Exercise set 1

AI

1 Second law: axiomatic statement

An alternative statement of the second law (cf. D. Chandler, Introduction to Modern Statistical Mechanics) reads

There is an extensive function of state $S(E, \mathbf{x})$, which is a monotonically increasing function of E , and if state B is adiabatically accessible from state A, then $S_B \geq S_A$.

Here **x** is a vector of extensive variables (V, N, \ldots) .

Starting from this statement, prove that for a process at temperature T , one finds $TdS \geq dQ$.

1.1 Principle of minimum internal energy

Using the above statement of the second law, prove the following corollary

Among all the states with a specific entropy value, the state of equilibrium is that in which the internal energy is minimal

2 Equivalence of ensembles

Consider a system of N distinguishable particles, each of which can exist in one of two states separated by an energy ϵ . The state of the system can be specified by listing

$$
\mathbf{n}=(n_1,n_2,\ldots,n_N),
$$

with $n_j = 0$ or 1. The energy of a given configurations is thus $E = \sum_{j=1}^{N} n_j \epsilon$.

a) Find the entropy in the microcanonical ensemble (fixed E and N), by exploiting the Boltzmann's expression $S = k_B \ln \Omega(E, N)$, where $\Omega(E, N)$ is the system phase space volume. Discuss the behaviour of S as a function of E. Hint: use the Stirling's formula $\ln M! \simeq M \ln M - M$.

b) Now consider the canonical ensemble (fixed T and N), and calculate the partition function, and the Helmholtz free energy A . By using the definition $A = E - TS$, and replacing E with its ensemble average, calculate the entropy S, and show that the result is the same as that obtained in the microcanonical ensemble.

3 Simple interacting system: Hard-spheres gas in one dimension

N particles of diameter ℓ can move on a line: as long as the distance between two particles is larger than ℓ , they do not interact. They are impenetrable, so the repulsive interaction diverges as soon as their distance is smaller or equal to ℓ .

The total potential energy of the system reads:

$$
U(\lbrace r_i \rbrace) = \frac{1}{2} \sum_{i \neq j} \phi(r_i - r_j),
$$

where

$$
\phi(r) = \begin{cases} +\infty, & \text{if } |r| < \ell \\ 0, & \text{otherwise.} \end{cases}
$$

Do the calculations in the constant (N, p, T) ensemble (nr. particles, pressure, temperature), and find the system partition function and the equation of state giving the volume as a function of the other variables $V(p, T)$. Hint: in the (N, p, T) ensemble, the partition function reads

$$
\sum_{\text{states}} e^{-\beta(H+pV)},
$$

where H is the system Hamiltonian.

Here " \sum_{states} " is an informal way to indicate the integral over the relevant variables in phase space.