
993SM - Laboratory of
Computational Physics

III week
October 7, 2024

Maria Peressi

Università degli Studi di Trieste - Dipartimento di Fisica

Sede di Miramare (Strada Costiera 11, Trieste)

e-mail: peressi@units.it

tel.: +39 040 2240242

1

mailto:peressi@ts.infn.it

numerical integration

(now only

deterministic methods:

equispaced points & others)

2

3

Deterministic methods

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 368

f(x)

a b

x

area

Figure 11.1: The integral F equals the area under the curve f(x).

Figure 11.1). In these methods the x-axis is divided into n equal intervals of width ∆x, where ∆x
is given by

∆x =
b − a

n
, (11.2a)

and
xn = x0 + n∆x. (11.2b)

In the above, x0 = a and xn = b.
The simplest approximation of the area under the curve f(x) is the sum of rectangles shown in

Figure 11.2. In the rectangular approximation, f(x) is evaluated at the beginning of the interval,
and the approximate Fn of the integral is given by

Fn =
n−1
∑

i=0

f(xi)∆x. (rectangular approximation) (11.3)

In the trapezoidal approximation or rule the integral is approximated by computing the area
under a trapezoid with one side equal to f(x) at the beginning of the interval and the other side
equal to f(x) at the end of the interval. This approximation is equivalent to replacing the function
by a straight line connecting the values of f(x) at the beginning and the end of each interval.
Because the approximate area under the curve from xi to xi+1 is given by 1

2 [f(xi+1) + f(xi)]∆x,
the total area Fn is given by

Fn =
[

1
2
f(x0) +

n−1
∑

i=1

f(xi) +
1
2
f(xn)

]

∆x. (trapezoidal rule) (11.4)

Start from the geometrical
interpretation of a definite
integral:

F =

∫ b

a

f(x)dx

Divide the integration interval into “small” intervals:

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 368

f(x)

a b

x

area

Figure 11.1: The integral F equals the area under the curve f(x).

Figure 11.1). In these methods the x-axis is divided into n equal intervals of width ∆x, where ∆x
is given by

∆x =
b − a

n
, (11.2a)

and
xn = x0 + n∆x. (11.2b)

In the above, x0 = a and xn = b.
The simplest approximation of the area under the curve f(x) is the sum of rectangles shown in

Figure 11.2. In the rectangular approximation, f(x) is evaluated at the beginning of the interval,
and the approximate Fn of the integral is given by

Fn =
n−1
∑

i=0

f(xi)∆x. (rectangular approximation) (11.3)

In the trapezoidal approximation or rule the integral is approximated by computing the area
under a trapezoid with one side equal to f(x) at the beginning of the interval and the other side
equal to f(x) at the end of the interval. This approximation is equivalent to replacing the function
by a straight line connecting the values of f(x) at the beginning and the end of each interval.
Because the approximate area under the curve from xi to xi+1 is given by 1

2 [f(xi+1) + f(xi)]∆x,
the total area Fn is given by

Fn =
[

1
2
f(x0) +

n−1
∑

i=1

f(xi) +
1
2
f(xn)

]

∆x. (trapezoidal rule) (11.4)

(Note: n intervals ⬄ n +1 points)

4

Deterministic methods:
rectangular rule

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 369

1.0

f(x)

x
0 π/4 π/2

Figure 11.2: The rectangular approximation for f(x) = cos x for 0 ≤ x ≤ π/2. The error in
the rectangular approximation is shaded. Numerical values of the error for various values of the
number of intervals n are given in Table 11.1.

A generally more accurate method is to use a quadratic or parabolic interpolation procedure
through adjacent triplets of points. For example, the equation of the second-order polynomial that
passes through the points (x0, y0), (x1, y1), and (x2, y2) can be written as

y(x) = y0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ y1

(x − x0)(x − x2)
(x1 − x0)(x1 − x2)

+ y2
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
. (11.5)

What is the value of y(x) at x = x1? The area under the parabola y(x) between x0 and x2 can be
found by simple integration and is given by

F0 =
1
3

(y0 + 4y1 + y2) ∆x, (11.6)

where ∆x = x1−x0 = x2−x1. The total area under all the parabolic segments yields the parabolic
approximation for the total area:

Fn =
1
3
[

f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .

+ 2f(xn−2) + 4f(xn−1) + f(xn)
]

∆x. (Simpson’s rule) (11.7)

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 368

f(x)

a b

x

area

Figure 11.1: The integral F equals the area under the curve f(x).

Figure 11.1). In these methods the x-axis is divided into n equal intervals of width ∆x, where ∆x
is given by

∆x =
b − a

n
, (11.2a)

and
xn = x0 + n∆x. (11.2b)

In the above, x0 = a and xn = b.
The simplest approximation of the area under the curve f(x) is the sum of rectangles shown in

Figure 11.2. In the rectangular approximation, f(x) is evaluated at the beginning of the interval,
and the approximate Fn of the integral is given by

Fn =
n−1
∑

i=0

f(xi)∆x. (rectangular approximation) (11.3)

In the trapezoidal approximation or rule the integral is approximated by computing the area
under a trapezoid with one side equal to f(x) at the beginning of the interval and the other side
equal to f(x) at the end of the interval. This approximation is equivalent to replacing the function
by a straight line connecting the values of f(x) at the beginning and the end of each interval.
Because the approximate area under the curve from xi to xi+1 is given by 1

2 [f(xi+1) + f(xi)]∆x,
the total area Fn is given by

Fn =
[

1
2
f(x0) +

n−1
∑

i=1

f(xi) +
1
2
f(xn)

]

∆x. (trapezoidal rule) (11.4)

∫ xi+1

xi

f(x)dx = hfi

In one interval:

applied iteratively over consecutive intervals:

O(h2f ′),∝ 1/n2

with error:

with a total error:

O(hf ′),∝ 1/nh

5

Deterministic methods:
rectangular rule - error

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 375

package edu.clarku.sip.chapter11;
public interface Function
{

public double evaluate(double x);
}

Let us consider the accuracy of the rectangular approximation for the integral of f(x) = cos x
from x = 0 to x = π/2 by comparing the numerical results shown in Table 11.1 with the exact
answer of unity. Note that the error decreases as n−1. This observed n dependence of the error is
consistent with the analytical derivation of the n dependence of the error obtained in Appendix 11A.
We explore the n dependence of the error associated with other numerical integration methods in
Problems 11.1 and 11.2.

n Fn ∆n

2 1.34076 0.34076
4 1.18347 0.18347
8 1.09496 0.09496
16 1.04828 0.04828
32 1.02434 0.02434
64 1.01222 0.01222
128 1.00612 0.00612
256 1.00306 0.00306
512 1.00153 0.00153
1024 1.00077 0.00077

Table 11.1: Rectangular approximations of the integral of cosx from x = 0 to x = π/2 as a
function of n, the number of intervals. The error ∆n is the difference between the rectangular
approximation and the exact result of unity. Note that the error ∆n decreases approximately as
n−1, that is, if n is increased by a factor of 2, ∆n decreases by a factor 2.

Problem 11.1. The rectangular and midpoint approximations

a. Test the above program by reproducing the results in Table 11.1.

b. Use the rectangular approximation to determine numerical approximations for the definite in-
tegrals of f(x) = 2x + 3x2 + 4x3 and f(x) = e−x for 0 ≤ x ≤ 1 and f(x) = 1/x for a ≤ x ≤ 2.
What is the approximate n dependence of the error in each case?

c. A straightforward modification of the rectangular approximation is to evaluate f(x) at the
midpoint of each interval. Define a MidpointApproximator class by making the necessary
modifications and approximate the integral of f(x) = cos x in the interval 0 ≤ x ≤ π/2. How
does the magnitude of the error compare with the results shown in Table 11.1? What is the
approximate dependence of the error on n?

d. Use the midpoint approximation to determine the definite integrals considered in part (b). What
is the approximate n dependence of the error in each case? Given that our goal is to compute

∆n = Fn − I

I =

∫ π/2

0

cos(x)dx = 1

Fn =
π

2n

n−1∑

0

cos xi; xi = i
π

2n

6

Deterministic methods:
generalities

• sum values of with

• we want to have
as accurate as possible but with the
minimum number of calculations of

f(xi) xi ∈ [a, b]

F =

∫ b

a

f(x)dx

f(xi)

OK simple algorithms, but if the number of
calculations is too high, improve the algorithm!

7

Deterministic methods:
trapezoidal rule

∫ xi+1

xi

f(x)dx = h

[

1

2
fi +

1

2
fi+1

]

O(h2f ′′′),∝ 1/n2

O(h3f ′′′),∝ 1/n3

In one interval:

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 368

f(x)

a b

x

area

Figure 11.1: The integral F equals the area under the curve f(x).

Figure 11.1). In these methods the x-axis is divided into n equal intervals of width ∆x, where ∆x
is given by

∆x =
b − a

n
, (11.2a)

and
xn = x0 + n∆x. (11.2b)

In the above, x0 = a and xn = b.
The simplest approximation of the area under the curve f(x) is the sum of rectangles shown in

Figure 11.2. In the rectangular approximation, f(x) is evaluated at the beginning of the interval,
and the approximate Fn of the integral is given by

Fn =
n−1
∑

i=0

f(xi)∆x. (rectangular approximation) (11.3)

In the trapezoidal approximation or rule the integral is approximated by computing the area
under a trapezoid with one side equal to f(x) at the beginning of the interval and the other side
equal to f(x) at the end of the interval. This approximation is equivalent to replacing the function
by a straight line connecting the values of f(x) at the beginning and the end of each interval.
Because the approximate area under the curve from xi to xi+1 is given by 1

2 [f(xi+1) + f(xi)]∆x,
the total area Fn is given by

Fn =
[

1
2
f(x0) +

n−1
∑

i=1

f(xi) +
1
2
f(xn)

]

∆x. (trapezoidal rule) (11.4)

Applied iteratively over consecutive intervals:

with a total error:

with error:

8

Deterministic methods:
Simpson’s rule

In one interval:
∫ xi+2

xi

f(x)dx = h

[

1

3
fi +

4

3
fi+1 +

1

3
fi+2

]

+ O(h5f IV) (error ∝ 1/n5)

∫ xn

x0

f(x)dx = h

[

1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3 + . . . +

2

3
fn−2 +

4

3
fn−1 +

1

3
fn

]

+O(h4f IV) (error ∝ 1/n4)

Iteratively applied to the whole interval of integration (odd number of points!):

Parabolic interpolation procedure
between triplets of adjacent points

9

Errors in
deterministic methods

10

Error estimate for numerical integration
with deterministic methods

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 397

c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 397

c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.

∫
f(x)dx = Fn + error

How to evaluate the error? Consider the Taylor expansion
of the integrand function and then integrate:

(*)

(**)

∆x ≡ xi+1 − xi

11

Error estimate for numerical integration:
Rectangular approximation

∫ xi+1

xi

f(x)dx ≈ f(xi)∆x

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 397

c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.

Compare with (**):

error
(leading order in)∆x

For intervals : error is n n(∆x)2 ∼ 1/n(∆x = (b − a)/n)

12

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 397

c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.

Compare with (**):

error
(leading order in)∆x

For intervals: error is n

Error estimate for numerical integration:
Trapezoidal approximation

∫ xi+1

xi

f(x)dx ≈

1

2

[

f(xi+1) + f(xi)
]

∆x

n(∆x)3 ∼ 1/n2

f(xi+1) ≈ f(xi) + f ′(xi)∆x +
1

2
f ′′(xi)∆x2 + . . .

≈

1

2

[

2f(xi) + f ′(xi)∆x +
1

2
f ′′(xi)∆x2 + . . .

]

∆x

13

Compare with (**):

error
(leading order in)∆x

For intervals: error is n

f(xi+1) ≈ f(xi) + f ′(xi)∆x +
1

2
f ′′(xi)∆x + . . .

Error estimate for numerical integration:
Simpson approximation

∫ xi+2

xi

f(x)dx ≈

[

1

3
f(xi) +

4

3
f(xi+1) +

1

3
f(xi+2)

]

∆x

....

....

∫ xi+2

xi

f(x)dx = f(xi)∆x+
1

2!
f ′(xi)(∆x)2+

1

3!
f ′′(xi)(∆x)3+

1

4!
f ′′′(xi)(∆x)4+

1

5!
f ′′′′(xi)(∆x)5+. . .

n(∆x)5 ∼ 1/n4

(homework!)

14

Numerical integration - deterministic methods:
comparison of errors in 1D

-35

-30

-25

-20

-15

-10

-5

 0

 0 1 2 3 4 5 6 7

lo
g
(E

rr
(N

))

log(N)

trapezoid double prec.
Simpson double prec.

Gauss-Legendre double prec.

error ∼ 1/N4

error ∼ 1/N2

e-15~10-7

15

• constant interpolation 1 point rectangular rule

• linear interpolation 2 points trapezoidal rule

• parabolic interpolation 3 points Simpson’s rule

•

• higher-order polynomial many points

Deterministic methods -1

NOT CONVENIENT!

We use a piecewise polynomial interpolation:

Warning: using higher degrees does not always improve accuracy!

(see also: Runge phenomenon (polynomial interpolation, oscillation at the edges of an
interval), Gibbs phenomenon ...)

16

Deterministic methods -1I

Warning:
using high-order piecewise polynomial interpolation: possible
strong oscillations between consecutive (xi,f(xi)), giving a bad
interpolation of f(x).
Here: f(x) step function; - linear interp.; - cubic spline

•(xi,f(xi))

Other deterministic
methods

17

(at variance with these methods, in MC methods such as
the ‘importance sampling’, we choose only points, not weights)

∫ b

a

f(x)dx ≈ FN =
N∑

i=1

vif(xi)

...

Numerical integration;
other deterministic methods:

• in the simplest equally-spaced-point methods, we
choose weights to calculate the average of the function:

rectangular rule:

trapezoidal rule:

f(x, y) = f(xi, yi) + f 0
x(xi, yi)(x� xi) + f 0

y(xi, yi)(y � yi) + . . .

xi = a+
b� a

N
i, vi =

b� a

N
8i = 1, . . . N � 1

xi = a+
b� a

N
i, vi =

b� a

N
8i 6= 1, N ; v1 = vN =

b� a

2N

1

18

Numerical integration;
other deterministic methods:

idea: choose not only weights but also points:
more degrees of freedom!

xi =?, vi =?

∫ b

a

f(x)dx ≈ FN =
N∑

i=1

vif(xi)

• in the simplest equally-spaced-point methods, we
choose weights to calculate the average of the function:

19

Another deterministic method:
Gaussian quadrature - II

Consider

∫
f(x)dx =

∫
W (x)F (x)dx ≈

N∑
j=1

wjF (xj) =
N∑

j=1

wj
f(xj)

W (xj)
=

N∑
j=1

vjf(xj)

∫ b

a

f(x)dx and a function W (x) defined on [a, b]

We can always formally write:

(This will be convenient in particular if the resulting is smooth,
but not necessarily)

F (x)

vj = wj/W (xj)

wj != W (xj)

to be determined, depending on W(x) (*)

(*) in general:

with

20

Another deterministic method:
Gaussian quadrature - II

For a given , the N points and weights
can be chosen to make the approximate
relationship (*) an exact equality if is a
2N-1 degree polynomial.

W (x) {xj}, {wj}

∫
f(x)dx =

∫
W (x)F (x)dx ≈

N∑
j=1

wjF (xj) =
N∑

j=1

wj
f(xj)

W (xj)
=

N∑
j=1

vjf(xj)
(*)

F (x)

21

Consider
∫ b

a

f(x)dx and a function W (x) defined on [a, b]

We can always formally write:

Another deterministic method:
Gaussian quadrature - III

∫
W (x)F (x)dx =

N∑
j=1

wjF (xj)Consider

a 2N - 1 degree polynomial. Which are the N ? {xj}, {wj}

If there is a set of polynomials which are orthogonal
in the same interval and for the same weight function W(x):

the points are exactly the roots of the
polynomials. The weights are related to them, but
in general .

{xi} pN (x)

F (x)

〈pN |pN ′〉W = δN,N ′ , i.e.,

∫ x2

x1

W (x)pN (x)pN ′(x)dx = δN,N ′

{pN (x)}

x1

x2

{wj}
wj != W (xj)

22

Consider

Gauss-Legendre quadrature
∫ x2

x1

W (x)F (x)dx =
N∑

j=1

wjF (xj)

If: W (x) = 1 and x1 = −1, x2 = 1

the Legendre polynomials defined by:

(j + 1)Pj+1 = (2j + 1)xPj − jPj−1

 are such that and{xj}, {wj} PN (xi) = 0

{PN (x)}

wi =
2

(1 − x2
i
)[P ′

N
(xi)]2

,

are orthogonal in [-1,1] with W(x)=1;

a 2N - 1 degree polynomial. F (x)with

23

polynomials are odd or even in x ➱ roots are even
24

Legendre polynomials in Physics: examples of applications

1) For a polynomial expansion of a gravitational or coulombic potential:

2)

if the :

;

25

3) :

26

In practice, we choose W(x) and N and use the
set of N points and weights for the
approximate integration:

Gaussian quadrature

{xj}, {wj}

∫
f(x)dx =

∫
W (x)F (x)dx ≈

N∑
j=1

wjF (xj) =
N∑

j=1

wj
f(xj)

W (xj)
=

N∑
j=1

vjf(xj)

27

Gauss-Legendre quadrature

degree of the polynomial

x1 = −1, x2 = 1For:

exactly integrable

The integration in an interval [a,b] different from [-1,1]
(“old”) can be easily done performing the scaling:

xnew =
b − a

2
xold +

b + a

2
wnew =

b − a

2
woldand

N

28

(see slide 10 for the list
of the first polynomials)

e.g. GAULEG() of Numerical Recipes
which, given , provides as output the arrays

Gauss-Legendre quadrature

In case of classical, well known, orthogonal polynomials,
ready-to-use subroutines exist for the computation of
Abscissas and Weights {xj}, {wj}

x1, x2, x, w, n

x1, x2, n x(n), w(n)

29

on https://moodle2.units.it/

int.f90 (trapeziodal and Simpson integration)

gauleg-IIorder.f90
gauleg-others.f90 (generation of points up to 15 points
in [-1,1] using GAULEG adapted from “Numerical Recipes” (self-
contained) and some tests for easy-to-integrate functions)

In the subdirectory: gauss-nr90/
find the original routine from “Numerical Recipes”
and related external routines/modules/interfaces
and a main program for test (see following slide)

Some programs:

30

https://moodle2.units.it/

Use of GAULEG:
In order to use the routines of Numerical Recipes, you have to compile
and link the main program with:
- the subroutine gauleg.f90 which gives points and abscissas
- nrtype.f90 containing type declarations;
- nrutil.f90 containing moduli and utilities;
- nr.f90 containing (through the interfaces) the conventions
to call the subroutines with the main program
i) You must first compile these files with the option “-c”:
this produces .mod and .o (the objects).
ii) In a second step compile the main program.
iii) Finally you link all the files *.o and produce the executable:

gfortran -c nrtype.f90 nrutil.f90 nr.f90 gauleg.f90
gfortran -c gauleg_nr_test.f90
gfortran -o a.out gauleg_nr_test.o nrtype.o nrutil.o nr.o gauleg.o

Gauss-Legendre from Numerical Recipes

31

gauleg.f90 from Numerical Recipes

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp
INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(DP) :: xl,xm
REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauleg’)
m=(n+1)/2
xm=0.5_dp*(x2+x1)
xl=0.5_dp*(x2-x1)
z=cos(PI_D*(arth(1,1,m)-0.25_dp)/(n+0.5_dp))
unfinished=.true.
do its=1,MAXIT

where (unfinished)
p1=1.0
p2=0.0

end where
do j=1,n

where (unfinished)
p3=p2
p2=p1
p1=((2.0_dp*j-1.0_dp)*z*p2-(j-1.0_dp)*p3)/j

end where
end do
where (unfinished)

pp=n*(z*p1-p2)/(z*z-1.0_dp)
z1=z
z=z1-p1/pp
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauleg’)
x(1:m)=xm-xl*z
x(n:n-m+1:-1)=xm+xl*z
w(1:m)=2.0_dp*xl/((1.0_dp-z**2)*pp**2)
w(n:n-m+1:-1)=w(1:m)

END SUBROUTINE gauleg

8

gauleg.f90 from Numerical Recipes

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp
INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(DP) :: xl,xm
REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauleg’)
m=(n+1)/2
xm=0.5_dp*(x2+x1)
xl=0.5_dp*(x2-x1)
z=cos(PI_D*(arth(1,1,m)-0.25_dp)/(n+0.5_dp))
unfinished=.true.
do its=1,MAXIT

where (unfinished)
p1=1.0
p2=0.0

end where
do j=1,n

where (unfinished)
p3=p2
p2=p1
p1=((2.0_dp*j-1.0_dp)*z*p2-(j-1.0_dp)*p3)/j

end where
end do
where (unfinished)

pp=n*(z*p1-p2)/(z*z-1.0_dp)
z1=z
z=z1-p1/pp
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauleg’)
x(1:m)=xm-xl*z
x(n:n-m+1:-1)=xm+xl*z
w(1:m)=2.0_dp*xl/((1.0_dp-z**2)*pp**2)
w(n:n-m+1:-1)=w(1:m)

END SUBROUTINE gauleg

8

...

...

...

32

nrtype.f90 from Numerical recipes

33

nrtype.f90 from Numerical Recipes

MODULE nrtype
INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
INTEGER, PARAMETER :: I2B = SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)
INTEGER, PARAMETER :: SP = KIND(1.0)
INTEGER, PARAMETER :: DP = KIND(1.0D0)
INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))
INTEGER, PARAMETER :: DPC = KIND((1.0D0,1.0D0))
INTEGER, PARAMETER :: LGT = KIND(.true.)
REAL(SP), PARAMETER :: PI=3.141592653589793238462643383279502884197_sp
REAL(SP), PARAMETER :: PIO2=1.57079632679489661923132169163975144209858_sp
REAL(SP), PARAMETER :: TWOPI=6.283185307179586476925286766559005768394_sp
REAL(SP), PARAMETER :: SQRT2=1.41421356237309504880168872420969807856967_sp
REAL(SP), PARAMETER :: EULER=0.5772156649015328606065120900824024310422_sp
REAL(DP), PARAMETER :: PI_D=3.141592653589793238462643383279502884197_dp
REAL(DP), PARAMETER :: PIO2_D=1.57079632679489661923132169163975144209858_dp
REAL(DP), PARAMETER :: TWOPI_D=6.283185307179586476925286766559005768394_dp
TYPE sprs2_sp

INTEGER(I4B) :: n,len
REAL(SP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_sp
TYPE sprs2_dp

INTEGER(I4B) :: n,len
REAL(DP), DIMENSION(:), POINTER :: val
INTEGER(I4B), DIMENSION(:), POINTER :: irow
INTEGER(I4B), DIMENSION(:), POINTER :: jcol

END TYPE sprs2_dp
END MODULE nrtype

nr.f90 from Numerical Recipes

MODULE nr
INTERFACE

SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w

END SUBROUTINE gauleg
END INTERFACE
! ... the original file contains several other INTERFACES ...

END MODULE nr

9

34

nrutil.f90 (Here only for: array copy, arth, assert eq, nrerror)

MODULE nrutil
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8
INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8
INTERFACE array_copy

MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i
END INTERFACE
INTERFACE assert_eq

MODULE PROCEDURE assert_eq2,assert_eq3,assert_eq4,assert_eqn
END INTERFACE
INTERFACE arth

MODULE PROCEDURE arth_r, arth_d, arth_i
END INTERFACE
! ... l’originale contiene ancora molte altre INTERFACEs....

CONTAINS

SUBROUTINE array_copy_r(src,dest,n_copied,n_not_copied)
REAL(SP), DIMENSION(:), INTENT(IN) :: src
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_r

SUBROUTINE array_copy_d(src,dest,n_copied,n_not_copied)
REAL(DP), DIMENSION(:), INTENT(IN) :: src
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_d

SUBROUTINE array_copy_i(src,dest,n_copied,n_not_copied)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: src
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))

10

nrutil.f90 (Here only for: array copy, arth, assert eq, nrerror)

MODULE nrutil
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8
INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8
INTERFACE array_copy

MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i
END INTERFACE
INTERFACE assert_eq

MODULE PROCEDURE assert_eq2,assert_eq3,assert_eq4,assert_eqn
END INTERFACE
INTERFACE arth

MODULE PROCEDURE arth_r, arth_d, arth_i
END INTERFACE
! ... l’originale contiene ancora molte altre INTERFACEs....

CONTAINS

SUBROUTINE array_copy_r(src,dest,n_copied,n_not_copied)
REAL(SP), DIMENSION(:), INTENT(IN) :: src
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_r

SUBROUTINE array_copy_d(src,dest,n_copied,n_not_copied)
REAL(DP), DIMENSION(:), INTENT(IN) :: src
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_d

SUBROUTINE array_copy_i(src,dest,n_copied,n_not_copied)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: src
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))

10

nrutil.f90 (Here only for: array copy, arth, assert eq, nrerror)

MODULE nrutil
USE nrtype
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8
INTEGER(I4B), PARAMETER :: NPAR_GEOP=4,NPAR2_GEOP=2
INTEGER(I4B), PARAMETER :: NPAR_CUMSUM=16
INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=8
INTEGER(I4B), PARAMETER :: NPAR_POLY=8
INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8
INTERFACE array_copy

MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i
END INTERFACE
INTERFACE assert_eq

MODULE PROCEDURE assert_eq2,assert_eq3,assert_eq4,assert_eqn
END INTERFACE
INTERFACE arth

MODULE PROCEDURE arth_r, arth_d, arth_i
END INTERFACE
! ... l’originale contiene ancora molte altre INTERFACEs....

CONTAINS

SUBROUTINE array_copy_r(src,dest,n_copied,n_not_copied)
REAL(SP), DIMENSION(:), INTENT(IN) :: src
REAL(SP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_r

SUBROUTINE array_copy_d(src,dest,n_copied,n_not_copied)
REAL(DP), DIMENSION(:), INTENT(IN) :: src
REAL(DP), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))
n_not_copied=size(src)-n_copied
dest(1:n_copied)=src(1:n_copied)

END SUBROUTINE array_copy_d

SUBROUTINE array_copy_i(src,dest,n_copied,n_not_copied)
INTEGER(I4B), DIMENSION(:), INTENT(IN) :: src
INTEGER(I4B), DIMENSION(:), INTENT(OUT) :: dest
INTEGER(I4B), INTENT(OUT) :: n_copied, n_not_copied
n_copied=min(size(src),size(dest))

10

...

...

...

...

if (n <= NPAR_ARTH) then
do k=2,n

arth_d(k)=arth_d(k-1)+increment
end do

else
do k=2,NPAR2_ARTH

arth_d(k)=arth_d(k-1)+increment
end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do

if (k >= n) exit
k2=k+k
arth_d(k+1:min(k2,n))=temp+arth_d(1:min(k,n-k))
temp=temp+temp
k=k2

end do
end if

END FUNCTION arth_d

FUNCTION arth_i(first,increment,n)
INTEGER(I4B), INTENT(IN) :: first,increment,n
INTEGER(I4B), DIMENSION(n) :: arth_i
INTEGER(I4B) :: k,k2,temp
if (n > 0) arth_i(1)=first
if (n <= NPAR_ARTH) then

do k=2,n
arth_i(k)=arth_i(k-1)+increment

end do
else

do k=2,NPAR2_ARTH
arth_i(k)=arth_i(k-1)+increment

end do
temp=increment*NPAR2_ARTH
k=NPAR2_ARTH
do

if (k >= n) exit
k2=k+k
arth_i(k+1:min(k2,n))=temp+arth_i(1:min(k,n-k))
temp=temp+temp
k=k2

end do
end if

END FUNCTION arth_i
! and many other FUNCTIONs and SUBROUTINEs

END MODULE nrutil

13

...

35

Numerical integration, deterministic methods:
comparison of errors in 1D

-35

-30

-25

-20

-15

-10

-5

 0

 0 1 2 3 4 5 6 7

lo
g
(E

rr
(N

))

log(N)

trapezoid double prec.
Simpson double prec.

Gauss-Legendre double prec.

error ∼ 1/N4

error ∼ 1/N2

(double precision needed to appreciate the convergence of Gauss-Legendre numerical estimate)
36

