

993SM - Laboratory of Computational Physics III week October 7, 2024

Maria Peressi

Università degli Studi di Trieste - Dipartimento di Fisica Sede di Miramare (Strada Costiera 11, Trieste) e-mail: [peressi@units.it](mailto:peressi@ts.infn.it) tel.: +39 040 2240242

numerical integration (now only deterministic methods: equispaced points & others)

Divide the integration interval into "small" intervals:

$$
\Delta x = \frac{b-a}{n},
$$

$$
x_n = x_0 + n \Delta x.
$$

 $\overline{}$ The simplest approximation of the area under the area under the area under the sum of α is the sum of α (Note: *n* intervals \Leftrightarrow $n+1$ points) $f(x) = \frac{1}{2\pi} \int_{0}^{1} \frac{1}{x} \, dx$. (rectangular approximation) (11.3) In the trapezoidal approximation or rule the integral is approximated by computing the area

Deterministic methods: rectangular rule

The rectangular approximation for $f(x) = \cos x$ for $0 \le x \le \pi/2$. the rectangular approximation is shaded. Numerical values of the error for various values of the by for $0 \leq x \leq \pi/2$.

Deterministic methods: rectangular rule - error Γ et approximation the atom der **from the internal bulls of the numerical results of the numerical results shown in Table 11.1 with the exact s** and the error of unity. Note that the error decreases as no the error is not the error is not the error is not We explore the n dependence of the n dependence of the error associated with other numerical integration method

Rectangular approximations of the integral of cos x from $x = 0$ to $x = \pi/2$ as a function of n, the number of intervals. The error Δ_n is the difference between the rectangular approximation and the exact result of unity. Note that the error Δ_n decreases approximately as n^{-1} , that is, if n is increased by a factor of 2, Δ_n decreases by a factor 2.

Deterministic methods: generalities

- sum values of $f(x_i)$ with $f(x_i)$ with $x_i \in [a, b]$
- we want to have as accurate as possible^{a} but with the minimum number of calculations of $f(x_i)$ $F =$ \int^b \overline{a} $f(x)dx$

OK simple algorithms, but if the number of calculations is too high, improve the algorithm!

Deterministic methods: trapezoidal rule i=0 \int_{0}^{∞} mothods.

In one interval: with error:

with error:

$$
\int_{x_i}^{x_{i+1}} f(x)dx = h\left[\frac{1}{2}f_i + \frac{1}{2}f_{i+1}\right] \quad \mathcal{O}(h^3 f'''), \propto 1/n^3
$$

Applied iteratively over consecutive intervals:

Deterministic methods: Simpson's rule

Iteratively applied to the whole interval of integration (odd number of points!):

$$
\int_{x_0}^{x_n} f(x)dx = h\left[\frac{1}{3}f_0 + \frac{4}{3}f_1 + \frac{2}{3}f_2 + \frac{4}{3}f_3 + \ldots + \frac{2}{3}f_{n-2} + \frac{4}{3}f_{n-1} + \frac{1}{3}f_n\right] + \mathcal{O}(h^4 f^{IV})\ (error \propto 1/n^4)
$$

Errors in deterministic methods

Error estimate for numerical integration with deterministic methods Γ is statistically independent (that is, if Γ is Γ is, i Error estimate for numerical mu into 20 sets of 10 sets of 10 sets of 10 sets of 10 sets of 100 points each. If the sets of \mathbf{r}_1 Error estimate for numerical integration

$$
\int f(x)dx = F_n + error
$$

How to evaluate the error? Consider the Taylor expansion of the integrand function and then integrate: We derive the derive the derive the dependence of the truncation error estimates on the number of intervals for
The truncation error estimates on the number of intervals for the number of intervals for the number of interv

$$
f(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{1}{2}f''(x_i)(x - x_i)^2 + \dots, (*)
$$

$$
\int_{x_i}^{x_{i+1}} f(x) dx = f(x_i) \Delta x + \frac{1}{2} f'(x_i) (\Delta x)^2 + \frac{1}{6} f''(x_i) (\Delta x)^3 + \dots
$$

$$
\Delta x \equiv x_{i+1} - x_i
$$

Error estimate for numerical integration: Rectangular approximation \mathbb{R}^n derive the truncation error estimates on the number of intervals for t the assumed adequacy of the Taylor series expansion of the integrand f(x):

$$
\int_{x_i}^{x_{i+1}} f(x)dx \approx f(x_i)\Delta x
$$

Compare with $(**)$:

$$
\int_{x_i}^{x_{i+1}} f(x) dx = f(x_i) \Delta x + \frac{1}{2} \int_{x_i}^{x} f'(x_i) (\Delta x)^2 + \frac{1}{6} f''(x_i) (\Delta x)^3 + \dots
$$

(leading order in Δx) at the left side of each interval. The interval. The interval interval interval interval interval interval. The
Interval interval interval in the difference between an interval interval interval in the difference between error

> $\lim_{u \to 0} (\Delta u - (v - u)/\hbar)$. error is \hbar For n intervals $(\Delta x = (b-a)/n)$: error is $n (\Delta x)^2 \sim 1/n$

Trapezoidal approximation Error estimate for numerical integration:

$$
\int_{x_i}^{x_{i+1}} f(x)dx \approx \frac{1}{2} \Big[f(x_{i+1}) + f(x_i) \Big] \Delta x
$$

$$
\downarrow f(x_{i+1}) \approx f(x_i) + f'(x_i) \Delta x + \frac{1}{2} f''(x_i) \Delta x^2 + \dots
$$

$$
\approx \frac{1}{2} \Big[2f(x_i) + f'(x_i) \Delta x + \frac{1}{2} f''(x_i) \Delta x^2 + \dots \Big] \Delta x
$$

 $\int_0^{\overline{x}_{i+1}}$ x_i $f(x) dx = f(x_i)\Delta x +$ 1 2 $f'(x_i)(\Delta x)^2 +$ 1 6 $f''(x_i)(\Delta x)^3 + \ldots$ \mathcal{L} (leading order in Δx) Compare with (**): error

 $\left(\begin{array}{cc} \Lambda & \lambda \end{array} \right)$ interval. The intervalse between $\left(\begin{array}{cc} \Lambda & \lambda \end{array} \right)$ is the difference between $\left(\begin{array}{cc} \Lambda & \lambda \end{array} \right)$ is the difference between $\left(\begin{array}{cc} \Lambda & \lambda \end{array} \right)$ is the difference between Λ For $\,n\,$ intervals: e For \hat{n} intervals: error is $\hat{n}(\Delta x)$ $^{3} \sim 1/n^{2}$

$f(x_{i+1}) \approx f(x_i) + f'(x_i) \Delta x +$ 1 2 $f''(x_i)\Delta x + \ldots$ Error estimate for numerical integration: Simpson approximation $\int_0^{\mathcal{X}} i+2$ x_i $f(x)dx \approx$ $\lceil 1 \rceil$ 3 $f(x_i) + \frac{4}{5}$ 3 $f(x_{i+1}) + \frac{1}{2}$ 3 $f(x_{i+2})$ $\overline{}$ Δx (homework!)

Compare with $(**)$: error (leading order in Δx) $\int^{x_{i+2}}$ x_i $f(x)dx = f(x_i)\Delta x +$ $\frac{1}{2!}f'(x_i)(\Delta x)^2 + \frac{1}{3!}f''(x_i)(\Delta x)^3 + \frac{1}{4!}f'''(x_i)(\Delta x)^4 + \frac{1}{5!}f''''(x_i)(\Delta x)^5 + \dots$

For n intervals: error is $n(\Delta x)$ $^{5} \sim 1/n^{4}$

....

Numerical integration - deterministic methods: comparison of errors in 1D

Deterministic methods -1

We use a piecewise polynomial interpolation:

NOT CONVENIENT! Warning: using higher degrees does not always improve accuracy!

(see also: Runge phenomenon (polynomial interpolation, oscillation at the edges of an interval), Gibbs phenomenon ...)

Deterministic methods -1I

Other deterministic methods

Numerical integration; other deterministic methods:

• in the simplest equally-spaced-point methods, we choose weights to calculate the average of the function:

$$
\int_{a}^{b} f(x)dx \approx F_{N} = \sum_{i=1}^{N} v_{i}f(x_{i})
$$

rectangular rule: $x_{i} = a + \frac{b-a}{N}i$, $v_{i} = \frac{b-a}{N} \quad \forall i = 1,... N - 1$
trapezoidal rule: $x_{i} = a + \frac{b-a}{N}i$, $v_{i} = \frac{b-a}{N} \quad \forall i \neq 1, N; \quad v_{1} = v_{N} = \frac{b-a}{2N}$

(at variance with these methods, in MC methods such as the 'importance sampling', we choose only points, not weights)

Numerical integration; other deterministic methods:

• in the simplest equally-spaced-point methods, we choose weights to calculate the average of the function:

$$
\int_a^b f(x)dx \approx F_N = \sum_{i=1}^N v_i f(x_i)
$$

idea: choose not only weights but also points: more degrees of freedom!

$$
x_i = ?, \quad v_i = ?
$$

Another deterministic method: Gaussian quadrature - I Consider \int^b \overline{a} $f(x)dx$ and a function $W(x)$ defined on $[a, b]$ We can always formally write:

$$
\int f(x)dx = \int W(x)F(x)dx \approx \sum_{j=1}^{N} w_j F(x_j) = \sum_{j=1}^{N} w_j \frac{f(x_j)}{W(x_j)} = \sum_{j=1}^{N} v_j f(x_j)
$$

with $v_j = w_j/W(x_j)$

to be determined, depending on *W*(*x*) (*)

(This will be convenient in particular if the resulting $F(x)$ is smooth, but not necessarily)

(*) in general: $w_j \neq W(x_j)$

Another deterministic method: Gaussian quadrature - II Consider \int^b \overline{a} $f(x)dx$ and a function $W(x)$ defined on $[a, b]$ We can always formally write:

$$
\int f(x)dx = \int W(x)F(x)dx \approx \sum_{j=1}^{N} w_j F(x_j) = \sum_{j=1}^{N} w_j \frac{f(x_j)}{W(x_j)} = \sum_{j=1}^{N} v_j f(x_j)
$$

For a given $W(x)$, the N points and weights $\{x_j\}, \{w_j\}$ can be chosen to make the approximate relationship $(*)$ an exact equality if $F(x)$ is a 2N-1 degree polynomial.

Another deterministic method: Gaussian quadrature - III

Consider
$$
\int_{x_1}^{x_2} W(x)F(x)dx = \sum_{j=1}^N w_j F(x_j)
$$

 $F(x)$ a 2N - 1 degree polynomial. Which are the N $\{x_j\}, \{w_j\}$?

If there is a set of polynomials $\{p_N(x)\}$ which are orthogonal in the same interval and for the same weight function *W(x)*:

the points $\{x_i\}$ are exactly the roots of the $p_N(x)$ polynomials. The weights $\{w_j\}$ are related to them, but in general $w_j \neq W(x_j)$. $\langle p_N | p_{N'} \rangle_W = \delta_{N,N'} \; , \; i.e., \; \; \int^{x_2}$ \overline{x}_1 $W(x)p_N(x)p_{N'}(x)dx=\delta_{N,N'}$

Gauss-Legendre quadrature

Consider
$$
\int_{x_1}^{x_2} W(x)F(x)dx = \sum_{j=1}^N w_j F(x_j)
$$

with $F(x)$ a 2N - 1 degree polynomial.

If: $W(x) = 1$ and $x_1 = -1$, $x_2 = 1$, the Legendre polynomials $\{P_N(x)\}$ defined by: $(j + 1)P_{j+1} = (2j + 1)xP_j - jP_{j-1}$

 $\{x_i\}, \{w_j\}$ are such that $P_N(x_i)=0$ and $w_i =$ 2 $\sqrt{(1-x_i^2)[P_N'(x_i)]^2}$ are orthogonal in $[-1,1]$ with $W(x)=1$;

The first few Legendre polynomials are:

polynomials are odd or even in $x \Rightarrow$ roots are even

Legendre polynomials in Physics: examples of applications

1) For a polynomial expansion of a gravitational or coulombic potential:

$$
\frac{1}{|\mathbf{x}-\mathbf{x}'|}=\frac{1}{\sqrt{r^2+r'^2-2rr'\cos\gamma}}=\sum_{\ell=0}^\infty\frac{r'^\ell}{r^{\ell+1}}P_\ell(\cos\gamma)
$$

where r and r' are the lengths of the vectors x and x' respectively and γ is the angle between those two vectors.

2) solution of Laplace's equation of the static potential, $\nabla^2 \Phi({\bf x})=0$, in a charge-free region of space, if the boundary conditions have axial symmetry :

 θ is the angle between the position of the observer and the $\hat{\mathbf{z}}$ axis (the zenith angle);

the solution for the potential will be

$$
\Phi(r,\theta)=\sum_{\ell=0}^\infty \left[A_\ell r^\ell + B_\ell r^{-(\ell+1)}\right]P_\ell(\cos\theta)
$$

3) solving Schrödinger equation in three dimensions for a central force :

the associated Legendre polynomials are derivatives of ordinary Legendre polynomials ($m \ge 0$)

$$
P_\ell^m(x) = (-1)^m (1-x^2)^{m/2} \frac{d^m}{dx^m} \left(P_\ell(x) \right)
$$

The Legendre polynomials are closely related to the spherical harmonics

$$
Y_{\ell,m}(\theta,\phi)=\sqrt{\frac{(2\ell+1)(\ell-m)!}{4\pi(\ell+m)!}}\ P_\ell^m(\cos\theta)\ e^{im\phi}\qquad -\ell\le m\le\ell.
$$

Gaussian quadrature

In practice, we choose $W(x)$ and N and use the set of N points and weights $\{x_j\}, \{w_j\}$ for the approximate integration:

$$
\int f(x)dx = \int W(x)F(x)dx \approx \sum_{j=1}^{N} w_j F(x_j) = \sum_{j=1}^{N} w_j \frac{f(x_j)}{W(x_j)} = \sum_{j=1}^{N} v_j f(x_j)
$$

Gauss-Legendre quadrature

Gauss-Legendre quadrature

In case of classical, well known, orthogonal polynomials, ready-to-use subroutines exist for the computation of Abscissas and Weights $\{x_i\}, \{w_i\}$

e.g. $\mathsf{GAULEG}(x_1, x_2, x, w, n)$ of Numerical Recipes which, given x_1, x_2, n , provides as output the arrays $x(n), w(n)$

Some programs:

on <https://moodle2.units.it/>

int.f90 (trapeziodal and Simpson integration) **gauleg-IIorder.f90 gauleg-others.f90** (generation of points up to 15 points in [-1,1] using GAULEG adapted from "Numerical Recipes" (selfcontained) and some tests for easy-to-integrate functions)

In the subdirectory: **gauss-nr90/** find the original routine from "Numerical Recipes" and related external routines/modules/interfaces and a main program for test (see following slide)

Gauss-Legendre from Numerical Recipes

Use of GAULEG:

In order to use the routines of Numerical Recipes, you have to compile and link the main program with:

- the subroutine **gauleg.f90** which gives points and abscissas
- **nrtype.f90** containing type declarations;
- **nrutil.f90** containing **moduli** and utilities;
- **nr.f90** containing (through the interfaces) the conventions to call the subroutines with the main program

i) You must first compile these files with the option "-c":

this produces .mod and .o (the objects).

ii) In a second step compile the main program.

iii) Finally you link all the files *.o and produce the executable:

gfortran -c nrtype.f90 nrutil.f90 nr.f90 gauleg.f90 gfortran -c gauleg_nr_test.f90 gfortran -o a.out gauleg_nr_test.o nrtype.o nrutil.o nr.o gauleg.o

```
SUBROUTINE gauge(x1, x2, x, w)
```

```
USE \texttt{nrtype}; USE \texttt{nrutil}, ONLY : \texttt{arth}, \texttt{asserteq}, \texttt{nrerror}
```
IMPLICIT NONE

```
REAL(SP), INTENT(IN) :: x1,x2
    REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
    REAL(DP), PARAMETER :: EPS=3.0e-14_dp
    INTEGER(I4B) :: its,j,m,n
p1=((2.0_dp*j-1.0_dp)*z*p2-(j-1.0_dp)*p3)/j
    INTEGER(I4B), PARAMETER :: MAXIT=10
    REAL(DP) :: x1,xm<br>PEAL(PP) PIMPHOT
    REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
   LOGICAL (LGT), DIMENSION((size(x)+1)/2) :: unfinished
    n=assert_eq(size(x),size(w),'gauleg')
   m=(n+1)/2xm=0.5_dp*(x2+x1)
    xl=0.5_dp*(x2-x1)
    z=cos(PI_D*(arth(1,1,m)-0.25_dp)/(n+0.5_dp))
    unfinished and the state of the<br>. The state of the
    do its \mathcal{M}where (\mathbf{u}, \mathbf{u})x(1:m)=xm-x1*zx(n:n-m+1:-1)=xm+x1*zend where
w(1:m)=2.0_dp*xl/((1.0_dp-z**2)*pp**2)
    w(n:n-m+1:-1)=w(1:m)END SUBROUTINE gauleg
          L(DF), DIFENDION((5<br>IALL(LAT) DIMPNAIO
                 p<sup>1</sup>(LG1), DIRENDIUN((BIZE(A)<sup>1</sup>1.
                 L u_w<br>\ /∩
                 \frac{1}{2}<br>dn+(x0+x1)
                 \frac{u}{dx}(x^2-x^1)ele_ep \---<br>os(PT D*(s
          if (\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1end door<br>end door
    if \mathbf{m} is \mathbf{m} and \mathbf{m} iterations in gaulegy () call notations in gauge ) in gaulege () in gaul
         ...
         ...
         ...
```

```
MODULE nrtype
  INTEGER, PARAMETER :: I4B = SELECTED_INT_KIND(9)
  INTEGR, PARAMETER :: I2B = SELECTED_INT_KIND(4)
  INTEGER, PARAMETER :: I1B = SELECTED_INT_KIND(2)
  INTEGER, PARAMETER :: SP = KIND(1.0)INTEGR, PARAMETER :: DP = KIND(1.0D0)INTEGER, PARAMETER :: SPC = KIND((1.0,1.0))INTEGR, PARMETER :: DPC = KIND((1.0D0, 1.0D0))INTEGR, PARAMETER: LGT = KIND( . true.)REAL(SP), PARAMETER :: PI=3.141592653589793238462643383279502884197_sp
  REAL(SP), PARAMETER :: PIO2=1.57079632679489661923132169163975144209858_sp
  REAL(SP), PARAMETER :: TWOPI=6.283185307179586476925286766559005768394_sp
  REAL(SP), PARAMETER :: SQRT2=1.41421356237309504880168872420969807856967_sp
  REAL(SP), PARAMETER :: EULER=0.5772156649015328606065120900824024310422_sp
  REAL(DP), PARAMETER :: PI_D=3.141592653589793238462643383279502884197_dp
  REAL(DP), PARAMETER :: PIO2_D=1.57079632679489661923132169163975144209858_dp
  REAL(DP), PARAMETER :: TWOPI_D=6.283185307179586476925286766559005768394_dp
  TYPE sprs2_sp
     INTEGER(I4B) :: n, len
     REAL(SP), DIMENSION(:), POINTER :: val
     INTEGER(I4B), DIMENSION(:), POINTER :: irow
     INTEGER(I4B), DIMENSION(:), POINTER :: jcol
  END TYPE sprs2_sp
  TYPE sprs2_dp
     INTEGER(I4B) :: n, len
     REAL(DP), DIMENSION(:), POINTER :: val
     INTEGER(I4B), DIMENSION(:), POINTER :: irow
     INTEGER(I4B), DIMENSION(:), POINTER :: jcol
  END TYPE sprs2_dp
END MODULE nrtype
```
nr.f90 from Numerical Recipes

MODULE nr INTERFACE SUBROUTINE gauleg(x1,x2,x,w) USE nrtype REAL(SP), INTENT(IN) $:: x1, x2$ REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w END SUBROUTINE gauleg END INTERFACE ! ... the original file contains several other INTERFACES ...

END MODULE nr

 $\texttt{nrutil}.$ f90 $(\text{Here only for: array_copy, arth, assert_eq, nrierror})$ International international international international international international international international
International international international international international international international internationa $\frac{1}{\sqrt{1-\frac{1$

nrutil.
F90 (Here only for: array copy, array

MODULE nrutil international service of the USE nrtype IMPLICIT NONE INTEGER(I4B), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=8 IMPLICIT NONE IM BIGIT NONE
ENTECED (TAD) INTEGER(IFD), PARAMETER :: NPAR_ARTH=16,NPAR2_ARTH=16 INTEGER(I4B), PARAMETER :: NPAR_ARTH=1 $\frac{1}{2}$ $\frac{1}{2}$

 \blacksquare \mathbf{I}_{max} if \mathbf{I}_{max} is a parameter \mathbf{I}_{max} if \mathbf{I}_{max} is a parameter \mathbf{I}_{max} \blacksquare INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8 INTEGER(I4B), PARAMETER :: NPAR_POLYTERM=8 INTERFACE assert_eq INTEGER(I4B), PARAMETER :: NPAR_CUMPROD=88
Integer \blacksquare \mathbf{I}_{max} MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i \blacksquare else

INTERFACE array_copy \dots , \dots , \qquad

MODULE PROCEDURE array_copy_r, array_copy_d, array_copy_i END INTERFACE

Module P asserting $\overline{\mathbf{C}}$...

module procedure asserted ass ! ... l'originale contiene ancora molte altre INTERFACEs....

interiore INTAIN_D CONTAINS

```
\sim \sim arthur, art
EN UNITION UP
\text{min}(n, n), diamolte ancora molte ancora molte ancora molte ancora molte ancora molte ancora molte altre in \text{min}(n, n)SUB{\tt ROUTINE} array\_copy\_r(src,dest,n_copied,n_not_copied)
REAL(SP), DIMENSION(:), INTENT(IN) :: src
```
contains a series of the s
Series of the series of th International international international international international international international international
International international international international international international international internationa end if ...

! and many other FUNCTIONs and SUBROUTINEs MODULE nrutil END MODULE nrutil

Numerical integration, deterministic methods: comparison of errors in 1D

(double precision needed to appreciate the convergence of Gauss-Legendre numerical estimate)