

N
=

( )
( )

( )
2

2
1

1
exp

N

j h jhN
h

f y x
 =

 
= − − 

 
y x

( )
( )

0

01

log 4 s
f y x E

y
Nf y x

=

Digital Communication and Channel Coding F. Babich



Soft demodulation
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• Pragmatic approach

• Consider a one(two)-dimensional modulation with b bits, being M=2b.

• Let r be the value of the observed vector. The likelihood ratio of the i-th bit, 

with i=1,…,b is given by:

• Applying Bayes, in the hypothesis of equiprobability of the sequences of b bits 

present on the channel, let sj,1 be the j-th sequence with i-th bit equal to 1, and 

sj,0 the one with i-th bit equal to 0, we obtain:
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Antipodal modulation soft capacity
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• Consider now a non-quantized output, and the Square root SNR signal space.
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BPSK-QPSK soft capacity
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• BPSK

• QPSK
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AWGN Shannon bound
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• Shannon Theorem: for a N-dimensional channel, for a reliable transmission, the 

coded modulation rate (for every modulation) is bounded as follows: 

• If follows that the source rate, Rs=R/T, is bounded as follows:

• The spectral efficiency is bounded as follows

• From which we obtain                                  (Shannon bound)
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Comparison with Shannon bound

Air and satellite networks F. Babich

• Eb/N0 required for obtaining a symbol error rate Pe=10-6. With hard detection 

without channel coding there is a large gap between the actual and the 

achievable performance.



Capacity of bidimensional modulations
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Channel encoding

Air and satellite networks F. Babich

• Channel encoding introduces redundancy to protect the digital signal from 

errors.

• It may be used to detect the presence of errors in a message (associated with 

retransmission algorithms, Automatic Repeat reQuest – ARQ).

• It may be also be used to prevent the occurrence of errors (Forward Error 

Correction - FEC).

• Encoding: k compressed source bits are associated with n bits for transmission 

on the channel, with n>k; redundancy is thus systematically introduced that can 

be used in reception to detect and/or prevent errors.

• Code rate: Rc=k/n<1. Let Eb be the energy used to transmit a bit of information. 

Therefore, the energy used to transmit a bit on the channel is equal to Eb Rc.

• From the bound on R=Rcb=Rclog2(M) , we may determine a bound on Rc.



Determining required Code Rate
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Adaptive System example
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SNR threshold design (ON/OFF model)

Air and satellite networks F. Babich

• A possible set of thresholds, for block length N=429/R and N=5000/R, for 

Rc=1/3, 1/2, 2/3, 3/4.



Shannon bound comparison
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Error Protection Techniques
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Error protection techniques

• Error detection codes and retransmission algorithms (Automatic Repeat 

reQuest - ARQ).

• Self-correcting error codes (Forward Error Correction - FEC).

• Coding: k bits of information are associated with n bits for transmission on the 

channel, with n>k; redundancy is thus systematically introduced which can be 

used in reception to detect and/or correct errors. 

• In the time k user bits are generated, n channel bits must be transmitted; 

therefore the time for the transmission of a bit is reduced and, consequently, 

the used bandwidth increases.

• Block codes: The n-k redundancy bits depend only on the current k user bits; 

the coding operation is, therefore, without memory. 

• Convolutional codes: The n-k bits of redundancy depend on k current user bits 

and on (N-1)k previous user bits (N is called constraint length); the coding 

operation is, therefore, with memory.
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Linear binary block codes

• The n-bit sequences produced by the encoder are called code words.

• The codes we will consider are linear codes, in which the sum (modulo 2) of 

two code words is still a code word.

• Weight of a code word: it is the number of bits other than 0 of the code word.

• Hamming distance between two code words: it is the number of bits in which 

they differ; it is also the weight of the word obtained by adding the code words 

modulo 2. Thus, the weight of the least weight word represents the minimum 

distance, dmin, between two codewords.
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Performance of linear binary block codes

• Assume hard detection. The performance depend on the minimum distance. 

The decoding operation generally takes place in maximum likelihood, i.e. 

associating the closest code word to the n-tuple received.

• Consequently, a code with minimum distance dmin can correct at most

weight errors, and reveal at most dmin weight errors. 

• A code is used to correct                            weight errors at most, and detect l 

weight errors, being                               .

• Perfect codes: each n-tuple has at least one code word at distance                  .

For them the relationship holds: 

• The repetition codes (n,1), with n odd (dmin =n), the Hamming codes (dmin =3), 

and the Golay code ((23,12), dmin =7) are perfect codes.
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Cyclic codes

• They are linear codes. 

• A cyclic permutation of a codeword produces a codeword.

• Each binary sequence is associated with a polynomial whose coefficients are the 

bits that make up the sequence.

• Redundancy bits are found using a division algorithm. The divisor polynomial is 

denoted by g(x), and has degree n-k. Therefore a cyclic code is characterized by 

n, k, g(x).

• Systematic encoding. 

– The k-ple to be encoded is associated with a polynomial u(x) of degree n-1, whose k

most significant coefficients coincide with the user bits, while the other n-k bits are 

set to 0. Calculate the remainder, r(x), of dividing u(x) by g(x). The coefficients of 

r(x) are the redundancy. The n-ple thus obtained is associated with a polynomial c(x), 

divisible by g(x).

• The received sequence is associated with the polynomial cr(x). We divide by 

g(x). If the remainder (syndrome) is null it is assumed that there have been no 

errors.
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Cyclic codes for error detection

• Cyclic Redundancy Check (CRC)

• The generating polynomial is of the type g(x)=g1(x)(x +1), where g1(x)(x +1) is a 

polynomial of degree m=n-k-1 chosen so as to be a divisor of                    , but 

not to be a divisor of any polynomial of the type xh+1, with h<2m-1.

• With such choices, the code allows revealing all errors of odd weight (no 

polynomial with an odd number of terms can be divided by x+1) and all errors 

of weight 2 if n<2m-1.

• The maximum code rate is

• CRC is used by modern coding techniques to verify the correct decoding of a 

block. 

112 +−m
x

( ) ( )2232 −−−= mm
c mR
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CRC - Examples

•

n - k 

[bit]
Generator

n

[bit]

k

[bit]
Org.

5 <15 <10 <2/3 ITU-T

8 <127 <119 <119/127 ITU-T

16 <32767 <32751 1

32 109 109 1 IEEE

64 1018 1018 1 ISO
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Automatic Repeat reQuest

• Error detection.

• Bidirectional communication: availability of a return channel (feedback) on 

which ACKnowledgement (ACK) packets can be sent.

• Service tolerance for delay.



H

ET

Tx Rx



AT

CT

E AT , T << , H

C E AT 2 H T T= + + + CT 2 H +

A ACK transmission timeT : 

E Elaboration timeT : 

packet transmission timeH : 

propagation delay : 

C cycle durationT : 

round trip delay2 : 
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The sustainable rate

• Assume that a codeblock of size N is transmitted in changing channel conditions.

• Assume that the codeblock may be divided into segments, each of which 

experiences a constant channel condition. With this assumption, the code 

performance may be determined as follows.

• Name with                         the sequence of segment lengths and with 

the sequence of the relevant SNRs.

• Define sustainable code rate as the weighted average value of the equivalent code 

rates, that is given by

in which Rj is the equivalent rate of the j-th segments, which, assuming the ON-

OFF model, represents the maximum rate which can be used with the SNR gj and 

block size N. 

• The sustainable rate may be seen as the maximum rate that can be successfully 

used, given the block size the segment length sequence, and the SNR sequence.

F. Babich, “On the Performance of Efficient Coding Techniques Over Fading Channels,” IEEE 

Transactions on Wireless Communications, vol. 3, no. 1, pp. 290–299, Jan. 2004.
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Hybrid ARQ

• Channel coding and repetition algorithm interact.

– Repetition Hybrid ARQ with soft (Chase) combining: assume systematic 

encoding. The soft values of the received replicas are stored and combined 

to increase the probability of correct decoding.

– Incremental Hybrid ARQ: Repetitions only include additional 

redundancy.

– Complementary Hybrid ARQ: replications include information 

(systematic coding) and additional redundancy

RedundancyInformation

RedundancyInformation

First transmission

Repetition

Redundancy 1Information

Redundancy 2

Information

First transmission

Repetition

Redundancy 1Information

Redundancy 2

First transmission

Repetition
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Hybrid ARQ performance (I)

• Parameters

– b: bit per symbol. 

– k: information bits

– p1, p2 : redundancy bit first, second transmission.

– Rc1=k/(k+ p1): code rate first transmission.

– Rc2=k/(k+ p1+p2): code rate second transmission. 

– g1, g2 : SNR first, second transmission.

– R1=Rc1b, R2=Rc2b : rate first, second transmission. 

• Limiting performance

• First transmission success condition:

, from which

• Repetition ARQ (Chase combining): in case of failure of the first transmission, 

the limiting condition for the success of the second is :

, from which 

( )121 1log g+R 12 1
1 −

Rg

( )2121 1log gg ++R 12 12 1 gg −−
R
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Hybrid ARQ performance (II)

• Incremental ARQ: in case of failure of the first transmission be

– : fraction of bits sent in the first transmission;

– limiting condition for the success of the second is :

,       from which:

if p2 = p1, Rc2=Rc1/(2-Rc1), we have:                                     . 

• Complementary ARQ : in case of failure of the first transmission be

the fraction of bits of information, received with gT = g1+g2;

– hypothesizing p1 = p2, be b=(1-)/2 the fraction of parity received with both 

g1 and g1; the limiting condition for the success of the second is:
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Hybrid ARQ performance (III)
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Channel coding techniques 
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Parity check codes

• They are linear codes.

• The n-k bits of redundancy come from parity operations.

• Coding: it is done using the generating matrix G [k x n]; the encoded vector x is 

obtained from the unencoded vector u by means of the operation x=uG. If the 

first k bits of x coincide with u, the code is said to be systematic.

• Error detection (parity check): this is done using the parity check matrix 

H [(n-k) x n]; if the received vector is  y=xe, where e is the error vector, 

s=yH‘=(xe) H‘= eH‘ is calculated (where  it indicates the operation of 

addition module 2 and ' it indicates the transposition operation). If there were no 

errors, the vector s is the null vector. It turns out to be GH'= 0. The vector s is 

called syndrome.

• Error correction (hard decoding): to each vector s it is associated a vector e, so 

that the decoded vector is v=ye. The association takes place at a minimum 

distance (to each syndrome it is associated the minimum weight error sequence 

that produces that given syndrome). The non-zero syndromes (and therefore the 

correctable error sequences) are 2n-k-1.
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Hamming codes

• Parity check codes with the following parameters: n=2m-1, n-k=m, dmin=3, being 

m3 an integer.

• The columns of the parity check matrix consist of all the non zero 

m-length sequences. 

• Example, m=3, n=7, k=4, 

systematic version

• The hard decoding 

consists of identifying 

the single error position 

by comparing the 

syndrome with the 

columns of H.

• If more than one error

occur the decoding

is wrong.
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Coding gain

• The performance of a channel code may be determined through the coding gain, 

which is difference between the SNR (Eb/N0) required for achieving a given 

BER, without and with code.

• Consider a binary antipodal modulation, for which the BER before decoding is 

given by

• Without code Rc=1, while with a code of error correction capability tc, the 

probability of correct word reception is given by:

• If the full error correction is used, tc=t, and the probability of wrong word 

reception is given by 1- Pc.
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Example: Hamming codes

• tc=1. By increasing m, the block size increases, the code rate approaches 1, and 

the coding gain, for low error rates, slightly increases.
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Convolutional Codes

September 18-21                                                                                                                 F. Babich

• The coded sequences depends on the current and on the previous 

inputs.

• Example: Rc=1/2. The previous values of the input that 

have an influence on the current value of the output are 

highlighted (these values define the state of the system). 

The constraint length, L, is the size of the register (in the 

example L=3). The input/output relations define the 

generators which are indicated in octal notation. In the example g1=(1 0 1) 

(indicated by 5), g2=(1 1 1) (indicated by 7).

• Evolution is described by state diagram or trellis diagram.

0 0

1 0 0 1

1 1

0 0  uscita

0 0

1 1 1 1

1 0 1 0

0 1

0 1

ingresso = 0

ingresso = 1

Input = 0

Input = 1

Input = 0 Output

0 0

1 0

0 1

1 1

0 0 0 0 0 0

1 1 1 1

1 1

1 1

1 0

1 0

1 0

0 1
0 1

0 1

0 0



Convolutional codes

• It is a linear code.

• The performance depends on the free distance, dfree, which is the weight of the 

lowest weight non zero sequence. It may me determined through the transfer 

function.

• In our example we obtain the transfer function

There is a sequence of weight 5 (input 100 which produces output 110111), two 

sequences of weight 6 (input 1100 which produces output 11101011 and input 

10100 which produces output 1101000111), 4 weighing 7, and so on.

• Decoding takes place at a minimum distance, using the Viterbi algorithm.

• The algorithm does not change if the soft decision is used. Euclidean distance is 

used instead of Hamming distance.

• Complexity grows linearly with length.

 
D

D
D D D

5
5 6 7

1 2
2 4

−
= + + +...
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Recursive Convolutional Codes

• It may be systematic (the output sequence contains the input sequence)

• It may be recursive.

• Example  of systematic and recursive encoder

with the relevant state diagram.

• It is the key component of the turbo encoder.

sk sk-1
sk-2

00

11

10 01

0/00

1/11

0/01

1/10

0/01

1/10

0/00

1/11
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Iterative (turbo) decoding

• In 1993 Berrou and Glavieux proposed the concatenate iterative decoding (turbo 

decoding).

• Turbo codes owe their name to the decoding algorithm, which uses feedback, 

like the turbo engine: this algorithm is called iterative decoding.
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Parallel Concatenated Convolutional Codes

• A turbo encoder consists  of the parallel concatenation of two recursive 

convolutional codes (PCCC: Parallel Concatenated Convolutional Codes) by 

means of a interleaver.

• A serial concatenation is also possible 

(and even preferable) with different 

properties and performance (SCCC)
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The role of the interleaver

• Name w the weight of an input sequence that may produce a low weight output 

sequence.

• For non recursive convolutional encoder wmin=1 (an input sequence consisting 

of single 1 produces a low weight output sequence).

• For recursive convolutional encoder wmin=2 (an input sequence consisting of 

single 1 produces an oscillating output sequence). The interleaver may be 

carefully designed for counteract the effects of w=2 sequences, providing the 

interleaver gain.

Recursive CC: wmin =2 Interleaver Gain: N-1

Non recursive CC: wmin =1 Interleaver Gain 

independent from N
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Design parameters

• Parallel versus serial concatenation

• Number of concatenated codes

• Memory (# of states) of each code

• Code rate and generating polynomials for each constituent code

• Block length

• Excellent versus suboptimal decoding algorithms

• Trellis termination techniques

• Interleaver design

• Early iteration stopping techniques

• Using external block codes to lower the error floor

Air and satellite networks F. Babich



Design considerations

• Assume that the minimum weight of the input sequences used for leaving and 

going back to the state 0 is 2. The asymptotic expression (with respect to the 

interleaver length N) of the bit error probability is:

• being dPeff is the effective free distance of the PCCC, i.e. the minimum weight of 

the PCCC sequences generated from input sequences of weight 2, and NCieff

(i=1,2) is the multiplicity of error events of the two CCs with weight equal to 

the effective free distance.

• It follows that, to improve the turbo code performance is necessary to increase 

dPeff and to decrease NCieff .
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Performance

“Non convergence” region

“Waterfall” region

“Error floor” region

Three distinct 

regions of the BER 

(or FER) curves 

with respect to the 

SNR: the non-

convergence, 

"waterfall" and 

"error floor" 

regions
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PCCC coding gain
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SCCC example

• Comparison of  some rate compatible puncturing schemes, obtained starting 

from a rate 1/3 SCCC mother code formed by serially concatenating a 4-states 

rate 2/3 outer systematic recursive convolutional code (SRCC) and a 4-states 

rate 1/2 inner SRCC. A non periodic puncturing has been applied on inner 

output bits only. The frame length, measured in terms of input information bits, 

has been set to 200 using a random interleaver.
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SCCC performance

• N=200, random interleaver

• The actual performance is compared with the limiting one
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Low Density Parity Check Codes

September 18-21                                                                                                                 F. Babich

• LDPC codes are parity check codes with sparse (low density) check 

matrix. They were first proposed by Gallagher in his 1960 doctoral 

dissertation.

• Most standards adopt LDPC codes instead of Turbo Codes. this derives 

partly from some patent issues related to Turbo Codes.

• But the LDPC have demonstrated to achieve a performance that is very 

close to the Shannon bound with simpler decoding algorithms.

• The decoding algorithms are independent from the coding rate (this is 

also true for the Turbo Codes).

• Both LDPC and Turbo Codes have a poor performance for short 

packets.



Recursive decoding for 

Parity Check Codes 

PhD in Industrial and Information 
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MAP in the presence of a code

September 18-21                                                                                                                 F. Babich

• Assume that y is a sequence of received noisy values, obtained by transmitted a 

sequence x of antipodal, binomial values. The MAP criterion may be applied as 

follows.
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Parity codes: APP math
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• Name                                    . We have                             .

• Consider a pair of (antipodal) bits, u1, u2.    u1u2=+ se u1=u2.

• Substituting, after some simple calculations we get
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APP math II
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• By induction it is straightforward to demonstrate that
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Graph Representations of Codes 

Tanner Graph

September 18-21                                                                                                                 F. Babich

• A Tanner Graph is a bipartite graph which represents the parity check matrix of 

an error correcting code.

• H is the (n–k)-by-n parity check matrix. The Tanner graph has:

• n bit nodes (or variable nodes), represented by circles.

• n–k check nodes, represented by squares.

• There is an edge between bit node i and check node j if there is a one in row i

and column j of H.

Hamming Code                                             Tanner graph

1 0 1 1 1 0 0

1 1 0 1 0 1 0

0 1 1 1 0 0 1

 
 

=
 
  

H



Cycles and Girth of Tanner Graphs
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•

A cycle of length L in a Tanner graph is a path

of L edges which closes back on itself

The girth of a Tanner graph is the minimum

cycle length of the graph.

0 1 1 0 0

0

1 1

1 0 1 0

0 1 1 1 0 0

1 1

1

 
 

=
 
  

H



Message passing decoding
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L1,1                             L1,2

c1 c2 c3 c4 c5 c6 c7

c1c3c4c5=0

c1c2c4c6=0

c2c3c4c7=0

c1=c3c4c5

c1=c2c4c6
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Message passing decoding

September 18-21                                                                                                                 F. Babich
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L1,1                             L1,2

c1 c2 c3 c4 c5 c6 c7

L1,0 from the channel



Decoding through message passing
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• The algorithm continues iteratively until all the equations are satisfied, 

otherwise it stops after a given number of steps (error detected).

• Message passing is optimal if there are no cycles in the Tanner graph, 

otherwise it is suboptimal.

• The performance approach the optimal one if the girth is more than 4 (if 

there are no 4-cycles in the Tanner graph.



Performance example
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• Multi-dimensional product codes (M-SPC)

• Data are arranged in a hypercube of dimension D [12].

• The length of each dimension is ki, corresponding to a encoded length 

ni= ki+1. Before puncturing 

• Limited flexibility.

• Interleaving may be not used.

• Puncturing is effective.

• Good performance at average/low rates. 

[12] M. Ranking and T. A. Gulliver, “Single parity check product codes”, IEEE-COM, 

Vol. 49, n. 8, Aug 2001, pp. 1354-1362. 

Single Parity Check Codes (I)
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Single Parity Check Codes (II)
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Multiple parity-check codes (P-SPC, E-SPC)

• SPC: Data are arranged in a LC matrix.

– P-SPC: P parity columns; Rc=C/(C+P) [13].

– E-SPC: added 1 parity row; Rc C/(C+P), for L>>1.

• More flexibility (N depends on L; Rc does not depend on L).

• Interleaving is required (no interleaver gain).

• Puncturing is less effective.

• Good performance at high rates (best for Rc=3/4). 

[13] J.S.K. Tee, D.P. Taylor, P. A. Martin, “Multiple serial and parallel concatenated single 
parity-check codes”, IEEE-COM, Vol. 51, n. 10, Oct 2003, pp. 1666-1675. 



Design (short blocks)
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Modulation Rc R B Thr. [dB]

BPSK 1/3 1/3 1286 -4.9

QPSK 1/3 2/3 642 -1.9

QPSK 1/2 1 428 0.6

8-PSK 1/2 3/2 285 3.5

16-QAM 1/2 2 214 5.6

8-PSK 3/4 9/4 191 7.7

16-QAM 3/4 3 143 9.8

64-QAM 2/3 4 107 13.2

Modulation Rc R Type K B Thr. [dB]

BPSK 1/3 1/3 M 4,4,3,3,3 1296 -4.9

QPSK 1/3 2/3 M 4,4,3,3,3 648 -1.9

QPSK 1/2 1 E 65,7 455 0.6

QPSK 3/4 3/2 E 29,15 290 3.8

16-QAM 1/2 2 E 65,7 227 5.5

8-PSK 3/4 9/4 E 29,15 194 7.6

16-QAM 3/4 3 E 27,17 153 9.8

64-QAM 2/3 4 E 45,10 112 13.2

PCCCs

SPCs

Before

puncturing

Rc=0.27

M-SPCs at low rates, E-SPCs at intermediate and high rates



AWGN: code performance
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N=429/R. Bound (solid lines: PCCCs, dotted lines: SPCs);  actual performance  (dash-

dotted lines with ‘o’PCCCs; dotted lines with ‘*’: M-SPCs; with ‘+’: E-SPCs)

Comparable water-fall performance (PCCCs and M-SPCs)

Better error floor performance for PCCCS and E-SPCs

Water-fall performance affects efficiency (goodput)

Error floor performance affects residual error rate



Design (long blocks)
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PCCCs

SPCs

Modulation Rc R Type K B Thr. [dB]

BPSK 1/3 1/3 M 5,4,4,4,4,4 15360 -5.2

QPSK 1/3 2/3 M 5,4,4,4,4,4 7680 -2.1

QPSK 1/2 1 M 6,6,5,5,5 4500 0.3

QPSK 3/4 3/2 E 303,18 3648 3.5

16-QAM 1/2 2 M 6,6,5,5,5 2250 5.3

8-PSK 3/4 9/4 E 303,18 2432 7.3

16-QAM 3/4 3 E 303,18 1824 9.4

64-QAM 2/3 4 M 11,9,8,7 1326 12.8

Modulation Rc R B Thr. [dB]

BPSK 1/3 1/3 165 -5.2

QPSK 1/3 2/3 8183 -2.1

QPSK 1/2 1 5458 0.3

8-PSK 1/2 3/2 3639 3.1

16-QAM 1/2 2 2729 5.2

8-PSK 3/4 9/4 2426 7.3

16-QAM 3/4 3 1820 9.4

64-QAM 2/3 4 1365 12.8

Boundary moves at higher rates for longer blocks



AWGN: code performance

September 18-21                                                                                                                 F. Babich
Slightly different water-fall performance (PCCCs and M-SPCs)

Improved error floor performance for E-SPCs

N=5000/R. Bound (solid lines: PCCCs, dotted lines: SPCs);  actual performance  

(dash-dotted lines with ‘o’PCCCs; dotted lines with ‘*’: M-SPCs; with ‘+’: E-SPCs)



AWGN: SCCC code performance
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Rc=3/4, QPSK, 8PSK 16QAM. 

Dotted lines with '': best waterfall performance;  with '+': chosen candidates.

The chosen candidate is a reasonable compromise

between efficiency and residual error rate

Residual error rate may be reduced

adopting serial versions (in blue)



Error Control for 5G: LDPC
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• Name A the payload size.

• The information block, B, is obtained by adding to the payload L bits of CRC, 

being L=24 if A>3824, and L=16 otherwise,.

• The information block is then segmented in blocks of size K, for channel 

encoding.

• The rules for selecting among base graph 1 and base graph 2 are

– A≤292 base graph 2 (blue)

– A≤3824, Rc ≤ 0.67 base graph 2

– Rc ≤ 0.25 base graph 2

– Else base graph 1 (red)

•

0.95

Rc 0.67

0.25

292               3824                        A



Error Control for 5G: LDPC
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• Name N the number of channel bits per block.

• For base graph 1, K=22 Zc,  while N=66 Zc. Thus, the basic rate is Rc=1/3.

• For base graph 2, K=10 Zc,  while N=50 Zc. Thus, the basic rate is Rc=1/5.

• N≤8448=22 x 384 for base graph 1 and N≤3840=10 x 384 for base graph 2.

• Different rates are obtained through a Rate Matching algorithm.

• 5G supports hybrid-ARQ, by adopting incremental redundancy schemes.



Limiting performance
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A comment
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• LDPC limiting performance is close to the Shannon bound.

• Thus, they may be used instead of Turbo Codes which have a similar 

performance but are more complex.

• Are we satisfied?

• Not completely because we need reliable codes for short packets, and LDPC 

have a poor performance for short packets.

• But there is a solution: the Polar codes.



Error Control for 5G: Polar Codes (1)
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• Polar codes [15] are error-correcting codes, which are able to achieve the 

capacity of binary-input memoryless symmetric (BMS) channels. This means 

that one can transmit at the highest possible rate over that class of channels. In 

addition, the encoding and decoding operations can be performed with low 

complexity, thanks to recursive techniques.

• Polar codes exploit channel polarization. More precisely, the BMS channel is 

characterized by the transition probability W(y|x) (the probability that, having 

transmitted x, y was received). The polarization technique of channels consists 

in recursively building, starting from W, N = 2n binary input channels WN
(1), …, 

WN
(N). These channels are said to be polarized. They behave asymptotically as 

perfect channels or useless channels, allowing you to create a method of coding 

that sends information only through asymptotically perfect channels.

• [15] E. Arıkan, "Channel polarization: a method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels", IEEE Trans. 

Inf. Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.



Error Control for 5G: Polar Codes (2)
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• Formally, a specific polar code is fully defined by a 4-tuple (N, Rc, A, uAc) 

where:

– N is the block length, i.e. the total number of bits transmitted over the channel.

– Rc is the code rate, Rc∈[0,1]

– A is the information set, A⊂{1,...,N} i.e. the set of positions which contains the 

information bits.

– uAc are the frozen bits, uAc∈{0,1}N(1− Rc), i.e. bits which have fixed values, shared 

between the encoder and the decoder.

• The coding matrix has a recursive structure: 

in which B2 is a bit reordering matrix,                     , and  is the Kronecker  

product:                                           .     After the reordering 

2log

2 2

N n

N N NG B G B G
 = =

2

1 0

1 1
G

 
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 
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1 1 1 1

G G

 
 
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Error Control for 5G: Polar Codes (3)
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• xN
1 is transmitted over the channel WN (which corresponds to N uses of the 

channel W), and yN
1 is received.

• From yN
1 the successive cancellation (SC) decoder produces an estimate of uN

1 

(making also use of the frozen bits values). 

• The complexity of this operation is O(N log N).

• Finally, only the components of uN corresponding to information bits are kept, 

yielding uA



Error Control for 5G: Polar Codes (4)
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• Encoder and transmission process for N=4;



• Consider, for simplicity, the erasure channel with erasure probability e.

• At every iteration step, each channel of capacity Cn originates two channels of 

capacity respectively 2Cn e − Cn 
2 (the good one) and Cn 

2 (the bad one), and the 

total capacity becomes 2Cn.

• Example with e=0.5; C1=1-e=0.5.

Capacity of individual channels
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C1 C2 C3 C4

0.99609375

0.9375

0.87890625

0.75

0.80859375

0.5625

0.31640625

0.5

0.68359375

0.4375

0.19140625

0.25

0.12109375

0.0625

0.00390625

Capacity of individual channels
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A performance comparison (1)
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A performance comparison (2)
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A performance comparison
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A performance comparison (4)
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• For medium length packets LDPC may have a slightly better performance, 

specially for the high SNR values.

• For short packets, polar codes are significantly better, specially for moderate 

block error rates.

• Increasing the number of iterations does not allow one to improve the 

performance of LDPC codes significantly,

• It may be concluded that polar codes are more suitable for IT applications.


