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more on the Numerov’s algorithm
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- deeper analysis of the Numerov’s algorithm
- numerical analysis: search for zeros



1D Schroedinger equation

and the Numerov’s method
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The Scroedinger eq.:

has the form:

with:

unknown unknown
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Since s(x) = 0, the Numerov′ s formula reduces to :

Defining:

we

g(x) = 2 (ϵ −
x2

2 )with

1D Schroedinger equation for 
harmonic oscillator


and the Numerov’s method

contain ε



Find a solution ψ with a given number n of nodes and energy En 
 
Possibility 1):  we fix En 
Possibility 2):  we do not know En, but we start from an initial energy guess E;  
the guess is on an energy interval[Elow, Eup] that we know for sure to 
contain En

For each value of E: start integrating ψ from x=0 towards positive values of x 
(forward)

During integration, count for the number ncross of changes of sign of ψ: 
if ncross>n => E is too high => choose [Elow, E] 
if ncross<n => E is too low => choose [E, Eup]

(*) From the initial point it is obviously possible to integrate by moving both in 
the direction of the positive x and in that of the negative x, and in the presence 
of symmetry with respect to an inversion point it will be sufficient to integrate 
in only one direction.

inside the Numerov’s method



Find a solution ψ with a given number n of nodes and energy En 

Possibility 1):  we fix En 
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During integration, count for the number ncross of changes of sign of ψ: 
if ncross>n => E is too high => choose [Elow, E] 
if ncross<n => E is too low => choose [E, Eup]
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inside the Numerov’s method



Iterate (k=1 only!) to integrate y…

…

Possibility 1): fix E

half nodes (only for x>0)



(ADD!) Calculate and plot eigenfunctions for various values of “nodes” 
(number of nodes of the eigenfunction), from nodes=0, 1, 2,… Input also the 
precise energy value, which is (nodes+1/2).

0.

number of nodes for x>0 
numerically found

print *, k, e, ncross, hnodes

I/O on the screen:

the last line comes from this command in the code:

number of 
iterations energy

number of nodes for x>0 
expected: 
hnodes = nodes/2  
(within the integers!) 

are equal, ok!



Solution for n=1

and energy exact (1.5)

numerical solution 
coincident with the exact 
analytic solution



Find a solution ψ with a given number n of nodes and energy En 

Possibility 1): we fix En 
Possibility 2):  we do not know En, but we start from an initial energy guess E;  
the guess is on an energy interval[Elow, Eup] that we know for sure to 
contain En

For each value of E: start integrating ψ from x=0 towards positive values of x 
(forward) 

During integration, count for the number ncross of changes of sign of ψ: 
if ncross>n => E is too high => choose [Elow, E] 
if ncross<n => E is too low => choose [E, Eup]

(*) From the initial point it is obviously possible to integrate by moving both in 
the direction of the positive x and in that of the negative x, and in the presence 
of symmetry with respect to an inversion point it will be sufficient to integrate 
in only one direction.

inside the Numerov’s method

We expect a set of orthogonal eigenvectors with increasing number of zeros for 
increasing energy eigenvalue; more precisely, equal to the energy quantum 
number n, because the number of zeros is equal to the degree of the polynomial



…

…

Possibility 2): iterate on E

 iterate on energy

Iterate to integrate y



…

I/O on the screen:

ncross hnodes

ncross=hnodes is ok,
but the stop criterion 
is a tolerance on the energy 
(now the uncertainty is ~0.4)

uncertainty < tolerance = 10^-10

The results 



I/O on the screen:

wrong number of nodes!

1.5 < 2 <  2.5



I/O on the screen:

number of nodes apparently correct
 because it disregards the central one!

1.5 < 2 < 2.5

???
solution 
apparently 
reasonable?
but closer to H1 
rather than H2



numerical solution 
coincident with the exact 
analytic solution
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= 2n + 1

Hint: the nodes are internal to the classical limit range => 
2n + 1 < 𝚡𝚖𝚎𝚜𝚑 ⟹ nmax < (𝚡𝚖𝚎𝚜𝚑2 − 1)/2



inside the Numerov’s method
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if ( y(i) /= sign(y(i),y(i+1)) ) ncross=ncross+1 

Used to count the number of nodes while “building” the wavefunction:

Used to count the number of change of sign of 1-f, determining the 
classical inversion point

f(i)=ddx12*(2.0_dp*(vpot(i)-e))  
if ( f(i) /= sign(f(i),f(i-1)) ) icl=i    

(ncross   means crossing with the x axis, i.e., zeros)



possibility 2): 

guess on the energy,


then refine 

(iterating, “shooting” method)
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inside the Numerov’s method:

(rectangular) numerical integration



Polinomi ortogonali classici rispetto al peso w nell’intervallo I:


∫I
w(x)Pn(x)Pm(x) ∝ δn,m

P(x)



Polinomi ortogonali classici rispetto al peso w nell’intervallo I:


∫I
w(x)Pn(x)Pm(x) ∝ δn,m

P(x)



Part II: search for zeros
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1. determine an interval [xL,xU] at whose extremes the function y(x) 
has discordant signs (to be sure that it contains x0)

2. calculate the midpoint of the interval [xL,xU]: xM = (xL + xU)/2 and 
evaluate y(xM);

3. If y(xM)=0 then xM = x0 and the search ends.
4. Otherwise, take as the new interval the one at whose extremities 

the function has discordant signs (depending on the case it will be 
necessary to redefine xL=xM or xU=xM): it contains x0

5.   iterate points 2 - 4 until:
a) the uncertainty on the location of x0 decreases below a pre-

established an absolute threshold (|xU-xL| < ε), or a relative 
threshold  (|xU-xL| < ε |xL| or < ε |xU|, where x0 is approximated by 
xL or xU); or 

b) |y(xM)| < ε’; or 
c) a maximum number of iterations is exceeded.

searching for zeros of a function

x0=?  bisection method



searching for zeros of a function

x0=?  bisection method

1. determine an interval [xL,xU] at whose extremes the function y(x) has 
discordant signs (to be sure that it contains x0)

y(xL)* y(xU) < 0 

y(xL)/= sign(y(xL),y(xU)) or y(xU)/= sign(y(xU),y(xL)) 

Implementation:



searching for zeros of a function

x0=?  bisection method

4.   take as the new interval the one at whose extremities the function has        
discordant signs (depending on the case it will be necessary to redefine 
xL=xM or xU=xM): it contains x0

if (y(xL)*y(xM) < 0) then 
    xU = xM 
else if (y(xU)*y(xM) < 0) then 
    xL = xM 
end if

Implementation:



searching for zeros of a function

x0=?  bisection method

Implementation - which is the best criterion?

- use an absolute threshold:  possible problems (for roundoff errors) 
if x0 is large 

- use a relative threshold: possible problems if x0 is small
- other possible problems if y(x) is too flat close to x0 

5.   iterate points 2 - 4 until:
a) the uncertainty on the location of x0 decreases below a pre-

established an absolute threshold (|xU-xL| < ε), or a relative threshold      
(|xU-xL| < ε |xL| or < ε |xU|, where x0 is approximated by xL or xU)



Exercise: 


implement this algorithm

if you never did,


or if you have forgotten…


