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Cyber-Physical System (CPS)
Combination of physical (environment / plant / process / system) with a
cyber (computation / software / code) components potentially networked and
tightly interconnected

Physical component

 !x = f x( )Cyber component
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Model-based Design Approach

Validation : "Are you building the right thing?"         Verification : "Are you building it right?”



Model-based Design Approach
MBD languages are often visual and block-diagram based, e.g. Simulink



Functional Components
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1. Classical model of computa<on: Func<onal or Transforma<onal 
Programs

� Start from a given input, 

� Produce a certain output and then terminate

� Desired func@onality can be described by a mathema@cal func@on

� Emphasis is on data computa@on



Reactive Components
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2. Reactive Programs:

� It maintains and internal state

� Continuously interact with the environment at a rate decided by 
the environment

� Emphasis is on system-environment interaction; e.g. airline 
autopilot, mail-servers, etc.
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u What’s the notion of time in the model?
� Real-time or Logical time-steps of execution?

u What time do different components in the model use?
� Single global clock for full synchronization?
� Different clocks in each component?

u What level of granularity do we need in time?
� Discrete time-steps or Continuous dense time?

Models of Computation: Timing 



Most convenient model of computation for an (Autonomous) CPS is a
reactive and concurrent model of computation.

ReacCve  Component

Inputs Outputs
Internal

state

An autonomous CPS can be viewed as a network of components that communicate
either synchronously or asynchronously.



Examples of type of modeling for CPS components:
 
Ø Modeling physical phenomena (dynamical systems) –  differential equation

Ø Feedback control systems – time-domain modeling

Ø Modeling modal behavior – FSMs, hybrid automata, … 

Ø Modeling sensors and actuators – models that help with calibration, noise elimination, 

Ø Modeling hardware and software – capture concurrency, timing, … 

Ø Modeling networks – latencies, error rates, packet loss,

Models: abstractions of CPS



Models of Computation
• Synchronous Model of Computa<on
• Asynchronous Model of Computa<on
• Timed Models
• Like Asynchronous models, but with explicit @me informa@on
• Can make use of global @me for coordina@on

• Con<nuous-<me models/Dynamical system models
• Like Synchronous, but @me evolves con@nuously

• Hybrid Dynamical Models
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Synchronous Models



Synchronous Models
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u All components execute in a sequence of 
rounds in lock-step

u Example: 
� Components in a digital hardware circuit with a 

central global clock
� Fixed-step Simulation Models of Discrete 

Components in Simulink



u Benefit: system design is simpler if we use a simple round-based 
computation

u Challenge: How do we ensure synchronous execution when components 
may execute on different hardware?

Synchronous languages

13



Simple Representation of a Synchronous Component
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Input Names 
and Types

State Variables 
Declaration and 
initialization

Output Names 
and Types

Component

Update action 
that happens in 
each round



(Boolean = { 0, 1})
u Input variable: in of type Boolean
u Output variable: out of type Boolean
u State variable: x of type Boolean, 

ini<alized to 0
u In each round, component updates 

output from the state and state from 
input

Simplest synchronous component: delay
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bool in bool out
bool x := 0

out:=x ; x:= in



u Initialize state to 0
u Repeatedly execute rounds
u In each round:

� Choose value for input (provided from 
environment, e.g. by user)

� Execute update code

ExecuCon of “Delay”
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bool in bool out
bool x := 0

out:=x ; x:= in

1 / 0
1

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
10



u Time needed to execute update is negligible compared to arrival times 
between consecutive inputs

u Synchronous execution is a logical abstraction
� Execution time of update code is 0
� Production of outputs, updates to state and arrival of inputs happen instantaneously

u With multiple components, assume all execute synchronously and 
simultaneously

Synchrony hypothesis
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u SRC is defined as a tuple: (𝑄! , 𝑄" , 𝑄# , 𝑖𝑛𝑖𝑡 , 𝑟𝑒𝑎𝑐𝑡 ), where:

Let’s Formalize an SRC (Synchronous Reactive Component)
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Symbol Designation Examples

𝑄! Set of Inputs {bool 𝑖𝑛}

𝑄" Set of State Variables 𝑏𝑜𝑜𝑙 𝑥

𝑄# Set of Outputs {𝑏𝑜𝑜𝑙 𝑜𝑢𝑡}

𝑖𝑛𝑖𝑡 Set of initial States 𝑥 ≔ 0

𝑟𝑒𝑎𝑐𝑡 Set of Updates 𝑜𝑢𝑡 ≔ 𝑥
𝑥 ≔ 𝑖𝑛



u Let the set of input, output, and state values be 𝑄! , 𝑄$ , 𝑄%
u Semantics of the initialization function 𝑖𝑛𝑖𝑡 :

� At time/round 0, maps the state variables to some specified value (or values) in 𝑄"
u Semantics of the update function 𝑟𝑒𝑎𝑐𝑡 (some sequence of conditionals 

and assignments): 
� A set 𝑅 of transitions where each transition is of the form: 𝑞

$/#
q&, where 𝑞 is the old 

value of the state variables, 𝑞′ is the new value of the state variables, 𝑖 is the value of 
the input in that round, and 𝑜 is the value of the output

� 𝑅 is a subset of 𝑄"×𝑄!×𝑄'×𝑄"

SemanCcs of updates & iniCalizaCon
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Transitions for Delay
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bool in bool out
bool x := 0

out:=x ; x:= in

𝒒
𝒊/𝒐

𝒒+



What are the 𝑄! , 𝑄", 𝑄# for these SRCs?
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bool in bool out
bool x := 0

out:=x ; x:= in

bool in
int out

int y:= 0
bool z:= 0

out:=y ; 
if (z==0) 

y:= y + 1
else

y:=  y-1
z := in

𝑄! = 0,1 , 𝑄" = 0,1 , 𝑄' = {0,1}
𝑄! = 0,1 , 𝑄" = int×{0,1} , 𝑄' = int



Composition of Synchronous Components
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bool in1 bool out1bool x1 := 0

out1:=x1 ; x1:= in1

bool in2 bool out2bool x2 := 1

out2:=x2 ; x2:= in2

Delay sequen@ally composed with Delay 



Composition of Synchronous Components
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bool in1 bool out1bool x1 := 1

out1:=x1 ; x1:= in1

bool in2 bool out2bool x2 := 0

out2:=x2 ; x2:= in2

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
1

1 / 1
11

1 / 0
1

1 / 1
1

0 / 1
0

0 / 0
0

1 / 0
10

Delay 1

Delay 2

Observe:
1) in2 is the same as 

out1 in every 
round

2) Ignoring first 2 
rounds, outputs 
of d2 are the 
inputs to d1 
delayed by 2 
rounds 



What does this model achieve?
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bool in
int out

int y:= 0

out:=y ; 
if (in==0) 

y:= y + 1
else

y:=  y-1

int c
bool d := 0

if (c ≥ 2)
if (warn == 1)

error := 1;
else

warn := 1;
end

end

bool 
warn 

If number of ‘0’ inputs seen by the first component 
exceeds the number of ‘1’ inputs it has seen by 2, at any 
point in its execution, then the ‘warn’ light becomes high
If this happens again, the ‘error’ light becomes high

bool 
error 



u An SRC is determinis.c if:
� It has a single ini.al state
� Updates ensure that for every state 𝑞 and input 𝑖, there is a unique state 𝑞′ and output 𝑜 such 

that (𝑞, 𝑖, 𝑜, 𝑞!) is a transi.on
u Determinism means for same input sequence, you get same state/output 

sequence every single .me
u Note:

� Nondeterminism is useful for modeling uncertainty/unknown and compactness

� It is not the same as probabilis.c/random choice! 

Deterministic Component



u What to do if we want some components to not participate in some rounds?

u Event is a special input/output variable, which can be absent or present

u Event variable has value only if it is present
u Syntax: 

Event-triggered Components
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e? True if e is present
e!a e gets the value of the assignment a 



Event-triggered Copy
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event(bool) out
nat x := 0

if in? then 
{out!in; x:=x+1}

event(bool) in



Event-triggered ClockedCopy
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bool in event(bool) flag
bool x := 0

if clock? then 
flag!x; x:=in

event(bool) clock



u No need to execute in a round where triggering events are absent

Event-triggered Components
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event(bool) sec event(bool) min
nat x := 0

if sec? then 
x:=x+1;
if (x==60)

min! 1;
x:=0

end
end



u Commonly used to describe behavior of MBD models

Extended State Machines

31

From state Guard Condition?
→ Assignment

To state 

Initial state



u Does this ESM remind you of something?

Extended State Machines
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0

1

(in==0)→ out ≔ 0
(in==1)→ out ≔ 0

(in==1)→ out ≔ 1(in==0)→ out ≔ 1



Component Switch: What does this do?
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bool press int x := 0
bool q := 0

switch (q) 
case 0: if (press==1) q:= 1
case 1: if (press==0) & (x < 10)

q:=1; x:= x+1 
elseif (press==1) or ( x >= 10)

q:=0; x:= 0; out:= 1
end

end

bool out



ESM corresponding to Switch SRC
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off

on

(press==0)?
(press==1)?

(press==0) & (x<10) 
→ x ≔ x + 1

int x ≔ 0

(press==1) | (x≥10) 
→ x ≔ 0 ; out:=1

q = 0 : off
= 1 : on



u Implicit variable called “mode” that 
is a discrete state variable over some 
finite enumeration. Here: {on, off}

u SRC transition may correspond to 
mode-switch

u Each mode-switch has 
guard/update. Example:
� Guard: (press==0) & (x<10) and 
� Update: x:= x+1

ESM notation
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off

on

(press==0)? (press==1)?

(press==0) & (x<10) 
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥10) 
→ x ≔ 0 ; out:=1



u Start in mode off; initial state = (off,0)
u Sample executions:

ESM execution
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off

on

(press==0)? (press==1)?

(press==0) & (x<10) 
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥10)
→ x ≔ 0

(𝑜𝑓𝑓, 0)
↓ 0

(𝑜𝑓𝑓, 0)
↓ 1

(𝑜𝑛, 0)
↓ 0

(𝑜𝑛, 1)
⋮
↓ 0

(𝑜𝑛, 10)
↓ 0

(𝑜𝑓𝑓, 0)

(𝑜𝑓𝑓, 0)
↓ 0

(𝑜𝑓𝑓, 0)
↓ 1

(𝑜𝑛, 0)
↓ 0

(𝑜𝑛, 1)
⋮
↓ 0

(𝑜𝑛, 5)
↓ 1

(𝑜𝑓𝑓, 0)



ESM transitions could be nondeterministic!
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off

on

(press==0)? (press==1)?

(press==0) & (x≤10)
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥10) 
→ x ≔ 0



Finite-state Components
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bool in bool out
bool x := 0

out:=x ; x:= in

bool in

int out
int y:= 0
bool z:= 0

out:=y ; 
if (z==0) 

y:= y + 1
else

y:=  y-1
z := in

u Component is finite state if all variables are over finite types

FS Not FS!



Finite State Machine
A FSM is a tuple 𝑆, 𝑄! , 𝑄$ , 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑠& where:
• 𝑆 is a finite set of states;
• 𝑄! is a set of input valuations;
• 𝑄$ is a set of output valuations;
• 𝑢𝑝𝑑𝑎𝑡𝑒: 𝑆 × 𝑄! → 𝑆 × 𝑄$ is an update function, mapping a state and 
an input valuation to a next state and an output valuation;
• 𝑠& is the initial state.



Extended Finite State Machine
A EFSM is a tuple 𝑆, 𝑄! , 𝑄$ , 𝑉, 𝑢𝑝𝑑𝑎𝑡𝑒, 𝑠& where:
• 𝑆 is a finite set of states;
• 𝑄! is a set of input valua<ons;
• 𝑄$ is a set of output valua<ons;
• 𝑉 is a set of variables;
• 𝑢𝑝𝑑𝑎𝑡𝑒: 𝑆 × 𝑄!×𝑉 → 𝑆×𝑉× 𝑄$ is an update func<on, mapping a 
state and an input valua<on to a next state and an output valua<on;
• 𝑠& is the ini<al state.



Non-deterministic Finite State Machine

A non-deterministic FSM is a tuple 𝑆, 𝑄! , 𝑄$ , 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑈𝑝𝑑𝑎𝑡𝑒, 𝑠&
where:
• 𝑆 is a finite set of states;
• 𝑄! is a set of input valuations;
• 𝑄$ is a set of output valuations;
• possible𝑈𝑝𝑑𝑎𝑡𝑒: 𝑆 × 𝑄! → 2 ,×.! is an is an update relation, map-
ping a state and an input valuation to a set of possible (next state, 
output valuation) pairs; 
• 𝑠& is the initial state.



The state machines we describe here are known as Mealy machines, named after 
George H. Mealy, a Bell Labs engineer who published a description of these ma- 
chines in 1955 (Mealy, 1955). Mealy machines are characterized by producing 
outputs when a transition is taken. 

An alternative, known as a Moore machine, produces outputs when the machine 
is in a state, rather than when a transition is taken. That is, the output is defined 
by the current state rather than by the current transition. Moore machines are 
named after Edward F. Moore, another Bell Labs engineer who described them in 
a 1956 paper (Moore, 1956).

Mealy machines and Moore machine 



Ex: Parking Finite State Machine
Try to define the FSM of a car park, where a car can arrive or depart, 
and you have a maximum number of slots equal to M.

Hint: the modes are the number of occupied slots



Parking Finite State Machine

0 1 2 M

…

…

arr ∧ ¬ dep 
→ c= 1

arr ∧ ¬ dep 
→ c= 2

arr ∧ ¬ dep 
→ c= 3

arr ∧ ¬ dep 
→ c= M

dep ∧ ¬ arr
→ c= M-1

dep ∧ ¬ arr
→ c= 2

dep ∧ ¬ arr
→ c= 1

dep ∧ ¬ arr
→ c= 0



Parking Finite State Machine

𝑐
bool arr

bool dep
0 1 2 M

…

…

arr ∧ ¬ dep 
→ c= 1

arr ∧ ¬ dep 
→ c= 2

arr ∧ ¬ dep 
→ c= 3

arr ∧ ¬ dep 
→ c= M

dep ∧ ¬ arr
→ c= M-1

dep ∧ ¬ arr
→ c= 2

dep ∧ ¬ arr
→ c= 1

dep ∧ ¬ arr
→ c= 0



Parking Extended State Machine

(arr ∧ ¬ dep ∧ c<M) 
→ s := s+1,  c := s

(dep ∧ ¬ arr ∧ c>0) 
→ s := s-1,  c := s

s := 0

Consider a system that counts the number of cars that enter and leave a parking 
garage in order to keep track of how many cars are in the garage at any time. 



Cruise Controller Example
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CruiseController

event second event cruise

event inc

event dec

Clock

Sensor event rotate

Display

nat speed event(nat) cruiseSpeed

ThrottleController

event(real) F

Driver Inputs



u Rotation Sensor: Wheel speed 
sensor or vehicle speed sensor

u Type of a tachometer
u Counts number of rotations per 

second and as the wheel radius 
is known, can compute the linear 
speed of the car

Sensors
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(From Porter and Chester Institute slides on Google Image Search)



u ThrottleController is an 
actuator that gets a 
force/torque required to 
adjust the throttle plate 
which leads to tracking the 
desired speed

Actuator
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CruiseController

event second event cruise

event inc

event dec

Clock

Sensor event rotate

Display

nat speed event(nat) cruiseSpeed

ThrottleController

event(real) F



Decomposing CruiseController further
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MeasureSpeed SRC
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event rotate nat speed
nat count := 0, s:=0

if rotate?
count:=count + 1;

if second?
s:= round( K* count);
count:=0;

speed:=s

MeasureSpeed SRC

event second



u Synchronous dataflow languages used to model synchronous components
� Scade-suite from Esterel Technologies: used in many avionics' applications

u Benefit: system design is simpler 
u Challenge: How do we ensure synchronous execution when components 

may execute on different hardware?

Synchronous components: summary
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Thermostat FSM

cooling heating

Temp	 ≤ 18	 → 	ℎ𝑒𝑎𝑡𝑂𝑁

Temp	 ≥ 22	 → 	ℎ𝑒𝑎𝑡𝑂𝐹𝐹

It could be event triggered, like the garage counter, in which case it will react whenever a 
temperature input is provided. Alternatively, it could be time triggered, meaning that it 
reacts at regular time intervals 



Asynchronous Components
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Asynchrony

[1] Nicolescu, Gabriela; Mosterman, Pieter J., eds. (2010). 
Model-Based Design for Embedded Systems. 
Computational Analysis, Synthesis, and Design of Dynamic 
Systems. 1. Boca Raton: CRC Press.
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u Synchrony: All components execute in a sequence of rounds in lock-step
u Asynchrony: No lock-step computation!
u Natural model for networked, distributed communicating components 

executing independently and at possibly different speeds
u As there is no central, global clock, explicit coordination is required between 

components
u Examples:

� Processes in distributed computation, multiple threads in any modern OS
� Interrupt-driven processing



u Input channel in of type bool
u Output channel out of type bool
u State variable x of type bool+∅. The 

value ∅ indicates empty or null.
u x initialized to ∅
u Input task Tin reads input value into x
u Output task Tout produces output if x 

is not empty

Asynchronous Reactive Component
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bool 
out

bool in
bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ } 



Asynchronous Reactive Component Example
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bool in bool out
bool∅ x:= ∅

Tin: x := in
bool∅ = bool ∪ {∅}

Tout:
x≠ ∅ → { out := x;

x := ∅ } Tasks: Tin,Tout
Guarded 
Update



u Execution Model: In each step only one task 
is executed

u Task can be executed only if it is enabled (i.e. 
if its guard condition is true)

u If multiple guard conditions are true, one 
task is nondeterministically executed

u Sample execution:

∅
45?&

7!"
0
89:!&

7"#$
∅
45?(

7!"
1
45?&

7!"
0
89:!&

7"#$
∅

Asynchronous Reactive Component Execution
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bool
in

bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ } 

bool 
out

Buffer



u ARC may have no inputs or 
outputs, just internal tasks
� Update may have no guards

u In each step, execute Tx or Ty
u Sample execution:

0,0 →
8!

0,1 →
8!
(0,2)→

8"
(1,2)→

8!
(1,3)

u Interleaved model of concurrency

Example: Asynchrony + Nondeterminism
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int x:= 0, y≔ 0

Tx: x := x+1
Ty: y:= y+1

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(1,2)



u Set of input channels: I
� ESM representation: in?v, where v is the value 

to be received

u Set of output channels: O
� ESM representation: out!v, where v is the 

value to be written

u Set of state variables X
u Initialization Init which maps state 

variables to initial values

Asynchronous Process/Reactive Component
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bool
in

bool∅ x:= ∅

Tin: x := in
Tout:
x≠ ∅ → { out := x;

x := ∅ } 

bool
out



Input Task defines updates of the form: G → x:= E(X,in)
u Guard condition G: some expression over only state variables X; input task 

can be executed only if G is true
u For each in in I, we associate a read-set (X ∪ {in}): variables that can appear 

in E for input task associated with in (rationale: can read value on in only if 
that task is enabled)

u Defines a set of input actions of the form: q
45?=

q’
� where q is value of state variables before update, and q satisfies G
� value of state variables after update is q’ = E(X↦q, in↦v)  

Updates are different from SRCs! 
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Output Task: defines updates of the form: G → out := E(X) 
u Guard condition G: some expression over only variables in X; output task can 

be executed only if G is true
u Any expression containing only state variables can appear in E

u Defines an output action of the form q
89:!=

q’
� where q is value of state variables before update, and q satisfies G
� value of state variables after update is q’
� value v is output on channel out 

Updates are different from SRCs! 
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Internal Task: defines updates of the form: G → x := E(X) 
u Guard condition G: some expression over only variables in X; internal task 

can be executed only if G is true
u Any expression containing only state variables can appear in E, only state 

variables appear on LHS

u Defines an internal action of the form q→
>

q’
� where q is value of state variables before update, and q satisfies G
� value of state variables after update is q’
� No input is read or output is produced!

Updates are different from SRCs! 
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Asynchronous Example

67

bool in1

queue(bool) x1 ≔ ∅, x2 ≔ ∅

Tin1: ¬Full(x1) → Enqueue(x1,in1)
bool in2 Tin2: ¬Full(x2) → Enqueue(x2,in2)

Tout1: ¬Empty(x1) → out := Dequeue(x1)

bool 
out

Tout2: ¬Empty(x2) → out := Dequeue(x2)

Asynchronous Processes can also be represented with extended state machines



Asynchronous Merge: Sequence of AcCons
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bool in1

queue(bool) x1 ≔ ∅, x2 ≔ ∅

Tin1: ¬Full(x1) → Enqueue(x1,in1)
bool in2 Tin2: ¬Full(x2) → Enqueue(x2,in2)

Tout1: ¬Empty(x1) → out := Dequeue(x1)

bool 
out

Tout2: ¬Empty(x2) → out := Dequeue(x2)

(∅, ∅)

(<1>,∅)

(<1>,<0>) (<1>,<0,1>)

(<1>,<1>)

in1?1

in2?0

in2?1

out!0

out!1

Tin1

Tin2

Tin2

Tout2

Tout2

Asynchronous Processes can also be represented with extended state machines



u Parallel composition: 
Inputs, Outputs, States and 
Initialization similar to the 
synchronous case

u Input consumption needs 
to be synchronized with 
output production for the 
‘temp’ variable

Composing Asynchronous Processes
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bool
in

bool∅ x1 := ∅

Tin1: x1 := in

Tout1:
x1 ≠ ∅ → { temp := x1;

x := ∅ } 

Buffer

bool∅x2:= ∅

Tin2: x2 := temp

Tout2:
x2 ≠ ∅ → { out := x2;

x2 := ∅ } 

Buffer

bool 
out



u Defining P1 | P2

u In each step only 1 task executes
u If y is an output channel of P1

and input channel of P2:
u Output task for P1:G1→ U1

u Input task for P2 :G2→ U2

u Composition has output task for 
y with code: G1 ∧ G2 → U1;U2

Composed DoubleBuffer
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bool
in

bool∅ x1 := ∅

Tin1: x1 := in
Tout1:
x1 ≠ ∅ → { temp := x1;

x1:= ∅ } 

Buffer

bool∅x2:= ∅
Tin2: x2 := temp
Tout2:
x2 ≠ ∅ → { out := x2;

x2 := ∅ } 

Buffer

bool 
out

bool in
bool∅ x1 := ∅, x2 := ∅

Tin1: x1 := in
Tout2: x2 ≠ ∅ → { out:=x2; 

x2 ≔∅}Double
Buffer

bool 
out

Tout1in2: x1 ≠ ∅ → {temp:=x1; 
x1 ≔∅;
x2:=temp}

bool 
temp



Hiding ouput y: achieved by removing y from the set of output channels 
and turning each output task associated with the channel y into an 
internal task by declaring y to be a local variable 

Output Hiding
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bool in
bool∅ x1 := ∅, x2 := ∅

Tin1: x1 := in
Tout2: x2 ≠ ∅ → { out:=x2; 

x2 ≔∅}Double
Buffer

bool 
out

Tout1in2: x1 ≠ ∅ → { local bool temp;
temp:=x1; 
x1 ≔∅;
x2:=temp}

bool 
temp



Blocking vs. Non-blocking Synchronization
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int x := 0

Ttmpe: (x is even)→
x:= tmp

P2

Tout: tmp := in;

P1

int tmp

u Task Tout of P1 can produce a value on the output 
only if P2 has an input task that is enabled to 
consume the value with some input task

u In this example, once x becomes odd, P2 cannot 
consume (no enabled input task) and it blocks
communication

u Process is non-blocking on channel in for a state s 
if at least one guarded update corresponding to 
input task for in is enabled in the state s

u Process is non-blocking if it is non-blocking in 
every channel and for every states.

int in

How do you make P2 non-blocking?



Blocking vs. Non-blocking Synchronization in Merge
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bool in1

queue(bool) x1 ≔ ∅, x2 ≔ ∅

Tin1: ¬Full(x1) → Enqueue(x1,in1)
bool in2 Tin2: ¬Full(x2) → Enqueue(x2,in2)

Tout1: ¬Empty(x1) → out := Dequeue(x1)

bool 
out

Tout2: ¬Empty(x2) → out := Dequeue(x2)



Blocking vs. Non-blocking Synchronization in Merge
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bool in1

queue(bool) x1 ≔ ∅, x2 ≔ ∅

Tin1: ¬Full(x1) → Enqueue(x1,in1)
bool in2 Tin2: ¬Full(x2) → Enqueue(x2,in2)

Tout1: ¬Empty(x1) → out := Dequeue(x1)

bool 
out

Tout2: ¬Empty(x2) → out := Dequeue(x2)

An input on the channel in1
cannot be processed if the queue  
x1 is full, and thus the producer of 
outputs on the channel in1 has to 
wait until this queue becomes 
non-full 



u Common error in asynchronous designs
u Caused by each process waiting for another process to execute a task, but 

no task is enabled

Deadlocks
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P1

bool x1 := 0, z1 := 0

T11: (x1==0)→ x1:= 1; 
T12: (x1==1)→ z1 := r2
T13: (z1==1)→ r1 := 1

r1

r2

(0,0),
(0,0)

(1,0),
(0,0)

(1,0),
(1,0)

𝜀T11

T21

bool x2 := 0, z2 := 0

T21: (x2==0)→ x2:= 1; 
T22: (x2==1)→ z2 := r1
T23: (z2==1)→ r2 := 1

P2
𝜀

𝑦!, 𝑧! ,
𝑦" , 𝑧"

(y1==0)→ y1:= 1; 

(y2==0)→ y2:= 1; 



u Common error in asynchronous designs
u Caused by each process waiting for another process to execute a task, but 

no task is enabled

Deadlocks
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P1

bool x1 := 0, z1 := 0

T11: (x1==0)→ x1:= 1; 
T12: (x1==1)→ z1 := r2
T13: (z1==1)→ r1 := 1

r1

r2

(0,0),
(0,0)

(1,0),
(0,0)

(1,0),
(1,0)

𝜀T11

T21

bool x2 := 0, z2 := 0

T21: (x2==0)→ x2:= 1; 
T22: (x2==1)→ z2 := r1
T23: (z2==1)→ r2 := 1

P2
𝜀

𝑦!, 𝑧! ,
𝑦" , 𝑧"

(y1==0)→ y1:= 1; 

(y2==0)→ y2:= 1; 
Must 
synchronize


