
Artificial Intelligence for
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

I Semestre 2024

Lecture 2: Modeling (Introduction)
 Concurrent Modeling

[Many Slides due to J. Deshmukh, Toyota]

Cyber-Physical System (CPS)
Combination of physical (environment / plant / process / system) with a
cyber (computation / software / code) components potentially networked and
tightly interconnected

Physical component

 !x = f x()Cyber component

A
ct
ua
to
rs Sensors

analog/ continuousanalog / continuous

digital/discretedigital/ discrete

Model-based Design Approach

Validation : "Are you building the right thing?" Verification : "Are you building it right?”

Model-based Design Approach
MBD languages are often visual and block-diagram based, e.g. Simulink

Functional Components

5

1. Classical model of computa<on: Func<onal or Transforma<onal
Programs

� Start from a given input,

� Produce a certain output and then terminate

� Desired func@onality can be described by a mathema@cal func@on

� Emphasis is on data computa@on

Reactive Components

6

2. Reactive Programs:

� It maintains and internal state

� Continuously interact with the environment at a rate decided by
the environment

� Emphasis is on system-environment interaction; e.g. airline
autopilot, mail-servers, etc.

7

u What’s the notion of time in the model?
� Real-time or Logical time-steps of execution?

u What time do different components in the model use?
� Single global clock for full synchronization?
� Different clocks in each component?

u What level of granularity do we need in time?
� Discrete time-steps or Continuous dense time?

Models of Computation: Timing

Most convenient model of computation for an (Autonomous) CPS is a
reactive and concurrent model of computation.

ReacCve Component

Inputs Outputs
Internal

state

An autonomous CPS can be viewed as a network of components that communicate
either synchronously or asynchronously.

Examples of type of modeling for CPS components:

Ø Modeling physical phenomena (dynamical systems) – differential equation

Ø Feedback control systems – time-domain modeling

Ø Modeling modal behavior – FSMs, hybrid automata, …

Ø Modeling sensors and actuators – models that help with calibration, noise elimination,

Ø Modeling hardware and software – capture concurrency, timing, …

Ø Modeling networks – latencies, error rates, packet loss,

Models: abstractions of CPS

Models of Computation
• Synchronous Model of Computa<on
• Asynchronous Model of Computa<on
• Timed Models
• Like Asynchronous models, but with explicit @me informa@on
• Can make use of global @me for coordina@on

• Con<nuous-<me models/Dynamical system models
• Like Synchronous, but @me evolves con@nuously

• Hybrid Dynamical Models

11

Synchronous Models

Synchronous Models

12

u All components execute in a sequence of
rounds in lock-step

u Example:
� Components in a digital hardware circuit with a

central global clock
� Fixed-step Simulation Models of Discrete

Components in Simulink

u Benefit: system design is simpler if we use a simple round-based
computation

u Challenge: How do we ensure synchronous execution when components
may execute on different hardware?

Synchronous languages

13

Simple Representation of a Synchronous Component

14

Input Names
and Types

State Variables
Declaration and
initialization

Output Names
and Types

Component

Update action
that happens in
each round

(Boolean = { 0, 1})
u Input variable: in of type Boolean
u Output variable: out of type Boolean
u State variable: x of type Boolean,

ini<alized to 0
u In each round, component updates

output from the state and state from
input

Simplest synchronous component: delay

15

bool in bool out
bool x := 0

out:=x ; x:= in

u Initialize state to 0
u Repeatedly execute rounds
u In each round:

� Choose value for input (provided from
environment, e.g. by user)

� Execute update code

ExecuCon of “Delay”

16

bool in bool out
bool x := 0

out:=x ; x:= in

1 / 0
1

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
10

u Time needed to execute update is negligible compared to arrival times
between consecutive inputs

u Synchronous execution is a logical abstraction
� Execution time of update code is 0
� Production of outputs, updates to state and arrival of inputs happen instantaneously

u With multiple components, assume all execute synchronously and
simultaneously

Synchrony hypothesis

17

u SRC is defined as a tuple: (𝑄! , 𝑄" , 𝑄# , 𝑖𝑛𝑖𝑡 , 𝑟𝑒𝑎𝑐𝑡), where:

Let’s Formalize an SRC (Synchronous Reactive Component)

18

Symbol Designation Examples

𝑄! Set of Inputs {bool 𝑖𝑛}

𝑄" Set of State Variables 𝑏𝑜𝑜𝑙 𝑥

𝑄# Set of Outputs {𝑏𝑜𝑜𝑙 𝑜𝑢𝑡}

𝑖𝑛𝑖𝑡 Set of initial States 𝑥 ≔ 0

𝑟𝑒𝑎𝑐𝑡 Set of Updates 𝑜𝑢𝑡 ≔ 𝑥
𝑥 ≔ 𝑖𝑛

u Let the set of input, output, and state values be 𝑄! , 𝑄$, 𝑄%
u Semantics of the initialization function 𝑖𝑛𝑖𝑡 :

� At time/round 0, maps the state variables to some specified value (or values) in 𝑄"
u Semantics of the update function 𝑟𝑒𝑎𝑐𝑡 (some sequence of conditionals

and assignments):
� A set 𝑅 of transitions where each transition is of the form: 𝑞

$/#
q&, where 𝑞 is the old

value of the state variables, 𝑞′ is the new value of the state variables, 𝑖 is the value of
the input in that round, and 𝑜 is the value of the output

� 𝑅 is a subset of 𝑄"×𝑄!×𝑄'×𝑄"

SemanCcs of updates & iniCalizaCon

19

0
&/&

0

0
(/&

1

1
&/(

0

1
(/(

1

Transitions for Delay

20

bool in bool out
bool x := 0

out:=x ; x:= in

𝒒
𝒊/𝒐

𝒒+

What are the 𝑄! , 𝑄", 𝑄# for these SRCs?

21

bool in bool out
bool x := 0

out:=x ; x:= in

bool in
int out

int y:= 0
bool z:= 0

out:=y ;
if (z==0)

y:= y + 1
else

y:= y-1
z := in

𝑄! = 0,1 , 𝑄" = 0,1 , 𝑄' = {0,1}
𝑄! = 0,1 , 𝑄" = int×{0,1} , 𝑄' = int

Composition of Synchronous Components

22

bool in1 bool out1bool x1 := 0

out1:=x1 ; x1:= in1

bool in2 bool out2bool x2 := 1

out2:=x2 ; x2:= in2

Delay sequen@ally composed with Delay

Composition of Synchronous Components

23

bool in1 bool out1bool x1 := 1

out1:=x1 ; x1:= in1

bool in2 bool out2bool x2 := 0

out2:=x2 ; x2:= in2

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
1

1 / 1
11

1 / 0
1

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
10

Delay 1

Delay 2

Observe:
1) in2 is the same as

out1 in every
round

2) Ignoring first 2
rounds, outputs
of d2 are the
inputs to d1
delayed by 2
rounds

What does this model achieve?

24

bool in
int out

int y:= 0

out:=y ;
if (in==0)

y:= y + 1
else

y:= y-1

int c
bool d := 0

if (c ≥ 2)
if (warn == 1)

error := 1;
else

warn := 1;
end

end

bool
warn

If number of ‘0’ inputs seen by the first component
exceeds the number of ‘1’ inputs it has seen by 2, at any
point in its execution, then the ‘warn’ light becomes high
If this happens again, the ‘error’ light becomes high

bool
error

u An SRC is determinis.c if:
� It has a single ini.al state
� Updates ensure that for every state 𝑞 and input 𝑖, there is a unique state 𝑞′ and output 𝑜 such

that (𝑞, 𝑖, 𝑜, 𝑞!) is a transi.on
u Determinism means for same input sequence, you get same state/output

sequence every single .me
u Note:

� Nondeterminism is useful for modeling uncertainty/unknown and compactness

� It is not the same as probabilis.c/random choice!

Deterministic Component

u What to do if we want some components to not participate in some rounds?

u Event is a special input/output variable, which can be absent or present

u Event variable has value only if it is present
u Syntax:

Event-triggered Components

26

e? True if e is present
e!a e gets the value of the assignment a

Event-triggered Copy

27

event(bool) out
nat x := 0

if in? then
{out!in; x:=x+1}

event(bool) in

Event-triggered ClockedCopy

28

bool in event(bool) flag
bool x := 0

if clock? then
flag!x; x:=in

event(bool) clock

u No need to execute in a round where triggering events are absent

Event-triggered Components

29

event(bool) sec event(bool) min
nat x := 0

if sec? then
x:=x+1;
if (x==60)

min! 1;
x:=0

end
end

u Commonly used to describe behavior of MBD models

Extended State Machines

31

From state Guard Condition?
→ Assignment

To state

Initial state

u Does this ESM remind you of something?

Extended State Machines

32

0

1

(in==0)→ out ≔ 0
(in==1)→ out ≔ 0

(in==1)→ out ≔ 1(in==0)→ out ≔ 1

Component Switch: What does this do?

33

bool press int x := 0
bool q := 0

switch (q)
case 0: if (press==1) q:= 1
case 1: if (press==0) & (x < 10)

q:=1; x:= x+1
elseif (press==1) or (x >= 10)

q:=0; x:= 0; out:= 1
end

end

bool out

ESM corresponding to Switch SRC

34

off

on

(press==0)?
(press==1)?

(press==0) & (x<10)
→ x ≔ x + 1

int x ≔ 0

(press==1) | (x≥10)
→ x ≔ 0 ; out:=1

q = 0 : off
= 1 : on

u Implicit variable called “mode” that
is a discrete state variable over some
finite enumeration. Here: {on, off}

u SRC transition may correspond to
mode-switch

u Each mode-switch has
guard/update. Example:
� Guard: (press==0) & (x<10) and
� Update: x:= x+1

ESM notation

35

off

on

(press==0)? (press==1)?

(press==0) & (x<10)
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥10)
→ x ≔ 0 ; out:=1

u Start in mode off; initial state = (off,0)
u Sample executions:

ESM execution

36

off

on

(press==0)? (press==1)?

(press==0) & (x<10)
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥10)
→ x ≔ 0

(𝑜𝑓𝑓, 0)
↓ 0

(𝑜𝑓𝑓, 0)
↓ 1

(𝑜𝑛, 0)
↓ 0

(𝑜𝑛, 1)
⋮
↓ 0

(𝑜𝑛, 10)
↓ 0

(𝑜𝑓𝑓, 0)

(𝑜𝑓𝑓, 0)
↓ 0

(𝑜𝑓𝑓, 0)
↓ 1

(𝑜𝑛, 0)
↓ 0

(𝑜𝑛, 1)
⋮
↓ 0

(𝑜𝑛, 5)
↓ 1

(𝑜𝑓𝑓, 0)

ESM transitions could be nondeterministic!

37

off

on

(press==0)? (press==1)?

(press==0) & (x≤10)
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥10)
→ x ≔ 0

Finite-state Components

38

bool in bool out
bool x := 0

out:=x ; x:= in

bool in

int out
int y:= 0
bool z:= 0

out:=y ;
if (z==0)

y:= y + 1
else

y:= y-1
z := in

u Component is finite state if all variables are over finite types

FS Not FS!

Finite State Machine
A FSM is a tuple 𝑆, 𝑄! , 𝑄$, 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑠& where:
• 𝑆 is a finite set of states;
• 𝑄! is a set of input valuations;
• 𝑄$ is a set of output valuations;
• 𝑢𝑝𝑑𝑎𝑡𝑒: 𝑆 × 𝑄! → 𝑆 × 𝑄$ is an update function, mapping a state and
an input valuation to a next state and an output valuation;
• 𝑠& is the initial state.

Extended Finite State Machine
A EFSM is a tuple 𝑆, 𝑄! , 𝑄$, 𝑉, 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑠& where:
• 𝑆 is a finite set of states;
• 𝑄! is a set of input valua<ons;
• 𝑄$ is a set of output valua<ons;
• 𝑉 is a set of variables;
• 𝑢𝑝𝑑𝑎𝑡𝑒: 𝑆 × 𝑄!×𝑉 → 𝑆×𝑉× 𝑄$ is an update func<on, mapping a
state and an input valua<on to a next state and an output valua<on;
• 𝑠& is the ini<al state.

Non-deterministic Finite State Machine

A non-deterministic FSM is a tuple 𝑆, 𝑄! , 𝑄$, 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑈𝑝𝑑𝑎𝑡𝑒, 𝑠&
where:
• 𝑆 is a finite set of states;
• 𝑄! is a set of input valuations;
• 𝑄$ is a set of output valuations;
• possible𝑈𝑝𝑑𝑎𝑡𝑒: 𝑆 × 𝑄! → 2 ,×.! is an is an update relation, map-
ping a state and an input valuation to a set of possible (next state,
output valuation) pairs;
• 𝑠& is the initial state.

The state machines we describe here are known as Mealy machines, named after
George H. Mealy, a Bell Labs engineer who published a description of these ma-
chines in 1955 (Mealy, 1955). Mealy machines are characterized by producing
outputs when a transition is taken.

An alternative, known as a Moore machine, produces outputs when the machine
is in a state, rather than when a transition is taken. That is, the output is defined
by the current state rather than by the current transition. Moore machines are
named after Edward F. Moore, another Bell Labs engineer who described them in
a 1956 paper (Moore, 1956).

Mealy machines and Moore machine

Ex: Parking Finite State Machine
Try to define the FSM of a car park, where a car can arrive or depart,
and you have a maximum number of slots equal to M.

Hint: the modes are the number of occupied slots

Parking Finite State Machine

0 1 2 M

…

…

arr ∧ ¬ dep
→ c= 1

arr ∧ ¬ dep
→ c= 2

arr ∧ ¬ dep
→ c= 3

arr ∧ ¬ dep
→ c= M

dep ∧ ¬ arr
→ c= M-1

dep ∧ ¬ arr
→ c= 2

dep ∧ ¬ arr
→ c= 1

dep ∧ ¬ arr
→ c= 0

Parking Finite State Machine

𝑐
bool arr

bool dep
0 1 2 M

…

…

arr ∧ ¬ dep
→ c= 1

arr ∧ ¬ dep
→ c= 2

arr ∧ ¬ dep
→ c= 3

arr ∧ ¬ dep
→ c= M

dep ∧ ¬ arr
→ c= M-1

dep ∧ ¬ arr
→ c= 2

dep ∧ ¬ arr
→ c= 1

dep ∧ ¬ arr
→ c= 0

Parking Extended State Machine

(arr ∧ ¬ dep ∧ c<M)
→ s := s+1, c := s

(dep ∧ ¬ arr ∧ c>0)
→ s := s-1, c := s

s := 0

Consider a system that counts the number of cars that enter and leave a parking
garage in order to keep track of how many cars are in the garage at any time.

Cruise Controller Example

48

CruiseController

event second event cruise

event inc

event dec

Clock

Sensor event rotate

Display

nat speed event(nat) cruiseSpeed

ThrottleController

event(real) F

Driver Inputs

u Rotation Sensor: Wheel speed
sensor or vehicle speed sensor

u Type of a tachometer
u Counts number of rotations per

second and as the wheel radius
is known, can compute the linear
speed of the car

Sensors

49

(From Porter and Chester Institute slides on Google Image Search)

u ThrottleController is an
actuator that gets a
force/torque required to
adjust the throttle plate
which leads to tracking the
desired speed

Actuator

50

CruiseController

event second event cruise

event inc

event dec

Clock

Sensor event rotate

Display

nat speed event(nat) cruiseSpeed

ThrottleController

event(real) F

Decomposing CruiseController further

51

MeasureSpeed SRC

52

event rotate nat speed
nat count := 0, s:=0

if rotate?
count:=count + 1;

if second?
s:= round(K* count);
count:=0;

speed:=s

MeasureSpeed SRC

event second

u Synchronous dataflow languages used to model synchronous components
� Scade-suite from Esterel Technologies: used in many avionics' applications

u Benefit: system design is simpler
u Challenge: How do we ensure synchronous execution when components

may execute on different hardware?

Synchronous components: summary

53

Thermostat FSM

cooling heating

Temp	 ≤ 18	 → 	ℎ𝑒𝑎𝑡𝑂𝑁

Temp	 ≥ 22	 → 	ℎ𝑒𝑎𝑡𝑂𝐹𝐹

It could be event triggered, like the garage counter, in which case it will react whenever a
temperature input is provided. Alternatively, it could be time triggered, meaning that it
reacts at regular time intervals

Asynchronous Components

57

Asynchrony

[1] Nicolescu, Gabriela; Mosterman, Pieter J., eds. (2010).
Model-Based Design for Embedded Systems.
Computational Analysis, Synthesis, and Design of Dynamic
Systems. 1. Boca Raton: CRC Press.

58

u Synchrony: All components execute in a sequence of rounds in lock-step
u Asynchrony: No lock-step computation!
u Natural model for networked, distributed communicating components

executing independently and at possibly different speeds
u As there is no central, global clock, explicit coordination is required between

components
u Examples:

� Processes in distributed computation, multiple threads in any modern OS
� Interrupt-driven processing

u Input channel in of type bool
u Output channel out of type bool
u State variable x of type bool+∅. The

value ∅ indicates empty or null.
u x initialized to ∅
u Input task Tin reads input value into x
u Output task Tout produces output if x

is not empty

Asynchronous Reactive Component

59

bool
out

bool in
bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ }

Asynchronous Reactive Component Example

60

bool in bool out
bool∅ x:= ∅

Tin: x := in
bool∅ = bool ∪ {∅}

Tout:
x≠ ∅ → { out := x;

x := ∅ } Tasks: Tin,Tout
Guarded
Update

u Execution Model: In each step only one task
is executed

u Task can be executed only if it is enabled (i.e.
if its guard condition is true)

u If multiple guard conditions are true, one
task is nondeterministically executed

u Sample execution:

∅
45?&

7!"
0
89:!&

7"#$
∅
45?(

7!"
1
45?&

7!"
0
89:!&

7"#$
∅

Asynchronous Reactive Component Execution

61

bool
in

bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ }

bool
out

Buffer

u ARC may have no inputs or
outputs, just internal tasks
� Update may have no guards

u In each step, execute Tx or Ty
u Sample execution:

0,0 →
8!

0,1 →
8!
(0,2)→

8"
(1,2)→

8!
(1,3)

u Interleaved model of concurrency

Example: Asynchrony + Nondeterminism

62

int x:= 0, y≔ 0

Tx: x := x+1
Ty: y:= y+1

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(1,2)

u Set of input channels: I
� ESM representation: in?v, where v is the value

to be received

u Set of output channels: O
� ESM representation: out!v, where v is the

value to be written

u Set of state variables X
u Initialization Init which maps state

variables to initial values

Asynchronous Process/Reactive Component

63

bool
in

bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ }

bool
out

Input Task defines updates of the form: G → x:= E(X,in)
u Guard condition G: some expression over only state variables X; input task

can be executed only if G is true
u For each in in I, we associate a read-set (X ∪ {in}): variables that can appear

in E for input task associated with in (rationale: can read value on in only if
that task is enabled)

u Defines a set of input actions of the form: q
45?=

q’
� where q is value of state variables before update, and q satisfies G
� value of state variables after update is q’ = E(X↦q, in↦v)

Updates are different from SRCs!

64

Output Task: defines updates of the form: G → out := E(X)
u Guard condition G: some expression over only variables in X; output task can

be executed only if G is true
u Any expression containing only state variables can appear in E

u Defines an output action of the form q
89:!=

q’
� where q is value of state variables before update, and q satisfies G
� value of state variables after update is q’
� value v is output on channel out

Updates are different from SRCs!

65

Internal Task: defines updates of the form: G → x := E(X)
u Guard condition G: some expression over only variables in X; internal task

can be executed only if G is true
u Any expression containing only state variables can appear in E, only state

variables appear on LHS

u Defines an internal action of the form q→
>

q’
� where q is value of state variables before update, and q satisfies G
� value of state variables after update is q’
� No input is read or output is produced!

Updates are different from SRCs!

66

Asynchronous Example

67

bool in1

queue(bool) x1 ≔ ∅, x2 ≔ ∅

Tin1: ¬Full(x1) → Enqueue(x1,in1)
bool in2 Tin2: ¬Full(x2) → Enqueue(x2,in2)

Tout1: ¬Empty(x1) → out := Dequeue(x1)

bool
out

Tout2: ¬Empty(x2) → out := Dequeue(x2)

Asynchronous Processes can also be represented with extended state machines

Asynchronous Merge: Sequence of AcCons

68

bool in1

queue(bool) x1 ≔ ∅, x2 ≔ ∅

Tin1: ¬Full(x1) → Enqueue(x1,in1)
bool in2 Tin2: ¬Full(x2) → Enqueue(x2,in2)

Tout1: ¬Empty(x1) → out := Dequeue(x1)

bool
out

Tout2: ¬Empty(x2) → out := Dequeue(x2)

(∅, ∅)

(<1>,∅)

(<1>,<0>) (<1>,<0,1>)

(<1>,<1>)

in1?1

in2?0

in2?1

out!0

out!1

Tin1

Tin2

Tin2

Tout2

Tout2

Asynchronous Processes can also be represented with extended state machines

u Parallel composition:
Inputs, Outputs, States and
Initialization similar to the
synchronous case

u Input consumption needs
to be synchronized with
output production for the
‘temp’ variable

Composing Asynchronous Processes

69

bool
in

bool∅ x1 := ∅

Tin1: x1 := in

Tout1:
x1 ≠ ∅ → { temp := x1;

x := ∅ }

Buffer

bool∅x2:= ∅

Tin2: x2 := temp

Tout2:
x2 ≠ ∅ → { out := x2;

x2 := ∅ }

Buffer

bool
out

u Defining P1 | P2

u In each step only 1 task executes
u If y is an output channel of P1

and input channel of P2:
u Output task for P1:G1→ U1

u Input task for P2 :G2→ U2

u Composition has output task for
y with code: G1 ∧ G2 → U1;U2

Composed DoubleBuffer

70

bool
in

bool∅ x1 := ∅

Tin1: x1 := in
Tout1:
x1 ≠ ∅ → { temp := x1;

x1:= ∅ }

Buffer

bool∅x2:= ∅
Tin2: x2 := temp
Tout2:
x2 ≠ ∅ → { out := x2;

x2 := ∅ }

Buffer

bool
out

bool in
bool∅ x1 := ∅, x2 := ∅

Tin1: x1 := in
Tout2: x2 ≠ ∅ → { out:=x2;

x2 ≔∅}Double
Buffer

bool
out

Tout1in2: x1 ≠ ∅ → {temp:=x1;
x1 ≔∅;
x2:=temp}

bool
temp

Hiding ouput y: achieved by removing y from the set of output channels
and turning each output task associated with the channel y into an
internal task by declaring y to be a local variable

Output Hiding

71

bool in
bool∅ x1 := ∅, x2 := ∅

Tin1: x1 := in
Tout2: x2 ≠ ∅ → { out:=x2;

x2 ≔∅}Double
Buffer

bool
out

Tout1in2: x1 ≠ ∅ → { local bool temp;
temp:=x1;
x1 ≔∅;
x2:=temp}

bool
temp

Blocking vs. Non-blocking Synchronization

72

int x := 0

Ttmpe: (x is even)→
x:= tmp

P2

Tout: tmp := in;

P1

int tmp

u Task Tout of P1 can produce a value on the output
only if P2 has an input task that is enabled to
consume the value with some input task

u In this example, once x becomes odd, P2 cannot
consume (no enabled input task) and it blocks
communication

u Process is non-blocking on channel in for a state s
if at least one guarded update corresponding to
input task for in is enabled in the state s

u Process is non-blocking if it is non-blocking in
every channel and for every states.

int in

How do you make P2 non-blocking?

Blocking vs. Non-blocking Synchronization in Merge

73

bool in1

queue(bool) x1 ≔ ∅, x2 ≔ ∅

Tin1: ¬Full(x1) → Enqueue(x1,in1)
bool in2 Tin2: ¬Full(x2) → Enqueue(x2,in2)

Tout1: ¬Empty(x1) → out := Dequeue(x1)

bool
out

Tout2: ¬Empty(x2) → out := Dequeue(x2)

Blocking vs. Non-blocking Synchronization in Merge

74

bool in1

queue(bool) x1 ≔ ∅, x2 ≔ ∅

Tin1: ¬Full(x1) → Enqueue(x1,in1)
bool in2 Tin2: ¬Full(x2) → Enqueue(x2,in2)

Tout1: ¬Empty(x1) → out := Dequeue(x1)

bool
out

Tout2: ¬Empty(x2) → out := Dequeue(x2)

An input on the channel in1
cannot be processed if the queue
x1 is full, and thus the producer of
outputs on the channel in1 has to
wait until this queue becomes
non-full

u Common error in asynchronous designs
u Caused by each process waiting for another process to execute a task, but

no task is enabled

Deadlocks

75

P1

bool x1 := 0, z1 := 0

T11: (x1==0)→ x1:= 1;
T12: (x1==1)→ z1 := r2
T13: (z1==1)→ r1 := 1

r1

r2

(0,0),
(0,0)

(1,0),
(0,0)

(1,0),
(1,0)

𝜀T11

T21

bool x2 := 0, z2 := 0

T21: (x2==0)→ x2:= 1;
T22: (x2==1)→ z2 := r1
T23: (z2==1)→ r2 := 1

P2
𝜀

𝑦!, 𝑧! ,
𝑦" , 𝑧"

(y1==0)→ y1:= 1;

(y2==0)→ y2:= 1;

u Common error in asynchronous designs
u Caused by each process waiting for another process to execute a task, but

no task is enabled

Deadlocks

76

P1

bool x1 := 0, z1 := 0

T11: (x1==0)→ x1:= 1;
T12: (x1==1)→ z1 := r2
T13: (z1==1)→ r1 := 1

r1

r2

(0,0),
(0,0)

(1,0),
(0,0)

(1,0),
(1,0)

𝜀T11

T21

bool x2 := 0, z2 := 0

T21: (x2==0)→ x2:= 1;
T22: (x2==1)→ z2 := r1
T23: (z2==1)→ r2 := 1

P2
𝜀

𝑦!, 𝑧! ,
𝑦" , 𝑧"

(y1==0)→ y1:= 1;

(y2==0)→ y2:= 1;
Must
synchronize

