
993SM - Laboratory of
Computational Physics

II week
October 4, 2024

Maria Peressi

Università degli Studi di Trieste - Dipartimento di Fisica

Sede di Miramare (Strada Costiera 11, Trieste)

e-mail: peressi@units.it

tel.: +39 040 2240242

1

mailto:peressi@ts.infn.it

more on the Numerov’s algorithm

2

- deeper analysis of the Numerov’s algorithm
- numerical analysis: search for zeros

1D Schroedinger equation

and the Numerov’s method

3

The Scroedinger eq.:

has the form:

with:

unknown unknown

4

Since s(x) = 0, the Numerov′ s formula reduces to :

Defining:

we

g(x) = 2 (ϵ −
x2

2)with

1D Schroedinger equation for
harmonic oscillator

and the Numerov’s method

contain ε

Find a solution ψ with a given number n of nodes and energy En

Possibility 1): we fix En
Possibility 2): we do not know En, but we start from an initial energy guess E;
the guess is on an energy interval[Elow, Eup] that we know for sure to
contain En

For each value of E: start integrating ψ from x=0 towards positive values of x
(forward)

During integration, count for the number ncross of changes of sign of ψ:
if ncross>n => E is too high => choose [Elow, E]
if ncross<n => E is too low => choose [E, Eup]

(*) From the initial point it is obviously possible to integrate by moving both in
the direction of the positive x and in that of the negative x, and in the presence
of symmetry with respect to an inversion point it will be sufficient to integrate
in only one direction.

inside the Numerov’s method

Find a solution ψ with a given number n of nodes and energy En

Possibility 1): we fix En
Possibility 2): we do not know En, but we start from an initial energy guess E;
the guess is on an energy interval[Elow, Eup] that we know for sure to
contain En

For each value of E: start integrating ψ from x=0 towards positive values of x
(forward)

During integration, count for the number ncross of changes of sign of ψ:
if ncross>n => E is too high => choose [Elow, E]
if ncross<n => E is too low => choose [E, Eup]

(*) From the initial point it is obviously possible to integrate by moving both in
the direction of the positive x and in that of the negative x, and in the presence
of symmetry with respect to an inversion point it will be sufficient to integrate
in only one direction.

inside the Numerov’s method

Iterate (k=1 only!) to integrate y…

…

Possibility 1): fix E

half nodes (only for x>0)

(ADD!) Calculate and plot eigenfunctions for various values of “nodes”
(number of nodes of the eigenfunction), from nodes=0, 1, 2,… Input also the
precise energy value, which is (nodes+1/2).

0.

number of nodes for x>0
numerically found

print *, k, e, ncross, hnodes

I/O on the screen:

the last line comes from this command in the code:

number of
iterations energy

number of nodes for x>0
expected:
hnodes = nodes/2
(within the integers!)

are equal, ok!

Solution for n=1

and energy exact (1.5)

numerical solution
coincident with the exact
analytic solution

Find a solution ψ with a given number n of nodes and energy En

Possibility 1): we fix En
Possibility 2): we do not know En, but we start from an initial energy guess E;
the guess is on an energy interval[Elow, Eup] that we know for sure to
contain En

For each value of E: start integrating ψ from x=0 towards positive values of x
(forward)

During integration, count for the number ncross of changes of sign of ψ:
if ncross>n => E is too high => choose [Elow, E]
if ncross<n => E is too low => choose [E, Eup]

(*) From the initial point it is obviously possible to integrate by moving both in
the direction of the positive x and in that of the negative x, and in the presence
of symmetry with respect to an inversion point it will be sufficient to integrate
in only one direction.

inside the Numerov’s method

We expect a set of orthogonal eigenvectors with increasing number of zeros for
increasing energy eigenvalue; more precisely, equal to the energy quantum
number n, because the number of zeros is equal to the degree of the polynomial

…

…

Possibility 2): iterate on E

 iterate on energy

Iterate to integrate y

…

I/O on the screen:

ncross hnodes

ncross=hnodes is ok,
but the stop criterion
is a tolerance on the energy
(now the uncertainty is ~0.4)

uncertainty < tolerance = 10^-10

The results

I/O on the screen:

wrong number of nodes!

1.5 < 2 < 2.5

I/O on the screen:

number of nodes apparently correct
 because it disregards the central one!

1.5 < 2 < 2.5

???
solution
apparently
reasonable?
but closer to H1
rather than H2

numerical solution
coincident with the exact
analytic solution

16

= 2n + 1

Hint: the nodes are internal to the classical limit range =>
2n + 1 < 𝚡𝚖𝚎𝚜𝚑 ⟹ nmax < (𝚡𝚖𝚎𝚜𝚑2 − 1)/2

inside the Numerov’s method

17

if (y(i) /= sign(y(i),y(i+1))) ncross=ncross+1

Used to count the number of nodes while “building” the wavefunction:

Used to count the number of change of sign of 1-f, determining the
classical inversion point

f(i)=ddx12*(2.0_dp*(vpot(i)-e))
if (f(i) /= sign(f(i),f(i-1))) icl=i

(ncross means crossing with the x axis, i.e., zeros)

possibility 2):

guess on the energy,

then refine

(iterating, “shooting” method)

18

inside the Numerov’s method:

(rectangular) numerical integration

Polinomi ortogonali classici rispetto al peso w nell’intervallo I:

∫I
w(x)Pn(x)Pm(x) ∝ δn,m

P(x)

Polinomi ortogonali classici rispetto al peso w nell’intervallo I:

∫I
w(x)Pn(x)Pm(x) ∝ δn,m

P(x)

Part II: search for zeros

22

1. determine an interval [xL,xU] at whose extremes the function y(x)
has discordant signs (to be sure that it contains x0)

2. calculate the midpoint of the interval [xL,xU]: xM = (xL + xU)/2 and
evaluate y(xM);

3. If y(xM)=0 then xM = x0 and the search ends.
4. Otherwise, take as the new interval the one at whose extremities

the function has discordant signs (depending on the case it will be
necessary to redefine xL=xM or xU=xM): it contains x0

5. iterate points 2 - 4 until:
a) the uncertainty on the location of x0 decreases below a pre-

established an absolute threshold (|xU-xL| < ε), or a relative
threshold (|xU-xL| < ε |xL| or < ε |xU|, where x0 is approximated by
xL or xU); or

b) |y(xM)| < ε’; or
c) a maximum number of iterations is exceeded.

searching for zeros of a function

x0=? bisection method

searching for zeros of a function

x0=? bisection method

1. determine an interval [xL,xU] at whose extremes the function y(x) has
discordant signs (to be sure that it contains x0)

y(xL)* y(xU) < 0

y(xL)/= sign(y(xL),y(xU)) or y(xU)/= sign(y(xU),y(xL))

Implementation:

searching for zeros of a function

x0=? bisection method

4. take as the new interval the one at whose extremities the function has
discordant signs (depending on the case it will be necessary to redefine
xL=xM or xU=xM): it contains x0

if (y(xL)*y(xM) < 0) then
 xU = xM
else if (y(xU)*y(xM) < 0) then
 xL = xM
end if

Implementation:

searching for zeros of a function

x0=? bisection method

Implementation - which is the best criterion?

- use an absolute threshold: possible problems (for roundoff errors)
if x0 is large

- use a relative threshold: possible problems if x0 is small
- other possible problems if y(x) is too flat close to x0

5. iterate points 2 - 4 until:
a) the uncertainty on the location of x0 decreases below a pre-

established an absolute threshold (|xU-xL| < ε), or a relative threshold
(|xU-xL| < ε |xL| or < ε |xU|, where x0 is approximated by xL or xU)

Exercise:

implement this algorithm

if you never did,

or if you have forgotten…

