Compufaﬂonal Physics
II week
October 4, 2024

Maria Peressi
Universita degli Studi di Trieste - Dipartimento di Fisica
Sede di Miramare (Strada Costiera 11, Trieste)
e-mail: peressi@units.it
tel.: +39 040 2240242

mailto:peressi@ts.infn.it

more on the Numerov's algorithm

- deeper analysis of the Numerov’s algorithm
- numerical analysis: search for zeros

1D Schroedinger equation
and the Numerovs method

The Scroedinger eq.:

unknown unknown
he d*y v
o g2 TV (@) (@) = Ey(z),

has the form:

2
Y = —g@)y(a) + s(z)

with:

g(x) = (2m/h*)[E -V (z)] and s(z) = 0

3

1D Schroedinger equation for

harmonic oscillator
and the Numerovs method

Since s(x) = 0, the Numerov's formula reduces to :

Yn+1 [1 T Gn+1 K%E] - 2yn [1 _ 5gn'('%ﬁ] _ yn—_l [1 + Gn—1 ﬁ%ﬁ] + 0[(Ax)6]

Ax)? x2
Deﬁning: fn =1+ 97.,(1—;) with g(x) —) (6' - 7)

we rewrite Numerov’'s formula as

contain €

inside the Numerov's method
Find a solution Y with a of nodes and energy En

Possibility 1): we fix En

Possibility 2): we do not know En, but we start from an initial energy guess E;
the guess is on an energy interval [E1ow, Eup] that we know for sure to
contain En

For each value of E: start integrating) from x=0 towards positive values of x
(forward)

During integration, count for the number ncross of changes of sign of Y:
if ncross>n =>E is too high => choose [Elow, E]
if ncross<n =>E istoo low =>choose [E, Eup]

inside the Numerov's method
Find a solution Y with a of nodes and energy En

Possibility |): we fix En

Possibility 2): we do not know En, but we start from an initial energy guess E;
the guess is on an energy interval [E1ow, Eup] that we know for sure to
contain En

For each value of E: start integrating) from x=0 towards positive values of x
(forward)

During integration, count for the number ncross of changes of sign of Y:

if ncross>n =>E is too high => choose [Elow, E]
if ncross<n =>E istoo low =>choose [E, Eup]

search_loop: do

i set initial lower and upper bounds to the eigenvalue
|
eup=maxval (vpot(:)) ! initially

vpot (xmax)
elw=minval (vpot(:)) ! initially = vpot(0)
|

% Set trial energy POSSIbIIIt)’ I) ﬁX E

write(x,"('Trial energy|(@=search with bisection) > ')", advance='no')
read (*,%) e

1T (e == 0.0_dp) then

! search eigenvalues with bisection (max 1000 iterations)
e = 0.5_dp * (elw + eup)

n_iter = 1000
else
! test a single energy value (no bisection)
n_iter = 1
endit
iterate: do k = 1, n_iter Iterate (k=1 only!) to integrate y

! outward integration and count number of crossings
|

ncross=o0 ! 1terate Numercv's algorithm all over the mesh

do 1 =1,mesh-1
y(i+1)=((12.0_dp-12.6_dpxf (i))xy(1)=F(i-1)xy(1-1))/T(i+1]
if (y(1) /= sign(y(i),y(i+1))) ncross=ncross+l

end do
|

print ¥, k, e, ncross, hnodes

half nodes (only for x>0)

end do iterate
end do search_loop

0. (ADD!) Calculate and plot eigenfunctions for various values of “nodes”
(number of nodes of the eigenfunction), from nodes=0, 1, 2,... Input also the

precise energy value, which 1s (nodes+1/2).

It may be useful to plot, together with eigenfunctions or eigenfunctions
squared, the classical probability density, contained in the fourth column
of the output file. It will clearly show the classical inversion points. See
harmonic0.gpl on Moodle as an example of a macro for gnuplot.

1/0 on the screen:

Max value for x (typical value: 10) > 5
Number of grid points (typically a few hundreds) > 500
output file name > dat

nodes (type -1 to stop) > 1
Trial energy (O=search with bisection) > 1.5
1 1.5000000000000000

the last line comes from this command in the code: \ /
| ok!

print *, k, e, ncross, hnodes are equa
/ T \ \ number of nodes for x>0
number of ener number of nodes for x>0 expected:
iterations Y numerically found hnodes = nodes/2

(within the integers!)

psi(x)

15 }

05 }

Solution for n=1
and energy exact (1.5)

' ! ' 0_1‘*'exp(-x2/2)*2'x
psi(x)

psi? (x)

p(x) classical
V(x)

numerical soll

coincident wi
/ andlY‘HC solut]

ition
'h the exact
on

inside the Numerov's method
Find a solution Y with a of nodes and energy En

Possibility 1): we fix En

Possibility 2): we do not know En, but we start from an initial energy guess E;
the guess is on an energy interval [E1ow, Eup] that we know for sure to
contain En

For each value of E: start integrating) from x=0 towards positive values of x
(forward)

During integration, count for the number ncross of changes of sign of Y:
if ncross>n =>E is too high => choose [Elow, E]
if ncross<n =>E istoo low =>choose [E, Eup]

We expect a set of orthogonal eigenvectors with increasing number of zeros for
increasing energy eigenvalue; more precisely, equal to the energy quantum
number n, because the number of zeros is equal to the degree of the polynomial

search_loop: do

i set initial lower and upper bounds to the eigenvalue
|

eup=maxval (vpot(:)) ! initially = vpot(xmax)
elw=minval (vpot(:)) ! initially = vpot(0)

| Set trial energy Possibility 2): iterate on E

write(x,"('Trial energy (@=search with bisection) > ')", advance='no')
read (*,%) e
if|[(e == 0.0_dp) then
! search eigenvalues with bisection (max 1000 iterations)
e = 0.5 _dp * (elw + eup)

n_iter =
else
! test a single energy value (no bisection)
n_iter = 1
endif
iterate: do k = 1, n_iter [terate to integrate y

1t (ncross > hnodes) then
! Too many crossings: current energy is toc high
! lower the upper bounc
BUp = @
else
! Too few {or correct) number of crossings:
! current energy is too low, raise the lower bound
elw = e
end if
! New trial valuc:
¢ = 0.5 dp * {cup+clw) .
| Convergence criterion: 1terate on energy
if (eup-elw = 1.d-10) exit iterate
I

end do iterate
end do search_loop

1. Calculate and plot eigenfunctions for various values of n (number of nodes
of the eigenfunction), from n=0, 1, 2,... Let the code find the correct
energy value (choosing ”"0” when the code asks for an energy value).
It may be useful to plot, together with eigenfunctions or eigenfunctions
squared, the classical probability density, contained in the fourth column
of the output file. It will clearly show the classical inversion points. See
harmonicQ.gpl on Moodle as an example of a macro for gnuplot.

1/0 on the screen:

Max value for x (typical value: 10) > 5
Number of grid points (typically a few hundreds) > 500
output file name > dat
nodes (type -1 to stop) > 1
Trial energy (O=search with bisection) > 0
1 6.2500000000000000
2 3.1250000000000000
3 1.5625000000000000
4 0.78125000000000000
5 1.1718750000000000 ncross=hnodes is ok,
6

1.3671875000000000 but the stop criterion
is a tolerance on the energy

B _ v (now the uncertainty is ~0.4)
34 1.5000000035797711

35 1.5000000032159733

36 1.5000000033978722

37 1.5000000033069227 uncertainty < tolerance = 107-10

The results

2. Specify an energy value not corresponding to an eigenvalue. Look at the

resulting wavefunctions.
1.5<2< 25

1/0 on the screen:
Max value for x (typical value: 10) > 5

Number of grid points (typically a few hundreds) > 500
output file name > Ewrong

nodes (type -1 to stop) >|1
Trial energy (O=search with bisection) > 2
1 2.0000000000000000

0.5 cxp(-x2 12)*

pailx) for F=2
p(x) classical
05 - \
% wrong numbetr|of nodes!
\
X
|
\
0 - ==

2. Specify an energy value not corresponding to an eigenvalue. Look at the

resulting wavefunctions.
1.5<2<25

1/0 on the screen.
Max value for x (typical value: 10) > 5

Number of grid points (typically a few hundreds) > 500
output file name > Ewrong

nodes (type -1 to stop) >|2
Trial energy (O=search with bisection) > 2
| 2.0000000000000000

"0 5exp-x2 7y 7x
0.5°CXpi-%2 /2 (4% < -2
psi(x) fcr E-2

p(x) classical
05 t :
7\

/-\ \\ number qf nodes apparently correct

\ because|it disregards the central one!
\\
NV
05 ¢

4 -3 -2 -1 0 1 2

77?7

solution
apparently
reasonable?
but closer to H
rather than Ho

(&% I
&N
h

(]

3. Specify an energy value close to but not exactly corresponding to an eigen-
value. Look at the resulting wavefunctions.

Max value Zor x (typical value: 10) > 5
Number of gricd points (typically a few hundreds) > 500

output file name > dat
nodes (type -1 to stop) > 1
Trial energy (0O=search with bisection) > 1.3

1 1.300000C000000000
15 | 0u12 — -
0'U 1.2 e
0'u1:2
Y -
2 12)"2x
1L 212)*2x]
classical ———
V(X) ———
05 numgdrical solution
5 8 coincjdent with the exact
= \ analyftic solution
o N
o | . S .
05 -
-1 L
-6 4 0 2 4 6

4. Examine the effects of the parameters xmax, mesh. For a given Az. how

large can be the number of nodes?
Hint: the nodes are internal to the classical limit range =>

V2n+1 <xmesh = n,, < (xmesh®-1)/2

N '~ Harmonic oscillator

potential and

wavefunctions J \ T}
0

inside the Numerov’s method

Used to count the number of nodes while “building” the wavefunction:

if (y(i) /= sign(y(i),y(i+1l))) ncross=ncross+1l

(ncross means crossing with the x axis, 1.e., zeros)

Used to count the number of change of sign of 1-f, determining the
classical inversion point

f (1)=ddx12* (2.0 dp* (vpot (i)-e))
if (f(i) /= sign(f(i),f(i-1))) icl=i

possibility 2):
guess on the energy,
then refine
(iterating, “shooting” method)

inside the Numerov's method:
(rectangular) numerical integration

norm = 0.0_dp
p(icl:) = ©0.0_dp

co 1i=0,icl
arg = (e - x(1)=%2/2.0_dp)
if (arg > 0.0_dp) then
p(i) = 1.0_dp/sqrt{arg)
else
p(i) = 0.0_dp
end if
norm = norm = 2.@_dpkxdx*p(1)
enddo

p allocated from @:nmesh;
here pli)=0 for i>icl, i.e. ocutside the classical inversion point

the point x(1) is smaller thzn the max elongation, dictated by e
therefore, 1/\sqrt{e-x(i)**2/2) = 1/\sqrt(xmax+*2-x(1)**2)

! the simplest integraticn (rectangular method)

Polinomi ortogonali classici rispetto al peso w nell’intervallo I:

[W(X)P n(X)P m(X) X 5n,m
I

Nome dei polinomi P(x) I w(x)
Legendre (-1 1
Chebyshev di 1* specie (—1,1) (1 —z?)"1/2
Chehyshev di 2¢ specie (—=1,1) (1 =222
Legendre associati (-1,1) (1—z®"pem=123,...
Jacobi (—-1,1) (1—2)"(1+2)" con o, 3 > —1
Gegenbauer o ultrasferici = (=1,1) (1 —2**con A > —1
Laguerre (0, o0) r%e ¥ per o > —1
[Termite —00,00) €%
Hy = 1
7 dx e H,(z)Hpy(z) = Va2"nls B = 12
_dze () Hp (2 2" nldy, m 2 = 47—
Hy = 82°-12z
Hy = 162" — 482% + 12

Polinomi ortogonali classici rispetto al peso w nell’intervallo I:

“ W(X)P n(X)P m(X) X 5n,m
I

Nome dei polinomi P(x) I w(x)
Legendre (L1 1
Chebyshev di 1* specie (—1,1) (1 —z?)"1/2
Chebyshev di 2¢ specie (-1,1) (1 =212
Legendre associati (-1,1) (1—z®"pem=123,...
Jacobi (—-1,1) (1—2)"(1+2)" con o, 3 > —1
Gegenbauer o ultrasferici = (=1,1) (1 —2**con A > —1
Laguerre (0, o0) r%e ¥ per o > —1
(Ilermite) (~o0,00) e
\ Hy = 1
.00 g H, = 2z
Q_m dre ™ H,(z)Hp(x) = \/772"77,!(‘)‘.,,?.,,,) Hy = 4% -2
Hy = 82°-12z
Hy = 162" — 482% + 12

Part 1I: search for zeros

searching for zeros of a function

)

Xo=? bisection method

determine an interval [x.,xu] at whose extremes the function y(x)
has discordant signs (to be sure that it contains xo)

calculate the midpoint of the interval [x,,xu]: xm = (xL + xu)/2 and
evaluate y(xm);

If y(xm)=0 then xm = xo and the search ends.

Otherwise, take as the new interval the one at whose extremities
the function has discordant signs (depending on the case it will be
necessary to redefine x,=xm or xy=xm): it contains Xo

iterate points 2 - 4 until:

the uncertainty on the location of xo decreases below a pre-
established an absolute threshold (|xu-xL| < €), or a relative
threshold (|xu-xL| < € |xL| or < € |xu|, where xq is approximated by
XL Or Xu); or

b) ly(xm)| < €’ or
c) a maximum number of iterations is exceeded.

searching for zeros of a function
Xo=? bisection method

|. determine an interval [xi,xu] at whose extremes the function y(x) has
discordant signs (to be sure that it contains xo)

Implementation:

v(xL)* y(xU) < O

v(xL) /= sign(y(xL),yv(xU)) or y(xU) /= sign(y(xU), v (xXL))

searching for zeros of a function
Xo=? bisection method

4. take as the new interval the one at whose extremities the function has
discordant signs (depending on the case it will be necessary to redefine
XL=XM OF XuU=XM): it contains Xo

Implementation:
1f (y(xL)*y(xM) < 0) then

xU = xM
else 1f (y(xU)*y(xM) < 0) then
xL = xXM

end 1f

searching for zeros of a function
Xo=? bisection method

5. iterate points 2 - 4 until:

a) the uncertainty on the location of xo decreases below a pre-
established an absolute threshold (|xu-xL| < €), or a relative threshold
(|xu-xL| < € |xL| or < € |xu|, where x¢ is approximated by x. or xu)

Implementation - which is the best criterion?

- use an absolute threshold: possible problems (for roundoff errors)
if xois large

- use a relative threshold: possible problems if xo is small

- other possible problems if y(x) is too flat close to xo

Exercise:

implement this algorithm
if you never did,
or if you have forgotten...

