
Programming in Java – Part 02
OOP in Java

Paolo Vercesi

ESTECO SpA

Extension and inheritance

Access control and encapsulation

Interfaces and polymorphism

The Three Musketeers of OOP

Agenda
OOP

OOP

© 2019 ESTECO SpA

Object-oriented programming is a programming paradigm

“A programming paradigm is a way of conceptualizing
what it means to perform computation

and how tasks to be carried out on a computer
should be structured and organized”

Object-oriented programming

© 2019 ESTECO SpA

Programming paradigms

Imperative

Procedural

Object
oriented

Declarative

Functional

Logic

© 2019 ESTECO SpA

Emphasizes the use of procedures, functions, and modules to structure and organize code

A program is divided into a series of reusable procedures, each of which performs a specific
task

Procedures are typically called in a sequence to accomplish a larger task and they can pass
data between each other

Supported by computer processors that provide a stack register and instructions for calling
procedures and returning from them

The C programming language is a procedural language, but the procedural paradigm can be
also used with other languages like Java or Python

Is a popular paradigm and many people starts to program by using it

Procedural paradigm

© 2019 ESTECO SpA

Code is organized into reusable and self-contained interacting units known as objects

Each object is an instance of a class, and a class defines the state (variables) and behavior
(methods) of the objects

Each object implements a responsibility and provides methods that can be used by other
objects

OOP encourages modeling real-world entities and their interactions within a program, making
it easier to understand, design, and maintain complex software systems

Some programming languages that support OOP are Java, C++, C#, Python, and Typescript

The shift from procedural programming to object-oriented programming can be difficult

Object-oriented paradigm

© 2019 ESTECO SpA

Focus on immutability, pure functions, and a declarative style of programming

A pure function always produce the same output for the same input, regardless of the program's state

A pure function has no side effects, they don't modify variables outside their scope or perform any
observable actions other than returning a value

Data is typically immutable, once a data structure is created it cannot be changed, new data structures
are created to represent changes, simplifying reasoning about code

Functions are first class citizens, they can be passed as arguments to other functions, returned as
values from other functions, and assigned to variables

Functional programming encourages the composition of smaller functions to build more complex
functions, to promote code reusability and modularity

Functional paradigm

© 2019 ESTECO SpA

• Suppose an individual named Chris wishes to send flowers to a friend named Robin, who
lives in another city

• Because of the distance, Chris cannot simply pick the flowers and take them to Robin in
person

• Chris simply walks to a nearby flower shop, run by a florist named Fred
• Chris will tell Fred the kinds of flowers to send to Robin and the address to which they

should be delivered
• Chris can then be assured that the flowers will be delivered expediently and automatically

Real-world problem

Chris: People Fred: Florist

Send flowers

• Fred has the responsibility to send flowers
• Is Chris interested in how it is happening? It doesn’t need!

© 2019 ESTECO SpA

A possible method

Fred: Florist Robin’s florist:
Florist

Flower GrowerFlower Wholesaler

Flower Arranger

Send flowers Arrange flowers

Buy flowers

Delivery People

Another Florist could have
used a different method

© 2019 ESTECO SpA

You initiate an action by the transmitting a message to a receiver object responsible for the
action. In other words, you ask the object to do something by invoking a method

The message encodes the request for an action and is accompanied by additional information
(method arguments) needed to carry out the request

In response to a message, the receiver will perform some procedure to satisfy the request

Based on the information hiding principle (encapsulation), the client sending the message does
not need to know how the receiver is implementing the action, nor it does not need to know
anything about other private members

Public methods declare what are the responsibilities of an object

Messages and methods in OOP

© 2019 ESTECO SpA

it.units.sdm.oop.florist.messagesandmethods.Person

public class Person {

public static void main(String[] args) {
Person robin = new Person();
Florist fred = new Florist(new Wholesaler[]{new Wholesaler(10, 3), new Wholesaler(12, 2)});

fred.sendFlowersTo(robin);
}

}

© 2019 ESTECO SpA

it.units.sdm.oop.florist.messagesandmethods.Florist

public class Florist {

private final Wholesaler[] wholesalers;

public Florist(Wholesaler[] wholesalers) {
this.wholesalers = wholesalers;

}

public void sendFlowersTo(Person person) {
Flowers flowers = buyFlowers();
flowers.arrange();
deliverFlowers(flowers, person);

}

private Flowers buyFlowers() {
return selectWholesaler().buyFlowers();

}

private Wholesaler selectWholesaler() {
Wholesaler cheapest = wholesalers[0];
for (Wholesaler wholesaler : wholesalers) {

if (wholesaler.getPrice() < cheaper.getPrice()) {
cheapest = wholesaler;

}
}
return cheapest;

}

[…]
}

© 2019 ESTECO SpA

How does a message differ from a procedure call?

In both cases, the invoked method initiates a set of well-defined, but we can find two
important distinctions

1. in a message there is a designated receiver; in a procedure call there is no designated
receiver, we are just invoking a procedure in some module or library. The specific receiver will
not be known until run time. Thus, there is late binding between the message (function or
procedure name) and the code fragment (method) used to respond to the message. On the
contrary, a procedure call is bind/linked much earlier at compile-time or link-time

2. the interpretation of the message, that is, the method used to respond to the message, is
determined by the receiver and can vary with different receivers, this point is at the base of
polymorphism

Messages vs procedure calls

© 2019 ESTECO SpA

it.units.sdm.oop.florist.procedural.Person

public class Person {

private static void sendFlowersTo(Florist florist, Person person) {
Flowers flowers = buyFlowers(florist);
arrange(flowers);
deliverFlowers(flowers, person);

}

private static Flowers buyFlowers(Florist florist) {
Wholesaler wholesaler = selectWholesaler(florist.getWholesalers());
return wholesaler.buyFlowers();

}

private static Wholesaler selectWholesaler(Wholesaler[] wholesalers) {
Wholesaler cheapest = wholesalers[0];
for (Wholesaler wholesaler : wholesalers) {

if (wholesaler.getPrice() < cheaper.getPrice()) {
cheapest = wholesaler;

}
}
return cheapest;

}

[…]

public static void main(String[] args) {
Person robin = new Person();
Florist fred = new Florist(new Wholesaler[]{new Wholesaler(10, 3), new Wholesaler(12, 2)});
sendFlowersTo(fred, robin);

}
}

© 2019 ESTECO SpA

it.units.sdm.oop.florist.procedural.Florist

public class Florist {

private final Wholesaler[] wholesalers;

public Florist(Wholesaler[] wholesalers) {
this.wholesalers = wholesalers;

}

public Wholesaler[] getWholesalers() {
return wholesalers;

}
}

it.units.sdm.oop.florist.polymorphic.Florist

public interface Florist {

void sendFlowersTo(Person people);

}

© 2019 ESTECO SpA

it.units.sdm.oop.florist.polymorphic.CheapFlorist

public class CheapFlorist implements Florist {

private final Wholesaler[] wholesalers;

public CheapFlorist(Wholesaler[] wholesalers) {
this.wholesalers = wholesalers;

}

public void sendFlowersTo(Person person) {
Flowers flowers = buyFlowers();
flowers.arrange();
deliverFlowers(flowers, person);

}

private Flowers buyFlowers() {
return selectWholesaler().buyFlowers();

}

private Wholesaler selectWholesaler() {
Wholesaler cheapest = wholesalers[0];
for (Wholesaler wholesaler : wholesalers) {

if (wholesaler.getPrice() < cheapest.getPrice()) {
cheapest = wholesaler;

}
}
return cheapest;

}

}

it.units.sdm.oop.florist.polymorphic.FastFlorist

public class FastFlorist implements Florist {

private final Wholesaler[] wholesalers;

public CheapFlorist(Wholesaler[] wholesalers) {
this.wholesalers = wholesalers;

}

public void sendFlowersTo(Person person) {
Flowers flowers = buyFlowers();
flowers.arrange();
deliverFlowers(flowers, person);

}

private Flowers buyFlowers() {
return selectWholesaler().buyFlowers();

}

private Wholesaler selectWholesaler() {
Wholesaler fastest = wholesalers[0];
for (Wholesaler wholesaler : wholesalers) {

if (wholesaler.getDeliveryDays() < fastest.getDeliveryDays()) {
cheapest = wholesaler;

}
}
return fastest;

}

}

© 2019 ESTECO SpA

it.units.sdm.oop.florist.polymorphic.Person

public class Person {

public static void main(String[] args) {
Person robin = new Person();
Florist fred = new CheapFlorist(new Wholesaler[]{new Wholesaler(10, 3), new Wholesaler(12, 2)});

fred.sendFlowersTo(robin);
}

}

it.units.sdm.oop.florist.polymorphic.Person

public class Person {

public static void main(String[] args) {
Person robin = new Person();
Florist fred = new FastFlorist(new Wholesaler[]{new Wholesaler(10, 3), new Wholesaler(12, 2)});

fred.sendFlowersTo(robin);
}

}

© 2019 ESTECO SpA

Chris has more knowledge about
Fred, who is not only a Florist, but a
Shopkeeper, and a Person too

The principle that knowledge of a
more general category is also
applicable to a more specific
category is called inheritance

We say that the class Florist will
inherit members of the class
Shopkeeper.

Class hierarchies and inheritance

Shopkeeper

pay(Money amount): Receipt

Florist

sendFlowers(Person recipient)

Person

getDeliveryAddress(): Address

Wholesaler

buyFlowers(): Flowers

© 2019 ESTECO SpA

Inheritance

Encapsulation

Polymorphism

The three pillars of OOP

© 2019 ESTECO SpA

Timothy A. Budd, 2001, An Introduction to Object-Oriented Programming
(3rd. ed.), Addison-Wesley Longman Publishing Co., Inc., USA.

References

Extension and inheritance

© 2019 ESTECO SpA

Inheritance

Inheritance allows to define new
classes by reusing other classes,
specifying just the differences

Inheritance allow the definition of
a new class by specifying that the

new class is like another class

Superclass

Subclass

is a

package it.units.sdm;

public class PlasmaTelevision extends Television {

double usageHours;

}

The is-a relationship is very strong.
Its usage is not always appropriate,
and it is very easy to misuse it

Java uses the extends keyword to
indicate the extended superclass

extends implies you are extending the Television class in something that is bigger

© 2019 ESTECO SpA

Java classes hierarchy

Television

LedTelevision PlasmaTelevision

Object

String AbstractCollection Calculator

ScientificCalculator

© 2019 ESTECO SpA

Construction of subclasses

package it.units.sdm;

public class PlasmaTelevision extends Television {

double usageHours;

public PlasmaTelevision(String model, double usageHours) {
super(model);
this.usageHours = usageHours;

}
}

If the superclass defines at least one constructor, the
subclass must define a constructor and it must invoke
a constructor of the superclass by using super

© 2019 ESTECO SpA

Constructors

PlasmaTelevision ptv = new PlasmaTelevision("LG121", 3.14);
Television tv = new Television("LG121");

" LG121"

model

false

on

0

channel

0

volume

tv

" LG121"

model

false

on

0

channel

0

volume

ptv

3.14

usageHours

© 2019 ESTECO SpA

Inherited methods

PlasmaTelevision ptv = new PlasmaTelevision("LG121", 0.0);
ptv.turnOn();

Inherited method can be used directly
on the instances of the subclass

Television

PlasmaTelevision

turnOn()

© 2019 ESTECO SpA

Overridden methods 1/2

Methods in the subclass can
override the methods in the
superclass

Television

PlasmaTelevision

turnOn()

turnOn()

package it.units.sdm;

public class PlasmaTelevision extends Television {

double usageHours;
long startTime;

public PlasmaTelevision(String model) {
super(model);

}

@Override
void turnOn() {

super.turnOn();
startTime = System.currentTimeMillis();

}

}

© 2019 ESTECO SpA

Overridden methods 2/2
public class PlasmaTelevision extends Television {

private double usageHours;
private long startTime;

public PlasmaTelevision(String model) {
super(model);

}

void turnOn() {
super.turnOn();
startTime = System.currentTimeMillis();

}

void turnOff() {
super.turnOff();
var endTime = System.currentTimeMillis();
usageHours += (endTime-startTime) / (1000.0 * 60 * 60);

}

public double getUsageHours() {
return usageHours;

}
}

© 2019 ESTECO SpA

New methods definition

New methods can
also be defined

Television

PlasmaTelevision

getUsageHours()

public class PlasmaTelevision extends Television {

double usageHours;
long startTime;

public PlasmaTelevision(String model) {
super(model);

}

public double getUsageHours() {
return usageHours;

}
}

© 2019 ESTECO SpA

toString()

public String toString() is an instance method defined in the Object
class that returns a human readable string representation of an object

In general, the toString() method returns a string that "textually represents"
this object. The result should be a concise but informative representation
that is easy for a person to read. It is recommended that all subclasses
override this method. The string output is not necessarily stable over time
or across JVM invocations.

The toString() method is
automatically used by Java
when converting an object
to a String

public static void main(String[] args) {
Television tv = new Television("LG120");
PlasmaTelevision ptv = new PlasmaTelevision("LG121");

System.out.println("tv: " + tv);
System.out.println(ptv);

}

© 2019 ESTECO SpA

getClass()

getClass() is an instance
method defined in the
Object class that returns
the class of an object

public static void main(String[] args) {
Television tv = new Television("LG120");
PlasmaTelevision ptv = new PlasmaTelevision("LG121");
Television ptv2 = new PlasmaTelevision("LG121");
Object ptv3 = new PlasmaTelevision("LG121");

System.out.println("tv.getClass() " + tv.getClass().getName());
System.out.println("ptv.getClass() " + ptv.getClass().getName());
System.out.println("ptv2.getClass() " + ptv2.getClass().getName());
System.out.println("ptv3.getClass() " + ptv3.getClass().getName());

}

tv.getClass() it.units.sdm.Television
ptv.getClass() it.units.sdm.PlasmaTelevision
ptv2.getClass() it.units.sdm.PlasmaTelevision
ptv3.getClass() it.units.sdm.PlasmaTelevision

© 2019 ESTECO SpA

instanceOf

instanceof is an operator that determines if
an object is an instance of a specified class

public static void main(String[] args) {
Television tv = new Television("LG120");
Television ptv = new PlasmaTelevision("LG121");

System.out.println("is tv a Television? " + (tv instanceof Television));
System.out.println("is tv a PlasmaTelevision? " + (tv instanceof PlasmaTelevision));
System.out.println("is ptv a Television? " + (ptv instanceof Television));
System.out.println("is ptv a PlasmaTelevision? " + (ptv instanceof PlasmaTelevision));

}

is tv a Television? true
is tv a PlasmaTelevision? false
is ptv a Television? true
is ptv a PlasmaTelevision? true

© 2019 ESTECO SpA

Class casting

PlasmaTelevision ptv0 = new PlasmaTelevision("FullHD");
Television tv0 = ptv0;
Object obj0 = ptv0;

Television tv = new PlasmaTelevision("LG121");
PlasmaTelevision ptv = tv; //illegal assignment

PlasmaTelevision ptv2 = (PlasmaTelevision) tv;

Object obj = new PlasmaTelevision("LG121");
PlasmaTelevision ptv3 = (PlasmaTelevision) obj;

Calculator calculator = new Calculator();
PlasmaTelevision ptv4 = (PlasmaTelevision) calculator;

It is always possible to
assign a variable
referring a subclass to a
variable of a superclass

To assign a variable of a
superclass to a subclass
we must use the cast
operator

Assignments between
variables of different
hierarchies are not
allowed

© 2019 ESTECO SpA

Late binding
com.esteco.sdm.Televsion

class Television {

private String model;
private boolean on;

Television(String model) {
this.model = model;

}

void turnOn() {
on = true;

}

void turnOff() {
on = false;

}
}

com.esteco.sdm.PlasmaTelevsion

class PlasmaTelevision extends Television {

double usageHours;
long startTime;

PlasmaTelevision(String model) {
super(model);

}

@Override
void turnOn() {

super.turnOn();
startTime = System.currentTimeMillis();

}
}

Television tv = new PlasmaTelevision("LG121");
tv.turnOn();

Which turnOn() is invoked?

© 2019 ESTECO SpA

Inheritance with methods

✓ New methods can be defined in the subclass to
specify the behavior of the objects of the subclass

✓ When a method is invoked on an object, the method
is searched in the class of the receptor object

✓ If it is not found, then it is searched
higher up in the hierarchy

Access control and encapsulation

© 2019 ESTECO SpA

Access control in Java

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

A class may be declared with the modifier public, in which case that class is visible to
all classes everywhere. If a class has no modifier (the default, also known
as package-private), it is visible only within its own package.

A member with access modifier private can only be accessed from its own class

A member without an access modifier can only be accessed from within its own package (package-private)

A member with access modifier protected can be accessed from within its own package and
from the subclasses of its class in another package

A member with access modifier public is visible from all the classes

Manage the visibility and encapsulation of classes and their members by specifying which parts of a class
can be accessed, modified, or inherited by other classes

© 2019 ESTECO SpA

Who can access this class? 1/3

com.esteco.sdm.Television

package com.esteco.sdm;

public class Television {

private String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Anyone from any package!

© 2019 ESTECO SpA

Who can access this class? 2/3

com.esteco.sdm.Television

package com.esteco.sdm;

class Television {

private String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Anyone from the com.esteco.sdm
package!

© 2019 ESTECO SpA

Who can access this class? 3/3

com.esteco.sdm.Television

package com.esteco.sdm;

private class Television {

private String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

No one, this declaration is illegal!

© 2019 ESTECO SpA

Who can instantiate this class? 1/3

com.esteco.sdm.Television

package com.esteco.sdm;

public class Television {

private String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Anyone from any package!

© 2019 ESTECO SpA

Who can instantiate this class? 2/3

com.esteco.sdm.Television

package com.esteco.sdm;

public class Television {

private String model;

private Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Only someone within this class!

© 2019 ESTECO SpA

Who can instantiate this class? 3/3

com.esteco.sdm.Television

package com.esteco.sdm;

class Television {

private String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Only someone within the same package!

?

© 2019 ESTECO SpA

Who can access the model variable? 1/3

com.esteco.sdm.Television

package com.esteco.sdm;

public class Television {

private String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Only someone within the same class!

© 2019 ESTECO SpA

Who can access the model variable? 2/3

com.esteco.sdm.Television

package com.esteco.sdm;

public class Television {

public String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Everyone can read and write
the model variable.

In general, very dangerous.

© 2019 ESTECO SpA

Who can access the model variable? 3/3

com.esteco.sdm.Television

package com.esteco.sdm;

public class Television {

public final String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Everyone can read the model
variable.

But only the constructor can
assign it!

© 2019 ESTECO SpA

Who can invoke the getModel() method? 1/4

com.esteco.sdm.Television

package com.esteco.sdm;

public class Television {

private final String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Everyone can invoke the
getModel() method

© 2019 ESTECO SpA

Who can invoke the getModel() method? 2/4

com.esteco.sdm.Television

package com.esteco.sdm;

public class Television {

private final String model;

public Television(String model) {
this.model = model;

}

private String getModel() {
return model;

}
}

No one outside the Television
class.

© 2019 ESTECO SpA

Who can invoke the getModel() method? 3/4

com.esteco.sdm.Television

package com.esteco.sdm;

public class Television {

private final String model;

public Television(String model) {
this.model = model;

}

protected String getModel() {
return model;

}
}

Anyone from the same package,
or from any subclass.

© 2019 ESTECO SpA

Who can invoke the getModel() method? 4/4

com.esteco.sdm.Television

package com.esteco.sdm;

class Television {

private final String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Everyone with a reference to a
Television object.

In more details, everyone with a
reference to a Television object
or an object of a subclass of
Television.

© 2019 ESTECO SpA

You cannot reduce the access level with extension
com.esteco.sdm.Television

public class Television {

private String model;
private boolean on;

public Television(String model) {
this.model = model;

}

public void turnOn() {
on = true;

}

public void turnOff() {
on = false;

}
}

com.esteco.sdm.PlasmaTelevision

class PlasmaTelevision extends Television {

double usageHours;
long startTime;

public PlasmaTelevision(String model) {
super(model);

}

@Override
protected void turnOn() {

super.turnOn();
startTime = System.currentTimeMillis();

}

}

© 2019 ESTECO SpA

Tips on choosing an access level

If other programmers use your class, you want
to ensure that errors from misuse cannot
happen. Access levels can help you do this.

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Use the most restrictive access level that
makes sense for a particular member. Use
private unless you have a good reason not to.

Avoid public fields except for constants. Public
fields tend to link you to a particular implementation
and limit your flexibility in changing your code.

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

© 2019 ESTECO SpA

Final classes

com.esteco.sdm.Television

package com.esteco.sdm;

public final class Television {

private String model;

public Television(String model) {
this.model = model;

}

public String getModel() {
return model;

}
}

Final classes cannot be extended.

© 2019 ESTECO SpA

Final methods
com.esteco.sdm.Television

public class Television {

private String model;
private boolean on;

public Television(String model) {
this.model = model;

}

final void turnOn() {
on = true;

}

final void turnOff() {
on = false;

}
}

Final methods cannot be overridden.

com.esteco.sdm.PlasmaTelevision

class PlasmaTelevision extends Television {

double usageHours;
long startTime;

public PlasmaTelevision(String model) {
super(model);

}

@Override
void turnOn() {

super.turnOn();
startTime = System.currentTimeMillis();

}

}

© 2019 ESTECO SpA

Writing for others

If other programmers use your class,
you want to ensure that errors from

misuse cannot happen

Please consider yourself as another
programmer too!

com.esteco.sdm.PlasmaTelevision

class PlasmaTelevision extends Television {

private double usageHours;
private long startTime;

public PlasmaTelevision(String model) {
super(model);

}

@Override
public void turnOn() {

super.turnOn();
startTime = System.currentTimeMillis();

}
}

What’s wrong with extending
Television and overriding turnOn()?

What if forget to invoke super.turnOn()

© 2019 ESTECO SpA

Abstract methods 1/2

If the turnOn() method is final, how do
we allow other programmers to do
something when a Television is turned
on?

com.esteco.sdm.Television

public class Television {

private String model;
private boolean on;

public Television(String model) {
this.model = model;

}

final void turnOn() {
on = true;
turnedOn();

}

protected void turnedOn() {
}

}

turnedOn() is the entry point for
subclasses to perform operations after a
Television is turned on.

turnOn() is defining a protocol. How the
Television class works and how it should
be extended.

© 2019 ESTECO SpA

Abstract methods 2/2

What if we want all subclasses to be
forced to define the turnedOn()
method?

com.esteco.sdm.Televsion

public abstract class Television {

private String model;
private boolean on;

protected Television(String model) {
this.model = model;

}

public final void turnOn() {
on = true;
turnedOn();

}

protected abstract void turnedOn();
}

We define turnedOn() as an abstract
method. As a consequence, the
Television class becomes abstract too.

Abstract classes cannot be instantiated.
But they can be extended by subclasses.

© 2019 ESTECO SpA

Final and abstract

The modifiers final and
abstract can be applied to both
classes and methods, and they

are mutually exclusive

A final method cannot be overridden in a
subclass

A final class cannot be extended

An abstract class must be extended

An abstract method must be
overridden in a subclass

Interfaces and polymorphism

© 2019 ESTECO SpA

Interfaces
it.units.sdm.Display

public interface Display {

void display(String text);

}

Interfaces are used to abstract what a class
must do from how it does it

Interfaces are similar to classes, but
1. they don’t have instance variables
2. all methods are abstract (with the exception

of methods with a default implementation)
3. all methods are implicitly public

An interface definition doesn’t say anything
about how the methods are implemented

it.units.sdm.Calculator

public class Calculator {

final Display display;
//...

Calculator(Display display) {
this.display = display;

}

void onePressed() {
string += "1";
display.display(string);

}
}

© 2019 ESTECO SpA

Interface implementation 1/2
it.units.sdm.Display

public interface Display {

void display(String text);

}

class ConsoleDisplay implements Display {

@Override
public void display(String text) {

System.out.println(text);
}

}

class PopupDisplay implements Display {

@Override
public void display(String text) {

JOptionPane.showMessageDialog(null, text);
}

}

An interface can be implemented by
any number of classes

A class can implement any number of
interfaces

Interfaces are not inherited, they are
implemented, so the single
inheritance does not apply. There is
no inheritance of instance members

The methods that implement an
interface must be declared public so
there no way to restrict the access

© 2019 ESTECO SpA

Interface implementation 2/2

it.units.sdm.Display

public interface Display {

void display(double d);

}

class ConsoleDisplay implements Display {

@Override
public void display(double d) {

System.out.println(format(d));
}

public String format(double d) {
return String.valueOf(d);

}
}

A class that implement interfaces can
have its own instance variables and it
can define its own constructors and
methods

© 2019 ESTECO SpA

Partial interface implementation

A class implementing an interface
must implement all the methods.
Otherwise, it must be declared
abstract

it.units.sdm.Display

public interface Display {

void display(String text);
void display(double d);

}

abstract class ConsoleDisplay implements Display {

@Override
public void display(String text) {

System.out.println(text);
}

}

© 2019 ESTECO SpA

Implementation of multiple interfaces 1/4

interface AutonomousCar {

void driveTo(String address);

void stop();
}

interface KeylessCar {

void start();

void stop();
}

class FiatTopolino implements KeylessCar, AutonomousCar {

@Override
public void driveTo(String address) {

//Do something
}

@Override
public void start() {

//Do something
}

@Override
public void stop() {

//Should I stop as a KeylessCar
//or as an AutonomousCar?

}
}If a class implements two interfaces

that declare the same method, then
the same method will be used by
clients of either interface.

If a class implements more than one interface, the interfaces
are separated with a comma.

© 2019 ESTECO SpA

Implementation of multiple interfaces 2/4

interface AutonomousCar {

void driveTo(String address);

void stop();
}

interface KeylessCar {

void start();

boolean stop();
}

class FiatTopolino implements KeylessCar, AutonomousCar {

@Override
public void driveTo(String address) {

//Do something
}

@Override
public void start() {

//Do something
}

@Override
public void/boolean stop() {

//FiatTopolino cannot implement both interfaces
}

}A class cannot implement methods with
the same name, the same parameters,
but a different return type.

© 2019 ESTECO SpA

Implementation of multiple interfaces 3/4

FiatTopolino c = new FiatTopolino();
AutonomousCar ac = c;
KeylessCar kc = c;

ac = kc;

Is this a legal assignment?

Can I cast kc to an Autonomous car?
ac = (AutonomousCar) kc

FiatTopolino

<<interface>>
KeylessCar

<<interface>>
AutonomousCar

© 2019 ESTECO SpA

Implementation of multiple interfaces 4/4

FiatTopolino c = new FiatTopolino();
AutonomousCar ac = c;
KeylessCar kc = c;

Display d1 = (Display) ac;
Display d2 = (Display) kc;

This code compiles, I will get a
ClassCastException error at runtime.

FiatTopolino c = new FiatTopolino();
AutonomousCar ac = c;
KeylessCar kc = c;

Calculator c1 = (Calculator) c;

This code doesn’t compile, cannot cast a
FiatTopolino into a Calculator.

For the compiler, it is always legal to cast to an interface.
But I cannot cast to a class if the object belongs to a
different hierarchy.

© 2019 ESTECO SpA

Interface extension

interface Collection {

int getSize();

boolean isEmpty();
}

interface MutableCollection {

void clear();
}

interface List extends Collection, MutableCollection {

void addElement(Object obj);
}

An interface can extend multiple
interfaces

© 2019 ESTECO SpA

What’s wrong with this interface?

interface AutonomousCar {

void driveTo(String address);

void toString();
}

The return type of the toString() method
clashes with Object.toString()

© 2019 ESTECO SpA

Anonymous classes 1/3

Display display = new Display() {
@Override
public void display(String text) {

System.out.println();
}

};

it.units.sdm.Display

public interface Display {

void display(String text);

}

Interfaces can be implemented by anonymous classes too

An anonymous class is a class without a name

The new operator creates an object of a class that has no
name

© 2019 ESTECO SpA

Anonymous classes 2/3

public class Calculator {

public static void main(String[] args) {
Display display = new Display() {

@Override
public void display(String text) {

System.out.println(text);
}

};
var calculator = new Calculator(display);
calculator.onePressed();
calculator.plusPressed();
calculator.twoPressed();
calculator.plusPressed();
calculator.twoPressed();
calculator.equalPressed();

}
//…

}

By compiling this code, two classes are created:

Calculator.class
Calculator$1.class

Calculator$1.class represents the anonymous
class. That is anonymous in the source code, but
it is not anonymous for the virtual machine.

© 2019 ESTECO SpA

Anonymous classes 3/3

Object a = new Object() {

int a;

{
//there are no constructors but
//we can use initializer blocks

}

public int getA() {
return a;

}

@Override
public String toString() {

return "toString() redefined";
}

};

Anonymous classes are not used to
implement interfaces only, but they can be
used to extends objects, of any type

Can we invoke the getA() public method?

Anonymous classes “don’t define” a new type

Java is a statically linked language

Is there any “type” defining that getA() method?

You can invoke getA() from the same class

© 2019 ESTECO SpA

Interface static fields 1/2

interface AutonomousCar {

String DEFAULT_ADDRESS = "3500 Deer Creek Road, Palo Alto, California";

void driveTo(String address);

void stop();
}

Variables can be declared inside interface declarations. They are implicitly public,
final, and static, meaning they cannot be changed by the implementing class and
that they must be initialized

They can be used as constants shared among the implementing classes

© 2019 ESTECO SpA

Interface static fields 2/2

class FiatTopolino implements KeylessCar, AutonomousCar {

@Override
public void driveTo(String address) {

if (address == null) {
address = DEFAULT_ADDRESS;

}
//drive to address

}

@Override
public void start() {

//Do something
}

@Override
public void stop() {

//Just stop!
}

}

Sample usage of DEFAULT_ADDRESS

© 2019 ESTECO SpA

Static method in interfaces 1/2

All static methods in interfaces are implicitly public

Static methods in interfaces are exactly like static methods in classes

interface AutonomousCar {

static String getDefaultAddress() {
return "3500 Deer Creek Road, Palo Alto, California";

}

void driveTo(String address);

void stop();
}

© 2019 ESTECO SpA

Static method in interfaces 2/2

Static methods in interfaces can be used as factory methods

interface Display {

void display(String text);

static Display createDefaultDisplay() {
return new Display() {

@Override
public void display(String text) {

System.out.println();
}

};
}

}

The Three Musketeers of OOP

© 2019 ESTECO SpA

Inheritance

Encapsulation

Polymorphism

© 2019 ESTECO SpA

What about the fourth Musketeer?

© 2019 ESTECO SpA

Inheritance

Encapsulation

Polymorphism

Composition

© 2019 ESTECO SpA

Inheritance vs Composition

package com.esteco;

public class PlasmaTelevision extends Television {
…

}

package com.esteco;

public class Calculator {

final Display display;
}

© 2019 ESTECO SpA

1. Specialization/Generalization
2. Extension
3. Specification
4. Construction
5. Limitation

5 forms of inheritance

© 2019 ESTECO SpA

• The subclass is a specialization of the general parent class (1-to-1)
• The superclass is a generalization of the subclasses (1-to-many)
• Often used in domain modelling

Specialization/Generalization

Car

Vehicle

Bike

CityCarSUV

© 2019 ESTECO SpA

• The subclass adds new functionalities to the parent class
• It adds new methods to those of the parent
• In general, you will use the subclass as substitute of the superclass

Extension

List

add(index: int, item: Object): void
get(index: int): Object
remove(index: int):void
append(item: Object): void

SearchableList

indexOf(item: Object): int

© 2019 ESTECO SpA

• The subclass implements abstract methods of the superclass
• Used when the superclass defines a “protocol”, and it defers the implementation of

some specialized methods to subclasses

Specification

FullTimeEmployee

baseSalary():int

Employee

calculateSalary(bonus: int):int
baseSalary():int

PartTimeEmployee

baseSalary():int

it.units.sdm.Employee

public abstract class Employee {

protected abstract int baseSalary();

public int totalSalary(int bonus) {
return baseSalary() + bonus;

}
}

© 2019 ESTECO SpA

• The subclass and superclass share some behavior
• In general, you will not use the subclass as substitute of the superclass
• Composition could play a better role here!

Construction

List

add(index: int, item: Object): void
get(index: int): Object
remove(index: int):void
append(item: Object): void

Stack

push(item: Object)
pop(): Object
top(): Object

© 2019 ESTECO SpA

• The subclass restrict some properties of the superclass by overriding some methods
• In general, you cannot use the subclass as substitute of the superclass

Limitation

List

add(index: int, item: Object): void
get(index: int): Object
remove(index: int):void
append(item: Object): void

unmodifiableList

add(index: int, item: Object): void
remove(index: int):void
append(item: Object): void

Overridden methods
could be empty or signal
and error condition

© 2019 ESTECO SpA

The enhancements made by the
subclass are primarily additive

When to use inheritance

https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose

Both classes are in the
same logical domain The subclass is a proper

subtype of the superclass
The implementation of the
superclass is necessary or
appropriate for the subclass

https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose

© 2019 ESTECO SpA

Both classes are in the same logical domain

Polygon

…

List<Point>

…
Implementation class

Domain class

Maybe a polygon is composed by a list
of vertexes, and some other attributes

© 2019 ESTECO SpA

The subclass is a proper subtype of the superclass

Segment

…

Polygon

…

There is something
wrong at the semantic
level

© 2019 ESTECO SpA

The implementation of the superclass is necessary for the subclass

Square

getSide(): Double

Rectangle

getWidth(): Double
getHeight(): Double
setWidth(Double width)
setHeight(Double height)

Is a square a rectangle?

It could depend on the
domain of the problem!

© 2019 ESTECO SpA

The implementation of the superclass is necessary for the subclass

Square

getSide(): Double

Rectangle

getWidth(): Double
getHeight(): Double
setWidth(Double width)
setHeight(Double height)

Is a square a rectangle?

It could depend on the
domain of the problem!

© 2019 ESTECO SpA

The enhancements made by the subclass are primarily additive

Polygon

Polygon(Point[] vertexes)
perimeter(): double

Square

Square(Point origin, Double side)

Quadrilateral

Quadrilateral(Point p1, p2, p3, p4)

Do you really need this
hierarchy?

Maybe not, you are
adding constraints on a
creation of an object

A good opportunity to
use a Builder

Assignment

© 2019 ESTECO SpA

Assignment

public interface Collection {

boolean isEmpty();

int getSize();

boolean contains(String string);

String[] getValues();
}

public interface Stack extends Collection {

void push(String string);

String pop();

String top();
}

public interface List extends Collection {

void add(String string);

String get(int index);

void insertAt(int index, String string);

void remove(int index);

int indexOf(String string);

}

Implement the Stack and List interfaces by using
only the topics we have seen so far, try to
minimize code duplication

Hint: consider the usage of both
inheritance and composition

esteco.com

Thank you!

https://www.facebook.com/ESTECO-166776810033909/
https://twitter.com/esteco_mF
https://it.linkedin.com/company/esteco-s-p-a
https://www.youtube.com/user/estecosrlsoftware/featured
https://vimeo.com/channels/1050665
https://www.esteco.com/corporate/esteco-copyright-policy

	Default Section
	Slide 1: Programming in Java – Part 02 OOP in Java
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23

	Inheritance
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

	Access control and encapsulation
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

	Interfaces and polymorphism
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

	The three musketeers of OOP
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

	Assignment
	Slide 97
	Slide 98

	The End
	Slide 99: Thank you!

