

6th Grade School

Lecture 4 - 04/10/2024 - part two

Technology in Mathematics Education

Learning outcome format

WHICH VERBS?

Bloom's taxonomy (1956)

COMPREHENSION

SYNTHESIS

EVALUATION

Analyze | Question Differentiate **Experiment** Examine | Test Categorize Distinguish Calculate | Inspect Contrast | Outline Infer | Compare Discriminate Appraise | Criticize Diagram | Debate Inventory | Relate

APPLICATION

Operate | Apply

Use | Solve **Translate** Demonstrate Prepare | Choose **Paraphrase** Discuss | Report Show | Sketch Locate | Explain **Employ | Practice** Restate | Describe Dramatize Express | Identify Interpret Generalize Illustrate Recognize | Classify Produce Summarize Schedule

Create | Compose Argue | Design Plan | Support Arrange | Collect Revise Formulate **Propose** Construct Set up Organize Manage **Prepare** Assemble

Rearrange

Develop

LOWER ORDER THINKING SKILLS

KNOWLEDGE

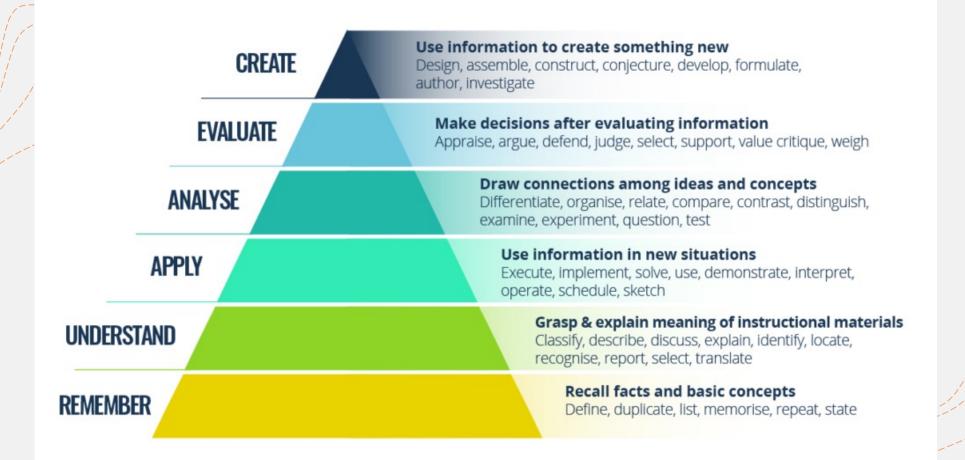
List | Define

Recall | Arrange

State | Order

Label | Repeat


Memorize


Name | Select

Record

HIGHER ORDER THINKING SKILLS

Bloom's taxonomy revised (2001)

The Knowledge Dimension

(Bloom's Revised Taxonomy)

Factual Knowledge

The basic elements that students must know to be acquainted with a discipline or solve problems in it.

- · Knowledge of terminology
- · Knowledge of specific details and elements

Conceptual Knowledge

The interrelationships among the basic elements within a larger structure that enable them to function together.

- · Knowledge of classifications and categories
- · Knowledge of principles and generalizations
- · Knowledge of theories, models and structures

Conceptual Mathematics

Procedural Mathematics

the kind of knowledge to be learned

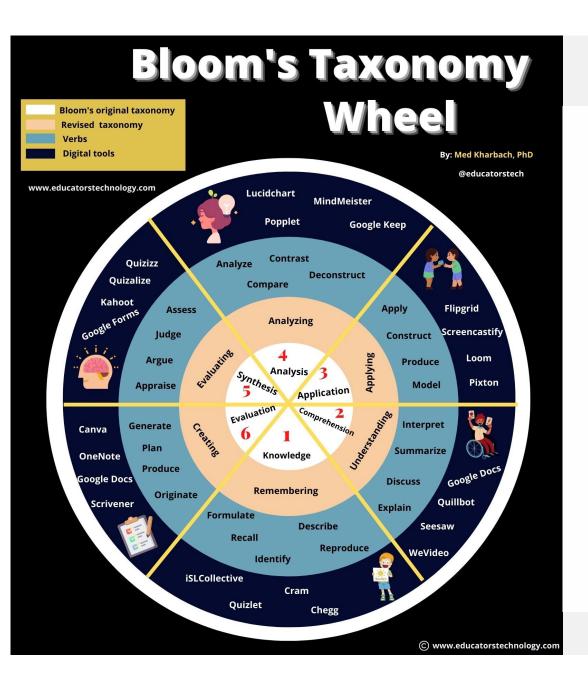
Procedural Knowledge

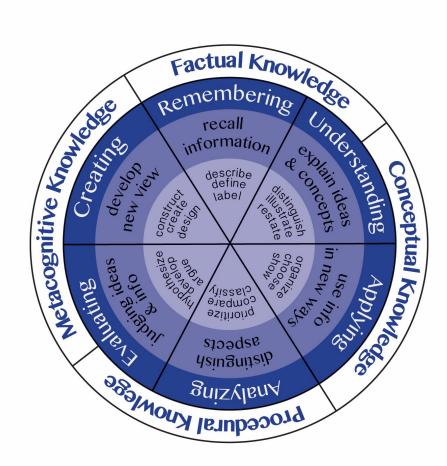
How to do something; methods of inquiry, and criteria for using skills, algorithms, techniques, and methods.

- · Knowledge of subject-specific skills and algorithms
- · Knowledge of subject specific techniques and methods
- Knowledge of criteria for determining when to use appropriate procedures

Metacognitive Knowledge

Knowledge of cognition in general as well as awareness and knowledge of one's own cognition.


- · Strategic knowledge
- Knowledge about cognitive tasks, including appropriate contextual and conditional knowledge
- Self-knowledge


Bloom's taxonomy revised towards the knowledge dimension (2002)

	- example	
	CONCRETE	ABSTRACT
.		

Knowledge Dimension →	FACTUAL The basic elements a student must know to be acquainted with a discipline or solve	CONCEPTUAL The interrelationships among the basic elements within a larger structure that	PROCEDURAL How to do something, methods of inquiry, and criteria for using skills, algorithms,	METACOGNITIVE Knowledge of cognition in general as well as awareness and knowledge of
Process Dimension ↓	problems in it.	enable them to function together.	techniques, and methods.	one's own cognition
REMEMBER Retrieve relevant knowledge from long-term memory.	List primary and secondary colors	Recognize the symptoms of exhaustion	Recall how to perform CPR.	Identify strategies for retaining information.
UNDERSTAND Construct meaning from instructional messages, including oral, written, and graphic communication.	Summarize the features of a new product	Classify adhesive by toxicity	Clarify assembly instructions	Predict one's response to culture shock
APPLY Carry out or use a procedure in each situation.	Respond to frequently asked questions	Provide advice to novice	Carry out pH tests of water sample	Use techniques that math one's strength
ANALYZE Carry out or use a procedure in each situation	Select the most compels list of activities	Differentiate between writing registers	Integrate compliance with regulations	Deconstruct one's biases
EVALUATE Make judgments based on criteria and standards.	Check for consistently among sources	Determine relevance of results	Judge efficiency of sampling technique	Reflect on one's progress
CREATE Put elements together to form a coherent whole; reorganize into a new pattern or structure.	Generate a log of daily activities	Assemble a team of experts	Design efficient project workflow	Create a learning portfolio

Note: These are **learning objectives** – not **learning activities**. It may be useful to think of preceding each objective with something like, "students will be able to...:

https://connectedtot.com/2020/07/08/lesson-planning-using-blooms-taxonomy-for-math/

Applying Bloom's Taxonomy in Mathematics			
Creating	Putting together ideas or elements to develop an original idea or engage in creative thinking.	Designing Constructing Planning Producing Inventing Devising Making	
Evaluating	Judging the value of ideas, materials and methods by developing and applying standards and criteria.	 Checking Hypothesizing Experimenting Judging Testing Detecting Monitoring 	
Analysing	Breaking information into its component elements to explore relationships.	 Comparing Organizing Deconstructing Attributing Outlining Structuring Integrating 	
Applying	Using strategies, concepts, principles and theories in new situations.	Implementing Carrying out Using, Executing	
Understanding	Understanding of given information.	 Interpreting Exemplifying Summarizing Inferring Paraphrasing Classifying Comparing Explaining 	
Remembering	Recall or recognition of specific information.	Recognizing Listing Describing Identifying Retrieving Naming Locating Finding	

+ How can technology support and promote thinking mathematically?

Main Goal: Developing Students' Mathematical thinking

Mathematical thinking gives attention to the processes rather than content, although both are important for learning mathematics, and both are typically represented in school mathematics curricula, specially referred to as problem-solving.

TWO FONDAMENTAL PROCESSES:

specialising

• generalising

2

conjecturing

convincing

Cognitive technologies for Mathematical Education

Purpose functions

Process functions

Purpose functions

Promoting the formation of pro-mathematics belief systems in students and thus ensure that students become mathematical thinkers who participate in and own what is learned. Students benefiting from purpose functions are no longer mere storage bins for or executors of "someone else's math. (according to Dewey's and Piaget's theories)

Ownership

Self-worth

Knowledge for action

Functional Environments that Promote Mathematical Thinking Social Environments for Mathematical Thinking

Process functions

Helping students understand and use the different mental activities involved in mathematical thinking. Process Functions that can be clearly identified for cognitive technologies in math education. Each provides important cognitive support:

- tools for developing conceptual fluency
- tools for mathematical exploration
- tools for integrating different mathematical representations
- 💰 tools for learning how to learn
- tools for learning problem-solving methods.

X Tools for developing conceptual fluency

Fluency tools are programs that free up the component problem-solving processes by helping students become more fluent in performing routine mathematical tasks that could be laborious and counterproductive to mathematical thinking. Computer technologies can promote fluency by allowing individually controlled practice on routine tasks, thus freeing students' mental resources for problem-solving.

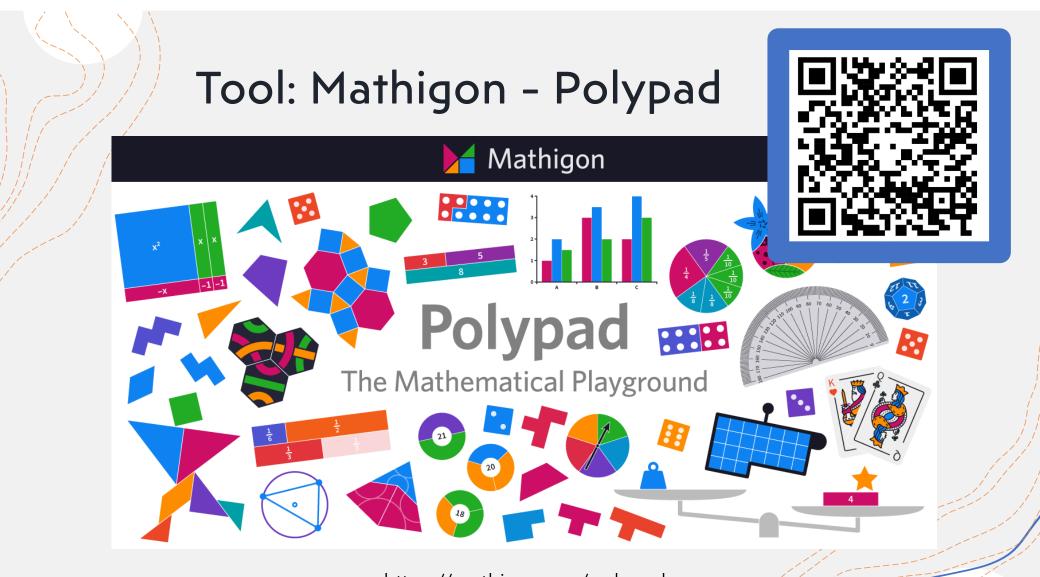
Tools for mathematical exploration

Learning by Discovery

The computational discovery learning environment provides a rich context that helps students broaden their intuition.

Tools for integrating different mathematical representations

These tools help students develop the languages of mathematical thought by linking different representations of mathematical concepts, relationships, and processes.


Their goal is to help students understand the precise relationships between different ways of representing mathematical problems and the way in which changes in one representation entail changes in others. The languages of mathematical thought, which become apparent in these different representations

Tools for learning how to learn

This category refers to software programs that promote reflective learning by doing. They start with the details of specific problem-solving experiences and allow students to consolidate what they have learned in episodes of mathematical thinking.

Tools for learning problem-solving methods

This category of tools encourages reasoning strategies for mathematical problem-solving.

https://mathigon.org/polypad

Tool's exploration

Curriculum interrogation

Activity planning