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Satellite image from SeaWIFS showing surface Chl-a concentration on the north-west
coast of Africa around the Canary Islands. Notice the downstream cyclonic and anticy-
clonic eddies formed by the interaction of the Canary Current with the islands and the
coastal upwelling shedding filaments and eddies.

Page 3



Page 4



Contents

1 Introduction 7

2 Fundamental tools 13
2.1 Some basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Shear stresses and Newton’s law of viscosity . . . . . 13
2.1.2 Pressure in a fluid . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 (Gauss’) Divergence theorem . . . . . . . . . . . . . . 13
2.1.5 Stokes’ theorem . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 The material Derivative . . . . . . . . . . . . . . . . . 16
2.2.2 Streamlines and streamfunctions . . . . . . . . . . . . 17
2.2.3 Strain rates . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Vorticity and circulation . . . . . . . . . . . . . . . . . 18
2.2.5 Relative motion near a point . . . . . . . . . . . . . . 18

2.3 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Conservation of mass . . . . . . . . . . . . . . . . . . 18
2.3.2 Conservation of momentum . . . . . . . . . . . . . . 18
2.3.3 Conservation of energy . . . . . . . . . . . . . . . . . 18

2.4 Vorticity Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Motion in a rotating frame of reference . . . . . . . . 20
2.5.2 Thin shell approximation . . . . . . . . . . . . . . . . 22
2.5.3 The β-plane . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Vorticity and Circulation . . . . . . . . . . . . . . . . . . . . . 26
2.7 Kinematical and dynamical approximations . . . . . . . . . . 27

2.7.1 Hydrostatic balance . . . . . . . . . . . . . . . . . . . 27
2.7.2 Hydrostatic approximation . . . . . . . . . . . . . . . 29

5



2.7.3 Shallow water approximation . . . . . . . . . . . . . . 29
2.7.4 Boussinesq approximation . . . . . . . . . . . . . . . 29
2.7.5 Rigid lid approximation . . . . . . . . . . . . . . . . . 29

2.8 Static instability, the parcel method and Buoyancy frequency 29
2.9 Rossby number . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.10 Geostrophic and Thermal Wind Balance . . . . . . . . . . . . 32
2.11 The Rossby radius . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.12 Shallow-water equations . . . . . . . . . . . . . . . . . . . . . 42

3 Air-Sea interactions 45
3.1 Air-sea exchange of heat . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Heat budget at the surface . . . . . . . . . . . . . . . . 46
3.2 Air-sea freshwater flux and surface salinity . . . . . . . . . . 53
3.3 Air-sea forcing of surface density . . . . . . . . . . . . . . . . 54

4 Thermodynamics of Seawater 57
4.1 Thermodynamics of seawater . . . . . . . . . . . . . . . . . . 57
4.2 Temperature, Salinity, Density and Stratification . . . . . . . 58

4.2.1 Mixed layer Depth . . . . . . . . . . . . . . . . . . . . 60

5 Waves in the ocean 61
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Chapter 1
Introduction

We shall discuss the basic principles and dynamics setting up the large-
scale ocean circulation. We will make use of all concepts we have devel-
oped in our previous courses (Geophysical Fluid Dynamics, Physics of the
Ocean) and we will probably see some topics that have been mentioned
in other courses (e.g., Atmospheric dynamics). But, repetita iuvant!. And
those same principles will be applied here to ocean dynamics, perhaps in
a revised way.

The large-scale ocean circulation can be broadly divided into two dif-
ferent kinds, a horizontal surface wind-driven circulation and a meridional deep
buoyancy- and wind-driven circulation, although the distinction is only a bad
approximation as they are intimately connected. This is particularly so for
the meridional overturning which is driven both by buoyancy and wind
at the surface.

Ocean circulation theory is based on the very same principles that drive
atmospheric circulation, and many theories have been borrowed from the
meteorological and atmospheric fields. Of course, the ocean is just another
geophysical fluid, and as such it is governed by all GFD conservation prin-
ciples, forces and instabilities you have been exposed already. There are
two main differences with respect to the atmosphere that are worth point-
ing out now.

• First, contrary to the atmosphere, the ocean is heated and cooled
from above.

• Second, ocean circulation is often constrained by the presence of con-
tinents, and this will alter the structure and dynamics of the flow.

These two peculiarities will explain some of the differences between oceanic

7



Figure 1.1: Net heat and freshwater fluxes computed from the
NCEP/NCAR reanalysis for the period 2010-2019 Kalnay et al. (1996).

and atmospheric circulation, as well as some geographical uniqueness in
ocean circulation.

The ocean is largely driven by surface wind stress (Fig. 3.6) –actually
not the stress but its curl! ... see later–, and common patterns arise in the
surface wind-driven large-scale circulation of all different basins (Fig. 1.3).
They all have just a few common ingredients, and these will qualitatively
explain the main features of the wind-driven gyres. The Southern Ocean
is a rather different story, and it will be discussed separately.

However, buoyancy forcing –the sum of surface heat and freshwater
fluxes– and the latitudinal extent of the ocean basins, will alter the way the
surface of each basin is buoyancy forced, with profound implications for
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Figure 1.2: Surface zonal and meridional components of the wind stress
computed from the NCEP/NCAR reanalysis for the period 2010-2019
Kalnay et al. (1996).

the interior temperature and salinity structure as well as deep circulations
of the oceans. Once we have highlighted the major circulations and their
relations, a clear picture of the interior and meridional circulation will also
appear.

There is a good observational and theoretical understanding of the
major processes responsible for the Meridional Overturning Circulation
(MOC) (Fig. 1.4). This is not the same in each and every basin (Fig. 1.5),
and fundamental differences exist giving rise to shallow and deep circu-
lations, responsible for different degrees of meridional energy and mass
transports. Our present models capture these features reasonably well
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Fig. 14.1 A schema of the main currents of the global ocean. Key: STG – SubTropical
Gyre; SPG – SubPolar Gyre; WBC – Western Boundary Current; ECS – Equatorial Current
System; NA – North Atlantic; SA – South Atlantic; NP – North Pacific; SP – South Pacific;
SI – South Indian; ACC – Antarctic Circumpolar Current; ATL – Atlantic; PAC – Pacific.
The figure is a qualitative, and not quantitative, representation of the actual flow.

From Vallis (2006)

From Vallis (2006)

Figure 1.3: A schema of the main currents of the global ocean [from Vallis
(2006)].

(Fig. 1.6), although many small-scale effects are missing or poorly parame-
terized, and most importantly the variability of this circulation is not well
understood (let alone its future evolution!).

Observations indicate that approximately 90% of extra heat of anthro-
pogenic origin stored in the climate system is taken up by the ocean. As
of today, ocean warming has already led to significant consequences on
ocean circulation, altering ocean biogeochemistry, rising sea level, impact-
ing atmospheric dynamics, melting sea ice and ice sheets. However, a
comprehensive understading of the dynamics, time and spatial scales of
heat redistribution and addition into the ocean is still lacking. Also, feed-
backs between changes in ocean heat content and altered ocean dynamics
on the stability of ice sheets, and ultimately of large-scale ocean currents
regulating our climate, are still to be fully explored both theoretically and
with the aid of climate models. Reducing this knowledge gap and un-
certainties is fundamental for understading and improving future climate
projections.
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Fig. 16.17 A schema of the stratification and overturning circulation obtained by
combining the thermocline models of sections 16.1–16.4 with the model of deep
overturning of section 16.5. Key: DP – Drake Passage; EL – Ekman layer; VT – venti-
lated thermocline; IT – internal thermocline; AABW – Antarctic Bottom Water; AAIW –
Antarctic Intermediate Water; NADW – North Atlantic Deep Water: MW – Mode Water.
The shaded regions mark the main regions of stratification and the Drake Passage.
The real ocean is more complex; see text.

From Vallis (2006)

From Vallis (2006)

Figure 1.4: A schema of the stratification and overturning circulation.
[from Vallis (2006)]

Figure 1.5: A schema of the thermohaline circulation (THC), or the Merid-
ional Overturning Circulation (MOC). [from Kuhlbrodt et al. (2007)]
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Figure 1.6: The global MOC as computed from a Coupled General Circu-
lation Model (CGCM). We clearly see the presence of the North Atlantic
Deep Water cell, the interhemispheric meridional circulation, a locally-
circulating deacon Cell, and two SubTropical Cells. Each meridional cell
is driven by different dynamics and all together set up the global ocean
circulation.
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Chapter 2
Fundamental tools

This chapter will slowly grow with material from the GFD course.

2.1 Some basics

2.1.1 Shear stresses and Newton’s law of viscosity

2.1.2 Pressure in a fluid

2.1.3 Tensors

2.1.4 (Gauss’) Divergence theorem

The theorem relates a volume integral to a surface integral. Consider a vol-
ume V bounded by a closed surface A. Consider an infinitesimal surface
element dA whose outward unit normal is n. The vector ndA has magni-
tude dA and direction n.
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(Instead of using Eq. (2.12), all the components of E in the rotated system can be 
found by carrying out the matrix product CT E C.) The matrix of E in the rotated 
frame is therefore 

The foregoing matrix contains only diagonal terms. It will be shown in the next 
chapter that it represents a linear stretching at a rdte r along one principal axis, and a 
linear compression at a rate -I? along the other; there are no shear strains along the 
principal axes. 

13. Cuuss’ Theorem 

Tbis very useful theorem relates a volume integral to a surface integral. Let V be a 
volume bounded by a closed surface A .  Consider an infinitesimal surface element 
dA, whose outward unit normal is n (Figure 2. IO). The vector n d A  has a magnitude 
d A  and direction n, and we sball write d A  to mean the same thing. Let Q(x) be a 
scalar, vector, or tensor field of any order. Gauss’ theorem states that 

(2.30) 

ndA- dA 

Figum 2.10 Illustration of Gauss’ Ihcorcrn. 
Gauss’ theorem states that the volume integral of the divergence of Q

is equal to the surface integral of the outflow of Q.

∫
v

∂Q
∂xi

dV =
∫

A
dAiQ (2.1)

For a vector Q:

∫
v

∂Qi

∂xi
dV =

∫
A

dAiQ , (2.2)

which is now called the Divergence Theorem. In vector notation

∫
v
∇ · Q dV =

∫
A

dA · Q (2.3)

2.1.5 Stokes’ theorem

The theorem relates a surface over an open surface to a line integral. Con-
sider an open surface A, with bounding curve C. Let dr be an element of
the bounding curve whose direction is that of the tangent.
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14. SlOlCl?#’ I ’ h n m 1  45 

where terms of second order in the increments have been neglected as they will vanish 
in the limits. Carrying out the limits, we obtain 

Hem, the physical interpretation of the divergence as the net outward flux of a vector 
field pcr unit volume has been made apparent by its evaluation through the integral 
definition. 

This lcvel of detail is required to obtain the gradient correctly in these coordinates. 

14. Stokex ’ Theorem 

Stokcs’ theorem relates a surface integral ovcr an open surface to a line integral 
around thc boundary curve. Consider an open surface A whose bounding curve is C 
(Figure 2.1 1 ). Choose one side of the surface to be the outside. Let ds be an element of 
the bounding curve whose magnitude is the length of the element and whose direction 
is that of the tangent. The positive sense of the tangent is such that, when seen from 
the “outside” of the surfacc in the direction of the tangent, the interior is on the left. 
Thcn the theorem stales that 

(2.34) 

which signifies that thc surface integral of the curl of a vector field u is equal to the 
line integral of u along thc bounding curve. 

The line integral of a vector u around a closed curve C (as in Figure 2.1 1) is called 
the “circulation of u about C.” This can be used to define the curl o€ a vector through 

I$ 

Figurc 2.11 lllustrdlion of SLokCs’ thcorcm. Stokes’ theorem states that∫
A
(∇×F) · dA =

∫
C

F · dr (2.4)

the surface integral of the curl of a vector field F is equal to the line integral
of F along the bounding curve. The line integral of a vector around a
closed curve C is the circulation of the field about C.

Prove that div(curl u) = 0, for any vector u.
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2.2 Kinematics

• In the LAGRANGIAN description of motion, one essentially follows
the history of an individual particle. A flow variable F(r0, t) and its
velocity is given by ui = d(ri)/dt

• In the EULERIAN description one focuses on what happens at a spa-
tial point r, so the flow variable is F(r, t).

• In the Eulerian case, d/dt gives the local rate of change of F at each
point r and is not the total rate of change seen by a fluid particle ...

2.2.1 The material Derivative

We seek to calculate the rate of change of F at each point following a par-
ticle of fixed identity.

DF
Dt

=
∂F
∂t

+ ui
∂F
∂xi

(2.5)

The material Derivative DF
Dt is made of (1) the local rate of change at a

given point (zero for steady flows...) and (2) the advective derivative.
∂F
∂t is the local rate of change of F at a given point.
ui

∂F
∂xi

is the advective derivative, it is the change in F as a result of ad-
vection of the particle from one location to another where F is different.
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2.2.2 Streamlines and streamfunctions

The streamline

• At t = t0, streamlines are curves that are tangent to direction of flow.

• For unsteady flows, streamlines change with time.

Let ds = (dx, dy, dz) be an element of arc length along a streamline,
and let u = (u, v, w) be the local velocity vector along that streamline,
then dx/u = dy/v = dz/w.

• Close to a solid boundary, streamlines are parallel to that boundary.

• The direction of the streamline is the direction of the fluid velocity.

• Fluid can not cross a streamline.

• Streamlines can not cross each other.

• Any particle starting on one streamline will stay on that same stream-
line.

• In unsteady flow, streamlines can change position with time.

• Streamlines are a family of curves that are instantaneously tangent
to the velocity vector of the flow. These show the direction a fluid
element will travel in at any point in time.

• Pathlines are the trajectories that individual fluid particles follow.
These can be thought of as a ”recording” of the path a fluid element
in the flow takes over a certain period. The direction the path takes
will be determined by the streamlines of the fluid at each moment in
time.

• For a steady flow, the two are the same.
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The streamfunction

2.2.3 Strain rates

2.2.4 Vorticity and circulation

2.2.5 Relative motion near a point

2.3 Conservation laws

2.3.1 Conservation of mass

2.3.2 Conservation of momentum

2.3.3 Conservation of energy

2.4 Vorticity Dynamics
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2.5 Equations of motion

There can be two kind of forces acting on fluids. Body forces, and we will
restrict our attention, for now, to gravitational force per unit mass

g = −∇(gz) = −k̂
∂(gz)

∂z
= −k̂g (2.6)

and surface forces, which can be normal or tangential to the fluid. Normal
forces will be relate to pressure, whereas tangential forces will be related
to shear stresses.

In order to derive a principle of conservation of momentum we will
start by applying Newton’s law of motion to an infinitesimal element of
fluid. The continuity equation, for an element of fluid of constant density
is

∂ρ

∂t
+∇ · (ρu) = 0 (2.7)

and we multiply this by u:

∂(ρu)
∂t

+
∂(ρu2)

∂x
+

∂(ρuv)
∂y

+
∂(ρuw)

∂z
= fx (2.8)

∂(ρv)
∂t

+
∂(ρvu)

∂x
+

∂(ρv2)

∂y
+

∂(ρvw)

∂z
= fy (2.9)

∂(ρw)

∂t
+

∂(ρwu)
∂x

+
∂(ρwv)

∂y
+

∂(ρw2)

∂z
= fz (2.10)

(2.11)

which for a constant density reduces to

ρ

(
∂

∂t
+ u · ∇

)
u = f (2.12)

If we express our body force per unit volume ρg, we arrive to the
Cauchy equation of motion

ρ
D ui

D t
= ρgi +

∂τij

∂xj
(2.13)

where the stress tensor τij includes all surface forces. Using the constitu-
tive equation for a Newtonian fluid, we now arrive to the Navier-Stokes
equation

ρ
D ui

D t
= ρg −∇p + µ∇2u (2.14)
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which reduces to the Euler equation under the assumption of frictionless
flow

ρ
D ui

D t
= ρg −∇p (2.15)

2.5.1 Motion in a rotating frame of reference

Eq.2.28 is valid for an inertial or fixed frame of reference. But in GFD we
measure positions and velocities relative to a frame of reference fixed on
the surface of the Earth, which rotates w.r.t. to a frame inertial.

Let’s have a frame of reference (x1, x2, x3) rotating at a uniform angular
velocity Ω w.r.t. a fixed frame (X1, X2, X3). Any vector P is represented by

P = P1i1 + P2i2 + P3i3 (2.16)

For a fixed observer, the directions of the rotating unit vectors (i1, i2, i3)
change with time. The time derivatives of P is thus(

dP
dt

)
I
=

d
dt
(P1i1 + P2i2 + P3i3) =

i1
dP1

dt
+ i2

dP2

dt
+ i3

dP3

dt
+ P1

di1
dt

+ P2
di2
dt

+ P3
di3
dt

(2.17)

X1

X2

X3

x1

x2

x3

i2

i3

i1

Ω

Figure 2.1: Coordinate frame (x1, x2, x3) rotating at angular velocity Ω with
respect to a fixed frame (X1, X2, X3).
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For an observer rotating with (x1, x2, x3) the rate of change of P is equal
to the first three terms in Eq.2.17, and so(

dP
dt

)
I
=

(
dP
dt

)
R
+ P1

di1
dt

+ P2
di2
dt

+ P3
di3
dt

(2.18)

Each unit vector i traces a cone with radius sin α, where α is a constant
angle. i changes in time dt as di = sin αdθ which is the length travelled by
the top of i. The rate fo change is thus

di
dt

= sin α

(
dθ

dt

)
= sin αΩ (2.19)

The direction of the rate of change is thus perpendicular to the plane
(Ω, i), hence

di
dt

= Ω × i (2.20)

for any rotating vector i, giving us(
dP
dt

)
I
=

(
dP
dt

)
R
+ Ω × P (2.21)

Applying this rule to the position vector r(
dr
dt

)
I
=

(
dr
dt

)
R
+ Ω × r (2.22)

or
uI = uR + Ω × r (2.23)

Applying this rule to the velocities(
duI

dt

)
I
=

(
duI

dt

)
R
+ Ω × uI (2.24)

(
duI

dt

)
I
=

d
dt

(uR + Ω × r)R + Ω × (uR + Ω × r)

=

(
duR

dt

)
R
+ Ω ×

(
dr
dt

)
R
+ Ω × uR + Ω × (Ω × r)

(2.25)

Hence, accelerations in the two frames are relates as(
duR

dt

)
R
=

(
duI

dt

)
I
− 2Ω × uR − Ω2r (2.26)
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The second term of the r.h.s is the Coriolis acceleration and the last term
the centripetal acceleration. This last term is added to the Newtonian grav-
ity as an effective gravity

g = gn + Ω2r (2.27)

The apparent force Ω2r will be zero at the poles.
The momentum equations are now

D u
D t

= g − 1
ρ
∇p + ν∇2u − (2Ω × u) (2.28)

It is clear that the Coriolis force (−2Ω × u) will deflect a particle to the
right of its direction in the northern hemisphere (right-hand rule). As the
Coriolis force constantly acts normal to the fluid path, it will not accelerate
the particle (in fact, Coriolis does not play any role in the energy equation).

2.5.2 Thin shell approximation

A scale analysis of the continuity equation reveals that, for typical length
scales much larger than typical vertical scales, L ≫ H, horizontal veloci-
ties must be much larger than the vertical ones, U ≫ W.

Now, decomposing the angular velocity vector into its three compo-
nents (Fig.2.2), we have

Ωx = 0
Ωy = Ω cos θ

Ωz = Ω sin θ

The Coriolis term, assuming U ≫ W, has the following components

2Ω × u = 2Ω
[
(−v sin θ)î + (u sin θ) ĵ − (u cos θ)k̂

]
(2.29)

and defining the Coriolis parameter as f = 2Ω sin θ, which is now clearly
twice the angular velocity and hence a (planetary) vorticity

2Ω × u = (− f v)î + ( f u) ĵ − (2Ωu cos θ)k̂ (2.30)

But the vertical component of the Coriolis force, 2Ωu cos θ, is negligible
compared to the dominant terms in the vertical equation of motion, namely
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Ω
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Figure 2.2: Components of the angular velocity vector for a point on the sphere.

the pressure gradient and the gravitational acceleration. Our final set of
momentum equations reduces to

D u
D t

− f v = −1
ρ

∂p
∂x

+ ν∇2u (2.31)

D v
D t

+ f u = −1
ρ

∂p
∂y

+ ν∇2v (2.32)

D w
D t

= −1
ρ

∂p
∂z

− g + ν∇2w (2.33)

Or
D u
D t

+ 2Ω × u = −1
ρ
∇p − g + ν∇2u (2.34)

where ν = µ/ρ is the kinematic viscosity.

2.5.3 The β-plane

A first approximation is to set the Coriolis parameter, f , to a constant
value. This approximation, denoted the f -plane, is useful in some very
idealized studies when the westward propagation of disturbances is not
of interest or it is purposely neglected. But for large-scale dynamics it
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Figure 2.3: A cartesian reference system (x,y,z) and its associated spherical sys-
tem (r, θ, ϕ) around the point (a, θ0, ϕ0). The plane z = 0 (or β-plane) is tangent
to the sphere around the point (a, θ0, ϕ0). The approximation tan(θ − θ0) ≈
(θ − θ0) is well justified for small variations in latitude. On the β-plane, the ro-
tation vector is kΩ sinθ, where sinθ ≈ sinθ0 + (y/a)cosθ0.

is not appropriate, when flows occurring over large horizontal scales are
of interest. Rossby waves depend on variations of f , it is their restoring
mechanism, for example, and the large-scale dynamics of the ocean will
this be affected by latitudinal variations in the Coriolis parameter. An ap-
proximation can be done, however, to make equations more tractable, and
it consists of considering a cartesian plane over which f does vary, so ne-
glecting spherical coordinates.

The β-plane approximation is useful to avoid the sphericity and stay-
ing in a cartesian plane, yet retaining the dynamical effects of sphericity
itself.

The plane z = 0, what will be called the β-plane is tangent to the sphere
in (a, θ0, ϕ0). For small variations in latitude we can approximate tan(θ −
θ0) ≈ θ − θ0. hence, our meridional cartesian coordinate is

y = a(θ − θ0)

z = r − a
x = (ϕ − ϕ0)a cosθ0,

where r is the distance of the fluid from the center of the sphere, θ is the
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Figure 2.4: The Coriolis parameter f and its meridional gradient β as a function
of latitude.

latitude, ϕ the longitude, and a is the radius of the Earth.
Hence, latitude θ is a linear function of y

θ = θ0 +
y
a

. (2.35)

Now, for small variations in latitude we have:

sinθ ≈ sinθ0 + cosθ0
y
a

, (2.36)

as a truncated series around θ0. And we can express f as the following:

f = 2Ωsinθ = 2Ωsinθ0 +
2Ω
a

cosθ0 y = f0 + β y. (2.37)

Where we have introduced β = 2Ω
a cosθ0.

But what is β? We have gone from f = 2Ωsinθ to f = f0 + βy. The
dependence of f on latitude is conserved because of the linear relation-
ship between f and y. This is an important result: we are not working
on spherical coordinates but the dynamical effects of sphericity are re-
tained.

β is called the gradient of planetary vorticity given that:

∂ f
∂y

(θ = θ0) =
1
a

∂ f
∂θ

(θ = θ0) =
2Ω
a

cosθ0 = β. (2.38)

Typical mid-latitude values for f and β are 10−4 s−1 and 10−11 m−1s−1

(Fig. 2.4).
In conclusion, we have the β-plane approximation as

f = f0 + βy (2.39)
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For relatively large areas, with θ varying over a few tens of degrees, be-
tween mid-latitudes and the equator, the tangent plane approximation is
called β-plane. This approximation is only valid if

βy ≪ f0 or
βy
f0

≪ 1. (2.40)

For even smaller variations in θ the f -plane is used, where

f = f0 = 2Ω sinθ0. (2.41)

2.6 Vorticity and Circulation
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2.7 Kinematical and dynamical approximations

2.7.1 Hydrostatic balance

The vertical component (the component parallel to the gravitational force,
g) of the momentum equation is

D w
D t

= −1
ρ

∂p
∂z

− g, (2.42)

where w is the vertical component of the velocity and g = −gk. If the
fluid is static the gravitational term is balanced by the pressure term and
we have

∂p
∂z

= −ρg, (2.43)

which is called the hydrostatic balance, or hydrostasy. Scaling analysis shows
that the hydrostatic balance is the dominant balance within the vertical
momentum equation , so long as the vertical length scales of motion are
much smaller than the horizontal length scales. Such scales are relevant for
large-scale ocean climate modeling, and global ocean models typically as-
sume a hydrostatic balance, and this constitutes a basic assumption of the
primitive equations. Integrating the hydrostatic balance vertically from
the ocean surface η determines the pressure at a point in the ocean column

p(z) = pa + g
∫ η

z
dz′ρ(z′), (2.44)

where pa is the sea surface pressure resulting from external forcing (e.g.,
atmospheric loading, sea ice, ...).

Scaling and aspect ratio

For a Boussinesq fluid, the momentum equations are

D u
D t

+ f × u = −∇ϕ (2.45)

D w
D t

= −∂ϕ

∂z
+ b, (2.46)

where ϕ = p/ρ0 and buoyancy b = −gρ/ρ0. In the case of f = 0 the
horizontal momentum equation reduces to

D u
D t

= −∇ϕ (2.47)
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and a scaling for the horizontal equation is

U
T

∼ Φ
L

, or
LU
T

∼ Φ, or U2 ∼ Φ. (2.48)

Using mass conservation to scale vertical velocities we obtain

∇z · u +
∂w
∂z

= 0. (2.49)

A scaling of this equation is

U
L
+

W
H

= 0 (2.50)

W =
H
L

U = αU (2.51)

where α ≡ H
L is the aspect ratio between the typical horizontal and vertical

scales. The advective terms in the vertical momentum equation scale as

D w
D t

∼ W
T

=
U
L

W =
U
L
(

H
L

U) =
U2H

L2 . (2.52)

Now we can use the scaling for the horizontal and vertical motions, to-
gether with the aspect ratio of their typical scales, to reveal the condition
for hydrostasy.

For hydrostatic balance to hold, the ratio of advective terms to the pres-
sure gradient term in (2.46) must be

|D w
D t |
| ∂ϕ

∂z |
≪ 1 (2.53)

This implies that

|D w
D t |
| ∂ϕ

∂z |
∼ U2H/L2

U2/H
∼

(H
L

)2
≪ 1. (2.54)

In other words, the aspect ratio should be

α2 ≡
(H

L

)2
≪ 1 (2.55)

for the advective terms in the vertical momentum to be neglected. The
hydrostatic balance is then a small aspect ratio approximation.
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2.7.2 Hydrostatic approximation

2.7.3 Shallow water approximation

2.7.4 Boussinesq approximation

2.7.5 Rigid lid approximation

2.8 Static instability, the parcel method and Buoy-
ancy frequency

Consider a stratified ocean and a parcel of fluid initially at rest, and there-
fore in hydrostatic balance. We will focus on vertical displacements and
the restoring force is gravity. Consider a small adiabatic displacement of
the parcel upward by δz, without altering the background pressure field. If
the parcel is now lighter then the local environment, it will feel an upward
pressure gradient force larger than the downward gravitational force, it
will accelerate upwards and will become buoyant. In this case the fluid
is statically unstable. If, instead, the parcel finds itself heavier than its
sorroundings, the downward gravitational force will be greater than the
upward pressure force, the fluid will sink back to its original position and
will oscillate. This condition is statically stable.

Consider an incompressible fluid in which the density of the displaced
parcel is conserved, Dρ/Dt = 0. If the environmental profile is ρ̃(z) and
the density of the parcel is ρ, a parcel displaced to a level z + δz will show
a change in density with respect to the local environment equal to

δρ = ρ(z + δz)− ρ̃(z + δz) = ρ̃(z)− ρ̃(z + δz) = −∂ρ̃

∂z
δz, (2.56)

where the derivative on the right-hand side is the environmental gradient
of density.

If ∂ρ̃
∂z < 0, the parcel will be heavier than its sorroundings and will sink

back in a stable condition.
If ∂ρ̃

∂z > 0, the parcel will be buoyant in a statically unstable fluid.
That is, the stability of a parcel of fluid is determined by the gradient

of the environmental density.
The upward force, per unit volume, on the displaced parcel is

F = −gδρ = g
∂ρ̃

∂z
δz (2.57)
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Figure 2.5: Possible temperature vertical profiles, in the atmosphere or
ocean, giving rise to unstable, neutral or stable conditions.

and the equation of motion of the fluid parcel is thus

ρ(z)
∂2δz
∂t2 = g

∂ρ̃

∂z
δz, (2.58)

or
∂2δz
∂t2 =

g
ρ̃

∂ρ̃

∂z
δz. (2.59)

Static stability measures how quickly a water parcel is restored to its
position in the water column if displaced vertically. If unstable, the water
column has the potential to overturn.

In stable water column conditions ( ∂ρ̃
∂z < 0), the parcel experiences a

restoring force and will oscillate at a given frequency:

∂2δz
∂t2 = −N2δz, (2.60)

where
N2 = −g

ρ̃

∂ρ̃

∂z
, (2.61)

and N is the Brunt-Vaisala frequency. In liquids, it is a good approximation
to replace ρ̃ by ρ0.

If N2 < 0, the density profile is unstable, the parcel continues to as-
cend and convection occurs. This is the condition for convective instabil-
ity. Convection causes fluid parcels to mix and reduces an unstable profile
to neutral stability.
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Question: What is happening with global warming to the stratifi-
cation of the ocean? How can you modify the stratification of the
ocean? Which could be the implications?

Figure 2.6: (a) Climatological potential density in the ocean, (b) its annual
trend, (c) climatological stratification and (d) and its annual trend. Data
are from a multiple-source observations reconstruction (Li et al. Increasing
ocean stratification over the past half-century. Nat. Clim. Chang. 10, 1116-1123
(2020)).
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2.9 Rossby number

We consider the dynamical balance in the horizontal components of the
momentum equation. In the horizontal plane (along geopotential sur-
faces) we find that the Coriolis term is much larger than the advective
terms and the dominant balance is between Coriolis and the horizontal
pressure force. The balance is called geostrophic balance, and it occurs when
the Rossby number is small.

The horizontal momentum equation is

∂u
∂t

+ (v · ∇)u + f × u = −1
ρ
∇z p, (2.62)

where v = (u, v, w) and u = (u, v, 0). A scaling analysis of the second
(U2/L) and third ( f U) terms, where U is the approximate magnitude of
the horizontal velocities and L is a typical length scale over which that
velocity varies, reveals the importance of rotation. The ratio of the sizes of
the advective and Coriolis terms defines the Rossby number:

Ro ≡ U
f L

(2.63)

The Rossby number characterizes the importance of rotation in a fluid.
It is the ratio of the magnitude of the relative acceleration to the Corio-
lis acceleration, and it is of fundamental importance in geophysical fluid
dynamics.

2.10 Geostrophic and Thermal Wind Balance

If the Rossby number is sufficiently small, then the rotation term domi-
nates the nonlinear advection term, and if the time period of the motion
scales advectively (or there are no accelerations) then the rotation term also
dominates the local time derivative. The only term that can then balance
the rotation term is the pressure term, leaving us with

f v ≈ 1
ρ

∂p
∂x

(2.64)

f u ≈ −1
ρ

∂p
∂y

. (2.65)
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Figure 2.7: Schematic of a geostrophically balanced flow with a positive
value of the Coriolis parameter f . Flow is parallel to the lines of constant
pressure. Cyclonic flow is anticlockwise around a low pressure region.
[from Vallis (2006)]

This balance is known as geostrophic balance, and is one of the pillars of
geophysical fluid dynamics. We can now define geostrophic velocities as

f ug = −1
ρ

∂p
∂y

f vg =
1
ρ

∂p
∂x

(2.66)

and for flows with a low Rossby numbers, u ≈ ug and v ≈ vg.
A geostrophic flow is parallel to lines of constant pressure (isobars). If

f > 0, after a pressure gradient is initiated somehow, the fluid starts to
move down the gradient. Then, the fluid experiences the Coriolis force to
the right and therefore swings to the right. The fluid eventually moves
along isobars (along the slope, not down it), with the pressure force down
the slope balanced by the Coriolis force up the slope. In the northern hemi-
sphere, the flow is anticlockwise round a region of low pressure and clock-
wise around a region of high pressure.

Consider now a plane horizontal flow in which density does not vary
along the fluid path (the Boussinesq approximation). In this case the con-
tinuity equation reduces to

∂u
∂x

+
∂v
∂y

= 0. (2.67)
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We can now define a function ψ(x, y, t) such that

u ≡ −∂ψ

∂y
, (2.68)

v ≡ ∂ψ

∂x
, (2.69)

and Eq.2.67 is thus satisfied, and this is called a streamfunction.
Returning to our geostrophic balance, if the Coriolis force is constant

and if density does not vary in the horizontal, the geostrophic flow is hor-
izontally non-divergent

∇z · ug =
∂ug

∂x
+

∂vg

∂y
= 0, (2.70)

and we may define a geostrophic streamfunction, ψg, by ψg ≡ p
f ρ , and

ug ≡ −∂ψ

∂y
, vg ≡ ∂ψ

∂x
. (2.71)

Thermal wind

Thermal wind balance arises when combining the geostrophic and hydro-
static approximations. They are useful in elucidating how temperature
differences in the horizontal can lead to vertical variations in geostrophic
velocities, hence the term thermal wind equations.

Taking the vertical derivative of the geostrophic equations for a Boussi-
nesq fluid

ρ0 f ∂zu = −∂z
∂p
∂y

(2.72)

ρ0 f ∂zv = ∂z
∂p
∂x

. (2.73)

Combining these with the hydrostatic balance, ∂z p = −ρg, and changing
the order of differentiation for p, gives

ρ0 f ∂zu = g ∂yρ (2.74)
ρ0 f ∂zv = −g ∂xρ. (2.75)

These equations represent the thermal wind balance, and the vertical deriva-
tive of the geostrophic wind is the ‘thermal wind’. Thermal wind balance
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Figure 2.8: Schematic of thermal wind balance in the northern hemisphere.
Shown are surfaces of constant density, or isopycnals. Density increases
with depth and latitude, ρ3 > ρ2 > ρ1. The termal wind associated
with this density field is eastward, or out of the page, and decreases with
depth. The same eastward thermal wind velocity would have resulted in
the southern hemisphere, with ρy < 0 and f < 0.

says that the geostrophic velocity has a vertical thermal wind shear in
case where density has a horizontal gradient.

In general, zonally averaged ocean temperature decrease poleward due
to the differential heating received from solar radiation. Neglecting salin-
ity effects on density, this poleward reduction in temperature corresponds
to a poleward increase in density. Also, for a stably stratified fluid, density
increases with depth. In a zonally-averaged flow, ∂xρ = 0, and so thermal
wind reduces to

∂zu =
g

ρ0 f
∂yρ (2.76)

This equation is telling us that, if temperature falls in the poleward direc-
tion, ∂yρ > 0, then the zonally-averaged thermal wind is eastward. Wind
shear also increases as we move upward in the ocean, ∂zu > 0, which
yields a surface intensified zonal velocity field. Thermal wind, although
diagnostic, represents a valid steady state balance of a frictionless rotat-
ing fluid. That is, in the presence of rotation, a flow can exist in steady
state with nonflat isopycnals. Vertical integration of the thermal wind re-
lation, along with knowledge of the geostrophic velocity at a point along
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the integration path, allows for determination of the full geostrophic ve-
locity in terms of density. However, the baroclinic density field (with a
horizontal gradient) is related to the baroclinic component of the velocity
field through thermal wind balance. The barotropic flow component has
zero vertical shear.

2.11 The Rossby radius

The Rossby radius of deformation is a length scale of fundamental impor-
tance in atmosphere-ocean dynamics. It describes the horizontal scale at
which rotation effects become as important as buoyancy effects. For exam-
ple, in the first stage of an adjustment problem, first the disturbance has a
small structure and gravity dominates with a very large pressure gradient.
Later, as the perturbation spreads over a larger horizontal scale, Coriolis
becomes more important and of similar magnitude as the pressure gra-
dient, and thus rotation causes a response that is much different from a
non-rotating case.

Using a geostrophic flow, it is easy to show that the Rossby radius of
deformation, Ld, is

Ld = c/| f | = (gH)1/2/| f | (2.77)

where c is the phase speed of the gravity wave. For the deep ocean, where
H= 4 km and c= 200 m/s, the Rossby radius is about 2000 km. Which is
much larger than depth, so the hydrostatic approximation is valid. How-
ever, the ocean is not only in rotation but also stratified, and so what is
more important is not the barotropic radius of deformation but rather the
baroclinic ones

Ld = cn/| f | (2.78)

where cn are baroclinic gravity wave phase speeds. So the Rossy radius is
directly related to the phase speed of long, baroclinic gravity waves, which
is also a very useful parameter in the study of ocean wave dynamics. A
global atlas of the first baroclinic gravity-wave phase speed, c, has been
computed on a 1-degree global grid from observations (Fig. 2.9) as follows

cn ∼ 1
nπ

∫ 0

−H
N dz (2.79)

where N is the buoyancy frequency.
Now, the first baroclinic Rossby radius, given that c1=1-3 m/s, is Ld ∼10-

30 km with values increasing towards low latitudes (Fig. 2.10). Mesoscale
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eddies have the size of the first baroclinic Rossby radius, therefore in or-
der to resolve mesoscale eddies and associated fluxes, ideally an ocean
model should have at least two grid points within Ld. It is clear from
Fig. 2.11 that standard global ocean model can resolve mesoscale fluxes
up to ∼25◦, poleward of that latitude fluxes need to be parameterized.
Benefits of having fine-resolution ocean models is illustrated in Fig. 2.12,
where eddies and filaments are ubiquitous in the fine-resolution version
of the model whereas a laminar ocean is simulated in the (standard!) 1◦

version.
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Figure 2.9: A global map of the first baroclinic gravity wave phase speed
and its zonal mean. [data from Chelton et al., 1998]
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Figure 2.10: A global map of the first baroclinic Rossby radius of deforma-
tion and its zonal mean. [data from Chelton et al., 1998]

Page 39



of spin-up from climatology. At the coarse resolution that is typical
of the ocean components of CMIP5 coupled climate models (nom-
inally 1! resolution), an ocean model only resolves the deformation
radius in deep water in a narrow band within a few degrees of the
equator; any important extratropical eddy effects will need to be
parameterized. At a much higher resolution, such as a 1/8! Merca-
tor grid, the deformation radius is resolved in the deep ocean in the
tropics and mid-latitudes, but even in this case eddies are not re-
solved on the continental shelves or in weakly stratified polar lat-
itudes. An unstructured and adaptive grid ocean model could help
to address this issue, but such models are not yet in widespread
use for global ocean climate modeling, and even then computa-
tional speed may dictate the use of models that do not resolve
mesoscale eddies everywhere.

In this paper, a series of numerical simulations of a variant of
the Phillips (1954) model of baroclinic instability are used to
examine the effects of resolution on a numerical model’s ability
to exhibit the net overturning circulation driven by mesoscale ed-
dies. The effects of a commonly used parameterization of eddy ef-
fect, both on the models’ explicitly resolved eddies and on the net
overturning, are examined. Based on these results, a simple pre-
scription is offered for the typical situation in global ocean mod-
els, where eddies are resolved in only part of the domain and in
that portion it is desired that the model be allowed to explicitly
simulate their effects, but in the remainder of the domain that
eddies be entirely parameterized. Specifically, the eddy diffusivi-
ties should be multiplied by a ‘‘resolution function’’, ranging from
0 to 1, of the ratio of the baroclinic deformation radius to the
model’s effective grid spacing, eD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2ð Þ=2

p
. The resolu-

tion function that works best for the cases presented here rapidly
makes a transition from 1 when this ratio is greater than a value
of about 2 (the exact value is not very important and can be cho-
sen to be higher) to 0 for larger values. In the idealized case pre-
sented here, this prescription is found to give a reasonable
representation of the net eddy-driven overturning over a wide
range of resolutions.

2. The test configuration and model

Phillips (1954) analyzed the baroclinic instability that arises in
a simple two-layered quasigeostrophic model of a geostrophically
sheared flow in a reentrant channel. This problem has the advan-
tage that many of the properties of the eddies, including necessary
conditions for the growth of instabilities, the growth rate, energet-
ics and vertical structure of the exponentially growing linear
modes can be calculated analytically, as has been documented in
many textbooks on geophysical fluid dynamics (e.g. Pedlosky,
1987; Vallis, 2006).

This study examines instabilities of a stacked shallow water
variant of the Phillips problem, which is described by the momen-
tum and continuity equations:
@un

@t
þ f þ k̂ %r& un

" #
& un ¼ 'r Mn þ

1
2

unk k2
$ %

'r % T' dn2cD u2k ku2; ð1Þ
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@t
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" #
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" #h i
:
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Here un is the horizontal velocity in layer n, where n = 1 for the
top layer and n = 2 for the bottom layer. hn ¼ gn'1=2 ' gnþ1=2 is the
thickness of layer n, which is bounded above and below by inter-
faces at heights gn'1=2 and gnþ1=2. These equations are solved in a
2000 m deep channel that is 1200 km long and reentrant in the
x-direction, and 1600 km wide in the y-direction with vertical
walls at the northern and southern boundaries. The Coriolis param-
eter, f, varies linearly in the y-direction between 6.49 & 10'5 s'1

and 9.69 & 10'5 s'1, following the common b-plane approxima-
tion. The horizontal stress tensor, T, is parameterized with a shear
and resolution dependent Smagorinsky biharmonic viscosity (Grif-
fies and Hallberg, 2000). The Montgomery potentials,
Mn ¼ p=q0 þ gz, in the two layers are given by a vertical integration
of the hydrostatic equation, so that

Fig. 1. The horizontal resolution needed to resolve the first baroclinic deformation radius with two grid points, based on a 1/8! model on a Mercator grid (Adcroft et al., 2010)
on Jan. 1 after one year of spinup from climatology. (In the deep ocean the seasonal cycle of the deformation radius is weak, but it can be strong on continental shelves.) This
model uses a bipolar Arctic cap north of 65!N. The solid line shows the contour where the deformation radius is resolved with two grid points at 1! and 1/8! resolutions.

R. Hallberg / Ocean Modelling 72 (2013) 92–103 93

Figure 2.11: The oceanic resolution needed to resolve the Rossby Radius
of deformation in an ocean model [from Hallberg et al., 2013].

Figure 2.12: The same ocean model at different horizontal resolutions, in-
creasing from right to left.
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Let’s now go a little ahead of ourselves. Consider that the Corio-
lis parameter is not constant and is actually a function of latitude
f (y). The nondivergent condition ∇ · ( f u) = 0 is satisfied by the
geostrophically balanced flow. Cross-differentiating the geostrophic
equations (2.66) gives

∂ f
∂y

vg + f∇z · ug = 0 (2.80)

Using mass continuity leads to

βvg = f
∂w
∂z

, (2.81)

where β ≡ ∂ f
∂y . This is a geostrophic vorticity balance, also called

Sverdrup balance. In a Sverdrup balance, the vertical velocity re-
sults from an external agent, most notably wind stress. It states that
the vertical shear in the vertical velocity balances a meridional cur-
rent, with the Coriolis parameter f and the planetary vorticity gra-
dient β determining the sense and strength of the meridional flow.
A vertical velocity shear arises when there is a nonzero curl in the
wind stress acting on the ocean surface. Vorticity is then transferred
to the ocean via frictional effects causing Ekman pumping or suction.
These effects alter the vertical structure of the vertical velocity and,
through Sverdrup balance, induce a meridional flow.
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2.12 Shallow-water equations

To describe large-scale oceanic, and atmospheric, motions, where the hor-
izontal scale is much larger than the vertical scale, we can use a set of
simplified equations that retain the necessary ingredients of the fluid mo-
tion but use some useful approximations. We will thus consider a fluid
in hydrostatic balance of constant density and, for simplicity, we will also
consider a flat bottom. The necessary condition of the shallow-water equa-
tions is that the horizontal length scale must be much larger than the ver-
tical scale over which the fluid develops so that L >> H.

If the fluid is in hydrostatic balance

∂p
∂z

= −ρg. (2.82)

Then the total pressure will be

p(x, y, z, t) = −ρgz + p′. (2.83)

Pressure must vanish at the surface, so that p = 0 at z = η

p = p0 + p′ = 0 (2.84)

and at z = η we have
p′ = ρgη (2.85)

Our total pressure will then be

p(x, y, z, t) = ρg(η(x, y)− z) (2.86)

This means that the horizontal gradient of pressure, and the flow, is inde-
pendent of depth

∇p = ρg∇η (2.87)

and the horizontal momentum equations reduce to

D u
D t

= −1
ρ
∇p = −g∇η (2.88)

We can now easily add rotation to our shallow-water momentum equa-
tions

D u
D t

+ f × u = −1
ρ
∇p = −g∇η (2.89)

The continuity equation is obtained by the mass balance within an in-
finitesimal column of fluid. The mass flux passing through a section of the
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Figure 2.13: Schematic of a flat-bottomed shallow-water system and mass
balance within a column of fluid.

column is Fm = ρu(H + η)δy and the difference between the fluxes into
and out of the section is given by

δxδy
∂

∂x
[ρu(H + η)] (2.90)

Considering the total volume, the net rate of change is

∂h
∂t

+
∂

∂x
[u(H + η)] +

∂

∂y
[v(H + η)] = 0 (2.91)

which is the new continuity equation for the shallow-water system

∂h
∂t

+
∂

∂x
(uh) +

∂

∂y
(vh) = 0 (2.92)

∂h
∂t

+∇ · (uh) = 0 (2.93)

and if the perturbation is small and H is constant, mass continuity reduces
to the linear equation

∂η

∂t
+ H∇ · u = 0 (2.94)

If there is flux by advection this is balanced by a net increase in mass and
an increase in height, giving rise to a vertical velocity, so that the mass
convergence is balanced by the increase in height allowing for a dynami-
cal surface elevation. This will be the basis for the propagation of waves
within the rotating shallow-water system.
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Exercices

1. Use ϕ = p/ρ0 and the definition of buoyancy b = −gρ/ρ0 to rewrite
the hydrostatic balance and thermal wind equations.

2. Where is thermal wind velocity directed in the southern hemisphere,
considering a poleward increasing (decreasing) density (tempera-
ture)? (see Fig. 2.14)

3. How is thermal wind shear changed as we approach the poles?

Figure 2.14: Zonal-mean potential density in the latitudes of the Drake
Passage.
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Chapter 3
Air-Sea interactions

3.1 Air-sea exchange of heat

About half the solar energy reaching Earth is absorbed by the ocean and
land, where it is temporarily stored near the surface. Only about a fifth
of the available solar energy is directly absorbed by the atmosphere. Of
the energy absorbed by the ocean, most is released locally to the atmo-
sphere, mostly by evaporation and infrared radiation. The remainder is
transported by currents to other areas especially mid latitudes. Note that
heat is the amount of thermal energy transferred from one body to another
because of the temperature difference between those bodies.

Heat lost by the tropical ocean is the major source of energy needed to
drive the atmospheric circulation. And, solar energy stored in the ocean
from summer to winter helps ameliorate Earth’s climate. The thermal en-
ergy transported by ocean currents is not steady, and significant changes
in the transport, particularly in the Atlantic, may have been important
for the development of the ice ages. For these reasons, oceanic heat bud-
gets and transports are important for understanding Earth’s climate and
its short and long term variability.

Changes in energy stored in the upper layers of the ocean result from a
local imbalance between input and output of heat through the sea surface.
This transfer of heat through the surface is called a heat flux. The flux of
heat and water also changes the density of surface waters, and hence their
buoyancy. As a result, the sum of the heat and water fluxes is often called
the buoyancy flux.

The flux of energy to deeper layers is usually much smaller than the
flux through the surface. And, the total flux of energy into and out of the
global ocean must be zero, otherwise the ocean as a whole would heat up
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Figure 3.1: Long-term means of surface net heat flux. Positive values indicate
a flux into the ocean. Data from the NCEP/NCAR reanalysis (Kalnay et al.,
1996).2019 only!

or cool down. The sum of the heat fluxes into or out of a volume of water
is the heat budget.

3.1.1 Heat budget at the surface

The major terms in the budget at the sea surface are:

1. insolation, Qsw, the flux of sunlight into the sea. Represents the ra-
diative heat flux from the incoming solar radiation minus that re-
flected. The average value of incoming solar radiation at the top of
Earth’s atmosphere is 342 W m−2, although this value varies con-
siderably with latitude and season. Some of the solar radiation is
absorbed by the atmosphere or reflected back to space by clouds and
aerosols, never reaching the ocean. Furthermore, the ocean doesn’t
absorb all of the shortwave radiation that reaches its surface; some is
also reflected back to space. The albedo α describes how much radi-
ation is absorbed versus reflected. Therefore, the shortwave heating
is given by

Qsw = (1 − α)Qinc
sw . (3.1)

The net solar heat input at the sea surface ranges 250 W/m2 in the
tropics to 50 W/m2 at high latitudes. This differential solar heating
over the globe is the powerhouse of the atmosphere and ocean.
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2. Net Infrared Radiation, Qlw, net flux of infrared radiation from the
sea. It is the radiative heat flux over the range of wavelengths emit-
ted from the sea surface, dominated by infrared radiation, so it is
negative. Because of its much lower temperature, the earth emits
radiation in the longwave (i.e. infrared) band. On a global scale,
emission is the main way the planet balances the incoming solar
radiation to maintain its thermal equilibrium. The power of emit-
ted radiation is strongly dependent on temperature; specifically, the
Stefan-Boltzman law states that

Qlw = −σT4. (3.2)

The fact that Qlw is negative definite means that longwave emissions
acts to cool the ocean.

3. Sensible Heat Flux, Qsh, the flux of heat out of the sea due to con-
duction. Turbulent transfer of heat across the sea surface as a func-
tion of the air-sea temperature difference. Radiative fluxes transmit
heat energy over long distances, e.g.from the sun to the earth. Sen-
sible heat exchange instead depends on direct molecular contact be-
tween air and water. The molecules of the two fluids bump against
each other, thereby exchanging heat energy. When the ocean and
air temperature are the same, the sensible heat flux is therefore zero.
When they differ, heat is exchanged in such as way as to homogenize
the temperature. This is analogous to the phenomenon of “Newto-
nian cooling” commonly studied in introductory physics courses.

The rate of exchange is highly dependent on the sea state, and in par-
ticular on the winds, which generate breaking waves and turbulence.
It is easy to imagine how breaking waves enhance the exchange of
heat: they literally pull air down into the water (bubbles) and splash
water up into the air (sea spray). It is much harder to quantify this
process mathematically. Nevertheless, laboratory experiments and
field campaigns have permitted us to develop empirical formulas to
do so:

Qsh = ρaCa
pCH|ua

10 − uo|(Ta
10 − To) (3.3)

All of the complexity and difficulty of turbulent air-sea exchange is
absorbed into the parameter CH.

The annual mean contribution of Qsh to Q is almost negligible. This
is because, on average, the T and Ta

10 are very close. There is, how-
ever, a strong seasonal cycle in sensible heat exchange. Because of
the large ocean heat capacity, the ocean is usually colder than the
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air in summer and warmer than the air in the winter. This drives
important seasonal changes in circulation

4. Latent Heat Flux, Qlh, the flux of heat carried by evaporated water.
Turbulent transfer of evaporated water, and heat is used to enable
the phase change from liquid to vapour. This process requires ther-
modynamic energy and therefore extracts heat from the ocean. The
latent exchange nearly always dominates over the sensible exchange.

Qlh = −LeE, (3.4)

where E is the evaporation rate and Le is the latent heat of vaporiza-
tion. The latent heat flux always cools the ocean

5. Advection Qadv, heat transported by ocean currents.

Conservation of heat requires:

Q = Qsw +Qlw +Qsens +Qlatent +Qadv (3.5)

where Q is the resultant heat gain or loss. Units for heat fluxes are W/m2.
The product of flux times surface area times time is energy in joules.

There is no local heat balance, instead there is a net heating gain over
the tropical regions and a localised loss of heat at high latitudes. To keep
the ocean in a steady state, ocean circulation must therefore transport heat
from equator to pole (Qadv).
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Figure 3.2: Long-term means of net surface shortwave, net surface longwave
radiation, surface sensible and latent heat fluxes. Positive values indicate a flux
into the ocean. Data from the NCEP/NCAR reanalysis (Kalnay et al., 1996).2019
only!

Figure 3.3: The zonal-mean of net surface shortwave and net surface longwave
radiation, surface sensible and latent heat fluxes, and the net heat flux. Positive
values indicate a flux into the ocean. Data from the NCEP/NCAR reanalysis
(Kalnay et al., 1996).2019 only!
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Mixed layer heat budget equation

In general, two physical processes can cause H to vary over time within a
surface layer of the ocean: an exchange of heat with the atmosphere and
advection of heat within the ocean:

∂H
∂t

= Q− u · ∇H, (3.6)

where Q = Qsw +Qlw +Qsens +Qlatent
The heat content, per unit area, is

H = hρCpT. (3.7)

Now considering ρ ∼ ρ0 within the mixed layer and h to be constant,
these heat fluxes drive a temperature change over a surface mixed layer
given by

DT
Dt

=
Q

ρCph
− u · ∇T (3.8)

Annual gain in heat in the tropics and loss at high latitudes is offset by
an ocean heat transport, generally directed poleward, Qadv. Consider the
case in which Q = 0, so that temperature advection is the only remaining
process causing a change in T in the mixed layer

DT
Dt

= −u · ∇T = −u
∂T
∂x

− v
∂T
∂y

− w
∂T
∂z

. (3.9)

So far we have considered h to be a constant, but the thickness of the
mixed layer varies in time, mostly through heating and cooling at the sur-
face and turbulent wind mixing. Using Fick’s laws of diffusion

Fx = −A
∂C
∂x

, (3.10)

where Fx is the flux in the x direction, A is a diffusivity coefficient. Also,
the time rate of change of a concentration due to diffusive fluxes will be
proportional to the second spatial derivative of the concentration

∂C
∂t

= A
∂2C
∂x2 , (3.11)

or
∂C
∂t

= A∇2C. (3.12)
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This is our starting point for the parameterization of ocean mixing, where
C is any physical property and A is the efficiency of turbulent eddies. A
local temperature change due to turbulent mixing by eddies is

∂T
∂t

= K∇2T . (3.13)

What is the value of K = (Kx, Ky, Kz)? Difficult question, but Kh >>
Kz reflecting the fact that the ocean is stably stratified in the vertical, and
mixing along isopycnals requires less work than diapycnal mixing. The
contribution to the ocean mixed layer heat budget by turbulent mixing is
thus

∂T
∂t

= Kh∇2
hT + Kz

∂2T
∂z2 . (3.14)

Turbulent mixing is important in the upper ocean and can significantly
modify the surface temperature. When mixing occurs, for example be-
cause of strong winds reaching the depth h, water from below the mixed
layer can be entrained into the mixed layer, resulting in deepening of the
mixed layer and a change in its temperature. The vertical velocity, called
entrainment velocity we is

we =
∂h
∂t

+ wz=h, (3.15)

representing both deepening of the mixed layer and an upwelling velocity.
Hence, both entrainment processes are important in the vertical mixing of
temperature. Also, neglecting horizontal components

DT
Dt

= −w
∂T
∂z

= −we
∆T
h

, (3.16)

and as the mixed layer gets shallower, small deepening or modest up-
welling will result in large temperature tendencies.

The total heat budget for a mixed layer is

DT
Dt

=
Q

ρCph
− u · ∇T + Kh∇2

hT + Kz
∂2T
∂z2 (3.17)

Page 51



(a) The change in temperature ∆T of the water is related to change
in energy ∆E through:

∆E = Cpm∆T (3.18)

where m is the mass of water being warmed or cooled, and Cp is the
specific heat of sea water at constant pressure, Cp ∼ 4.0× 103 J kg−1

K−1. Thus, 4,000 Joules of energy are required to heat 1.0 kg of sea
water by 1.0◦K.
Estimate how many Joules are required to heat 1.0 kg of air by 1.0◦K.

(b) Estimate the thickness of the ocean that holds as much heat as
the overlying atmosphere, where the amount of heat H required to
raise the temperature of the atmosphere or ocean by ∆T is given by

H = ρCp AD∆T, (3.19)

where ρ is density, Cp is heat capacity, A is horizontal area and D is
the vertical scale. Assume ρ ∼ 1 Kg m−3 for the atmosphere and 103

for the ocean, Cp ∼ 1000 J kg−1 K−1 for the atmosphere and 4000 for
the ocean, D of 10 km for the atmosphere, ∆T = 1 K and A = 1m2.
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3.2 Air-sea freshwater flux and surface salinity

The mass of salt Ms in a volume of seawater, per unit area, is

Ms = ρhS, (3.20)

and tendencies in the mass will be expressed as

∂Ms

∂t
= ρh

∂S
∂t

. (3.21)

But the salt itself is not exchanged with the atmosphere, only freshwater,
so a mass flux of salt is not very practical nor useful.

Fresh water is exchanged between the atmosphere and ocean mainly
via precipitation P and evaporation E , but also from river runoff R. Units
for the freshwater flux are m y−1 or mm d−1, from the volume flux of fresh
water (m3 y−1) exchanged per unit area (m2). Transfer of fresh water from
the ocean to the atmosphere will increase the concentration of salts in the
surface mixed layer of the ocean.

We define a virtual mass flux of salt as (E − P)S

D S
D t

=
(E − P)

ρh
S − u · ∇S. (3.22)

Similarly to the heat budget, we can write

DS
Dt

=
(E − P)

ρh
S − u

∂S
∂x

− v
∂S
∂y

− we
∆S
h

+ Kh∇2
hS + Kz

∂2S
∂z2 (3.23)

Figure 3.4: Precipitation and Evaporation fluxes computed from the
NCEP/NCAR reanalysis for the period 2010-2019 Kalnay et al. (1996).
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3.3 Air-sea forcing of surface density

The combination of surface heat and freshwater fluxes alters the surface
density: warming or freshening will lighten surface waters, while cool-
ing and evaporation will increase surface density. The forcing of surface
density is thus

D = −αT

Cp
Q+ ρβSS(E − P) (3.24)

with units of mass per unit area and unit time, and αT is the density expan-
sion coefficient for temperature, βS is the density contraction coefficient for
salinity, both from the linearized equation of state

∆ρ

ρ
= −αT∆T + βS∆S, (3.25)

with αT = − 1
ρ

∂ρ
∂T and βS = 1

ρ
∂ρ
∂S .

This surface forcing is also a buoyancy flux −gD/ρ, with units of m2

s−3 and perhaps more useful. Which perturbation is more important in
generating density changes? Thermal or saline? It depends on the ambi-
ent temperature. From the linearised equation of state, the relative con-
tribution of ∆T and ∆S are measured by αT and βS, or their ratio αT/βS,
for given temperature and salinity changes, which depends strongly with
temperature (the ratio increases with temperature). Hence, a tempera-
ture perturbation will have a larger effect on density in warm waters,
and a salinity perturbation becomes more important in controlling den-
sity changes in cold waters.

Figure 3.5: Net freshwater fluxes computed from the NCEP/NCAR re-
analysis for the period 2010-2019 Kalnay et al. (1996).
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Figure 3.6: Surface zonal and meridional components of the wind stress
computed from the NCEP/NCAR reanalysis for the period 2010-2019
Kalnay et al. (1996).
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Chapter 4
Thermodynamics of Seawater

4.1 Thermodynamics of seawater
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4.2 Temperature, Salinity, Density and Stratifica-
tion

Figure 4.1: Climatological mean (2005-2012) Sea Surface Temperature and Sea
Surface Salinity for the global ocean from in situ profile data (World Ocean Atlas
2013 version 2) at 0.25 degree horizontal resolution.
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Figure 4.2: Zonal-mean of the climatological (2005-2012) Temperature and
Salinity for the Atlantic Ocean at 30W and Pacific Ocean at 170W from in situ
profile data (World Ocean Atlas 2013 version 2) at 0.25 degree horizontal resolu-
tion.
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4.2.1 Mixed layer Depth

The term ’mixed’ refers to a given physical parameter of the ocean state
(e.g. temperature, density, ...) that is assumed to be mixed and homoge-
neous to a certain level (e.g. regarding some space/time scales), from the
surface down to the considered MLD. Here we want to estimate mixed
layer over at least a daily cycle, and no more than a few days. This repre-
sents the depth over which surface fluxes have been recently mixed and in-
tegrated and is a characteristic timescale of air-sea interactions. The mixed
layer depth is a thus a Density-Mixed Layer Depth, or Isopycnal Layer
Depth.

The surface MLDs are estimated directly on individual profiles with
data at observed levels. MLD is defined through the threshold method
with a finite difference criterion from a near-surface reference value. A
linear interpolation between levels is then used to estimate the exact depth
at which the difference criterion is reached. The reference depth is set at
10 m to avoid a large part of the strong diurnal cycle in the top few meters
of the ocean. The fixed criterion in density is 0.03 kg/m3 difference from
surface:

MLD = depth where(σ0 = σ0(10m) + 0.03 kg m−3). (4.1)

See de Boyer Montegut et al. JGR 2004 for further details about the choice
of the criterion).

Figure 4.3: Mixed layer Depth (in m) computed from two different datasets (de
Boyer Montegut, 2023 and GOSML) for March and September.

Page 60



Chapter 5
Waves in the ocean

In this chapter we describe the general solution and dynamics of shallow-
water waves and try to put them into a wider context, emphasizing their
role in the ocean circulation and the coupled ocean-atmosphere system.

We will look for wave solutions of the shallow-water equations on the
f-plane and β-plane. A few solutions will appear, some have already been
discussed in different contexts, and some are new.

5.1 Poincaré Waves

We start by linearizing our shallow-water equations for a fluid h = H + η
over a state at rest

u = u′ (5.1)
h = H + η (5.2)

so that our equations, after eliminating higher order terms, reduce to

∂u
∂t

− f0v = −g
∂η

∂x
(5.3)

∂v
∂t

+ f0u = −g
∂η

∂y
(5.4)

∂η

∂t
+ H∇ · u = 0 (5.5)

A dispersion relation can now be obtained by looking for wave solutions
of the type

(u, v, η) = (u0, v0, η0)ei(kx+ly−ωt) (5.6)
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into our linearized equations:

−u0iω − f0v0 = −gη0ik (5.7)
−v0iω + f0u0 = −gη0il (5.8)

−η0iω + H(iku0 + v0il) = 0 (5.9)

Non-trivial solutions of the system exist only if the determinant is equal
to zero, so that ∣∣∣∣∣∣

−iω − f0 gik
f0 −iω gil

ikH ilH iω

∣∣∣∣∣∣ = 0 (5.10)

and this is true if
ω[ω2 − f 2

0 − gH(k2 + l2)] = 0 (5.11)

Now, there are a few interesting possible solutions for the frequency ω.
The first case is

ω = 0 (5.12)

This solution describes a time-independent flow and the equations de-
scribe a geostrophically balanced flow.

The second possible solution is if

ω2 = f 2
0 + c2(k2 + l2) (5.13)

where c = (gH)1/2 is the gravity wave phase speed. The dispersion re-
lation describes wave solutions of superinertial flow (ω > f0) which are
called Poincaré waves. From this solution we can highlight three possible
limiting cases (see Fig. 5.1).

First, the limit of no rotation, when f0 = 0. The solution reduces to
ω2 = c2K2 and the frequency solutions are

ω = ±Kc (5.14)

where K2 = (k2 + l2), which describe a classical gravity wave.
Second, the short wave limit, when K2 ≫ f 2

0 /(gH), which gives

ω2 = c2K2 (5.15)

again, the dispersion relation is that of the non-rotating case with phase
speed c. This is because

(2π)2

λ2 ≫ f 2

gH
2π

λ
≫ f

c
λ ≪ (gH)1/2

f
2π (5.16)
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so that Ld ≫ λ, where Ld is the Rossby radius Ld = (gH)1/2/ f . Basically,
this solution looks like a gravity wave in a rotating case.

Third, the long wave limit, when K2 ≪ f 2
0 /(gH). In this case we have

ω2 = f 2
0 (5.17)

and therefore the Rossby radius is much smaller than the wave length,
Ld ≪ λ. In this limiting case, there is no space dependency, k = l = 0, and
the surface elevation anomaly is also zero η = 0. The solution is

∂u
∂t

− f v = 0 (5.18)

∂v
∂t

+ f u = 0 (5.19)

and these are called inertial oscillations, circulating at the planetary fre-
quency ω = f .

Figure 5.1: Dispersion relation for Poincarè and Kelvin waves. The frequency is
scaled by f and the wavenumber by Ld. The black dot marks the inertial oscilla-
tions regime and the ω = 0 is the geostrophic case.
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5.2 Kelvin Waves

Kelvin waves are a particular solution of the shallow water equations de-
scribing a gravity wave that exists in a rotating frame and with the help of
lateral boundaries. We could show Kelvin waves propagating in a chan-
nel, with two parallel boundaries, but for a start we will consider the case
of a single lateral boundary. The first assumption is that, if u = 0 at the
boundary, we could simply consider the zonal component of the velocity
zero everywhere. The meridional component is not zero at the boundary,
because the flow is frictionless. The linearized shallow water equations
are

− f0v = −g
∂η

∂x
(5.20)

∂v
∂t

= −g
∂η

∂y
(5.21)

∂η

∂t
+ H

∂v
∂y

= 0 (5.22)

Continuity becomes, after differentiating with respect to y

∂η

∂t∂y
= −H

∂2v
∂y2 (5.23)

and using the momentum equation

∂2v
∂t2 = gH

∂2v
∂y2 (5.24)

which is the standard wave equation with phase speed c = (gH)1/2. The
solution to this is

v = V1 cos k(y − ct) + V2 cos k(y + ct) (5.25)

and the wave propagates along the meridional boundary. Substituting this
solution into the momentum equation we obtain a solution for η

η = V1
c
g

cos k(y − ct)− V2
c
g

cos k(y + ct) (5.26)

which describes a propagating wave in terms of surface elevation. The
solution has been found for both v and η with no Coriolis term: this has
the characteristics of a non-rotating shallow water wave. The velocity is
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Figure 5.2: For a system bounded to the west (x positive) the wave propagates in
the negative y direction, i.e. to the south. If x is negative this reverses so on the
eastern side of the basin the Kelvin wave propagates northwards. In the northern
hemisphere a Kelvin wave will keep the coast to its right as it pushed against it by
the Coriolis force.

in geostrophic balance with the pressure field, although it is a wave and
ω ∼ f .

The solutions in the x-direction are

V1 = e( f0/c)x (5.27)

V2 = e−( f0/c)x (5.28)

and remember that f0/c = L−1
d . The first solution grows exponentially

for positive x away from the meridional boundary, which is not physically
possible. We are then left with the following set of solutions

v = e−x/Ld cos k(y + ct) (5.29)
u = 0 (5.30)

η = −e−x/Ld
c
g

cos k(y + ct) (5.31)

= − (H/g)1/2 e−x/Ld cos k(y + ct) (5.32)
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These are Kelvin waves. They are trapped by the meridional boundary
and decay exponentially away from it. The trapping spatial scale is given
by the Rossby radius, and for f0 positive the boundary is at the right of
the wave propagation. Kelvin waves are balancing f against the wall,
which could be a topographic boundary or a waveguide such as the equa-
tor (Fig. 5.2).

Barotropic Kelvin waves are also tidal waves, propagating around an
amphidromic point .
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5.3 Planetary, or Rossby, waves

The time-dependent ocean circulation has an important impact on our cli-
mate due to the ocean large heat capacity. Any abrupt change, the intrinsic
variability and possible variations of the general circulation caused by the
atmospheric influence is fundamental in climate studies. Moreover, the
oceans are no longer considered passive in the atmosphere-ocean system,
but contribute to the production of the climate low-frequency variability
at interannual to decadal time scales (Talley, 1999; Dewar, 2001; Pierce et al.,
2001).

The discovery of Planetary waves by the solution of Laplace’s equation
as the second class waves dates back to the late nineteenth century by
Hough (1897). Later C.G. Rossby pointed out the characteristic of these
waves, hence they carry his name and are also called Rossby waves.

Since then, Rossby wave theory is well known (Gill, 1982; Dickinson,
1978; Leblond and Mysak, 1981) and is usually applied to an ocean at rest
with uniform depth. Rossby waves owe their existence to the meridional
variation of the Coriolis force (the β effect) and therefore propagate fol-
lowing an east-west waveguide, as the conservation of potential vorticity
is their restoring force. These kinds of waves, whose frequencies are con-
siderably lower than those of gravity waves and are subinertial (ω ≪ f ),
are also sometimes called quasigeostrophic waves, with a dynamic evolu-
tion depending on the departure from geostrophy.

The generation of these waves is still not completely understood but
the main forcing is wind stress and buoyancy forcing, though the latter is
thought to act in a minor way, and upwelling-downwelling on the eastern
boundary (Leblond and Mysak, 1981; Gill, 1982).

The oceans are forced at the surface by the wind frictional stress and
Rossby waves appear to play a fundamental role in redistributing and dis-
persing large-scale time-varying energy in the ocean. The propagation
of Rossby waves towards the ocean interior under the influence of wind
stress results in establishing a Sverdrup balance in the basin, accumulating
energy in the western boundaries and intensifying currents there (Ander-
son and Gill, 1975, 1979).

Due to the ubiquitous presence of Rossby waves in the world oceans
they influence ocean gyres and air-sea fluxes at all latitudes, affecting in
turn the atmospheric heat transport and circulation. They are believed
to provide teleconnections between the equatorial and middle latitudes
regions (Galanti and Tziperman, 2003) as well as transhemispheric and in-
terbasin communications (Cessi and Otheguy, 2003). Other major effects are
the maintenance and intensification of western boundary currents, trans-
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port of a large amount of heat and, because of their time-scale, they play a
key role in the climate system.

Rossby waves are very long waves so that the f -plane is not a good
approximation anymore and we will build our solutions on the β-plane.
The frequency is going to be subinertial, ω ≪ f , and so they are close to
geostrophy.

Our set of equations is

∂u
∂t

− ( f0 + βy) v = −g
∂η

∂x
(5.33)

∂v
∂t

+ ( f0 + βy) u = −g
∂η

∂y
(5.34)

∂η

∂t
+ H

(
∂u
∂x

+
∂v
∂y

)
= 0 (5.35)

Given that ω ≪ f , ∂
∂t ≪ 1 and βL/ f0 ≪ 1 we can approximate the mo-

mentum equations to a geostrophic flow

− f0v = −g
∂η

∂x
(5.36)

f0u = −g
∂η

∂y
(5.37)

and adding these geostrophic solutions to the shallow water equations

− f0v = −g
∂η

∂x
+ βy

g
f0

∂η

∂x
+

g
f0

∂2η

∂y∂t
(5.38)

f0u = −g
∂η

∂y
+ βy

g
f0

∂η

∂y
− g

f0

∂2η

∂x∂t
(5.39)

The first part of the momentum equations is that of a geostrophic flow
and the remaining is the small contribution from variations induced by
the ageostrophic component. The last terms will be responsible for the
propagation of Rossby waves.

Using continuity and (5.38)-(5.39) we arrive to

∂η

∂t
− L2

d∂t∇2η − βL2
d

∂η

∂x
= 0 (5.40)

which is a leading order approximation to the potential vorticity equation
describing a quasi-geostrophic flow

∂t

(
∇2η − L−2

d η
)
+ β

∂η

∂x
= 0 (5.41)
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Now we can look for Fourier type solutions in the form η = η0ei(kx+ly−ωt)

ω = − βk
(k2 + l2) + L−2

d

(5.42)

or alternatively

ω = −βL2
d

k
1 + L2

d(k
2 + l2)

(5.43)

Evidently, on the f -plane (β = 0) the solution reduces to a geostrophic
flow and no wave is allowed to propagate. The meridional gradient in f
is thus the restoring force for Rossby waves.

Two possible cases can be envisaged, setting l = 0.
First, that of short waves, where L ≤ Ld and therefore kLd ≥ 1, for L a

typical scale of the wave length and k a typical scale of the wave number.
In this case the dispersion relation reduces to

ω = −βL2
d

k
L2

d(k
2)

= −β

k
= −βL (5.44)

Given that we are on the β-plane approximation, βy ≪ f0 → βL ≪ f0 →
ω ≪ f0, confirming the subinterial period.

Second, waves could have very long wave length L ≥ Ld or kLd ≤ 1

ω = −βL2
dk = −β

L2
dk2

k
≪ −β

k
= −βL (5.45)

and therefore ω ≪ f0. The period of Rossby waves is always subinertial.

5.3.1 Phase and group speeds

Keeping l = 0 and using the following scaling

ω = ω̂βLd (5.46)

κ =
κ̂

Ld
(5.47)

The dispersion relation takes the form

ω̂βLd = −βL2
d

κ̂/Ld

1 + L2
d

κ̂2

L2
d

(5.48)
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ω̂ = −Ld
κ̂/Ld
1 + κ̂2 = − κ̂

1 + κ̂2 (5.49)

and for |κ̂| = −1 the frequency takes the value |ω̂| = −0.5 (see Fig. 5.3).
The phase speed of Rossby waves is easily computed (with l = 0),

using (5.42)

cp =
ω

k
=

−β

k2 + L−2
d

(5.50)

it is always negative and larger for long waves .
For long Rossby waves, the phase velocity is approximated by

cp = ω/κ = −βL2
d (5.51)

which is strictly westward even if l ̸= 0.

Figure 5.3: Rossby wave dispersion relation, phase and group speeds. Phase
velocities, Cp, are always westward. Group velocities, Cg, are westward for long
waves (κ < −1) and eastward for short waves (κ > −1). The cutoff frequency is
set at βLd/2.
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The phase speed is always negative but is the energy flux always di-
rected westward? this does not seem possible.

The group velocity is obtained by differentiating the dispersion rela-
tion

cg = (
∂ω

∂κ
,

∂ω

∂l
) = β(κ2 − l2 − L−2

d , 2κl)/(κ2 + l2 + L−2
d )2 (5.52)

or, by setting l = 0

cg =
βκ2 − βL−2

d

(κ2 + L−2
d )2

(5.53)

By setting k = 0, group and phase velocities are now equal cp = cg =

−βL2
d (see Fig. 5.3), and long waves are therefore non-dispersive.

If l ̸= 0 the dispersion relation takes the form of the dispersion diagram
in Fig. 5.4. The group velocity, the gradient of the frequency in wavenum-
ber space, is normal to the contours and inversely proportional to the spac-
ing between contours. The hyperbola separating waves with eastward and
westward group velocity is shown by the dashed line and is κ2 = l2 + L−2

d .
Frequency contours reduce to a single point when ω = 0.5βLd and κ = Ld.
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Figure 5.4: Rossby wave dispersion diagram. Contours are of frequency in units
of β Ld. The group velocity, the gradient of the frequency in wavenumber space,
is normal to the contours and inversely proportional to the spacing between con-
tours. The hyperbola separating waves with eastward and westward group veloc-
ity is shown by the dashed line and is κ2 = l2 + L−2

d . Frequency contours reduce
to a single point when ω = 0.5βLd and κ = Ld.
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5.3.2 Quasi-geostrophic Rossby waves

In order to obtain and describe the Rossby wave solutions, we consider the
linearised quasi-geostrophic (QG) potential vorticity equation (Pedlosky,
1987):

∂tqi + J(ψi, qi) = 0, (5.54)

where J(a, b) = axby − aybx is the Jacobian and ψ the stream function.
Introducing a plane wave solution of the type ψ = Ψei(kx+ly−σt) into (5.54)
we naturally obtain the dispersion relation for Rossby waves, showing
their basic characteristics (Leblond and Mysak, 1981; Gill, 1982)

ω = − βk
(k2 + l2) + L−2

d

,

where ω is the frequency, k and l are the horizontal wavenumber, β is the
meridional variation of the Coriolis parameter and Ld the Rossby radius
(C2/ f 2). It is clear that Rossby waves have westward phase velocities (of
the order of a few cm/s) and that these are increasing toward the equator
(where equatorial wave theory holds) with a maximum speed Cp = βL2

d.
Group velocities, Cg, in the case of long waves, are westward and the
waves are nondispersive (Cg = Cp), while short waves propagate east-
wards but with very slow speeds.

Another remarkable feature of the planetary wave dispersion relation
is that not all frequencies exist, with a cutoff frequency at 1

2 βLd.
Besides the horizontal problem, the vertical one is of great importance.

Using a normal mode representation (Leblond and Mysak, 1981), separating
the vertical and horizontal structure, we find an infinite set of solutions
(or normal modes). The zeroth is the barotropic one, almost vertically in-
dependent and very rapid; the other solutions, or modes, are called baro-
clinic with decreasing phase speeds and increasing oscillation in the ver-
tical. A first-mode baroclinic Rossby wave takes months to years to cross
an ocean basin, depending on the latitude.

A 3-layer model

In the case of a 3-layer ocean, the potential vorticities are given by

q1 = ∇ψ1 + βy − F11(ψ1 − ψ2)

q2 = ∇ψ2 + βy − F21(ψ2 − ψ1)− F22(ψ2 − ψ3)

q3 = ∇ψ3 + βy − F32(ψ3 − ψ2),
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where Fm,n = f 2
0 /(Hmg′n) and g′i and Hi are the reduced gravities and layer

depths respectively.
For this 3-layer system, substitution of a plane wave solution leads to

a generalised eigenvalue problem of the form AΨ = ωBΨ, or explicitly: β1 0 0
0 β2 0
0 0 β3

 ψ1
ψ2
ψ3

 = ω

 −G1 1 0
G2 −G3 1
0 1 −G4

 ψ1
ψ2
ψ3

 ,

where β1 = (kβ)/F11, β2 = (kβ)/F22, β3 = (kβ)/F32 and G1 = (K2 +
F11)/F11, G2 = F21/F22, G3 = (K2 + F21 + F22)/F22, G4 = (K2 + F32)/F32,
where K2 = k2 + l2.

The solution of the system is plotted in Fig.5.5 and it describes the ba-
sic properties of Rossby wave propagation. In fact, for the 3-layer system,
the dispersion relation is found on the upper panel and both phase and
group velocities on the bottom panel of Fig.5.5. We can distinguish the
barotropic mode with increasing frequencies towards long wavelengths,
very fast phase speeds and positive (eastward) group velocities. The baro-
clinc modes have smaller frequencies, their phase velocities are always
westward but their group velocities turn from westward to eastward at
the point of maximum frequency

kLd = |1| and ω(βLd)
−1 = |0.5| (5.55)

where the group velocity is zero. Therefore, long baroclinic waves direct
their energy westward while short waves direct it eastward. This means
that, in the limit of long wavelengths, the phase and group speeds are
the same and the waves are nondispersive. On the other hand, for short
waves phase and group speeds differ and the waves are dispersive. The
maximum group and phase velocity (Cp = Cg = −βL2

d) are attained for
long waves, they are to the west and can be found on the axis origin of the
dispersion relation.

The system could be extended to an N-layer or even to a continuously
stratified ocean. In every case, the solutions obtained are one barotropic
and N-1 baroclinic modes of decreasing phase speeds. This method of
analysis is called the normal modes method, in which the ocean is decom-
posed into an infinite set of solutions (or modes): one barotropic (or exter-
nal) and the remaining baroclinic (or internal).
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Figure 5.5: Upper panel: the dispersion relation for the barotropic and
first two baroclinic modes of the 3-layer QG ocean. Shown are values
of both positive and negative wavenumbers. The wavenumber is scaled
by the deformation radius Ld and the frequency by βLd; the meridional
wavenumber l is set to zero. The first baroclinic mode frequency reaches
a maximum at ωmax = βLd/2, i.e. ωmax = |0.5|. Lower panel: phase (solid
lines, Cp = ω/k) and group (dashed lines, Cg = ∂ω/∂k) velocities of the
barotropic and first two baroclinic modes, scaled by βL2

d.
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5.3.3 Rossby waves in observations and models

Chelton and Schlax (1996) presented for the first time the results of these
observations identifying clear Rossby waves signals (Fig.5.6) and common
features like the increase of phase speed in the western basin, the effect
of bottom topography, eastward propagating equatorially trapped Kelvin
waves and pulses related to El Niño events.

As anticipated, the advent of satellite altimetry brought a powerful
tool to describe Rossby waves in the real ocean. The TOPEX/POSEIDON
(T/P) altimeter is able to detect long baroclinic planetary waves unam-
biguously over the entire world ocean (Fig. 5.7).

The T/P altimetry data reveal the sea surface height anomalies (SSHA)
and to analyse this data time-longitude plots, known as Hovmöller dia-
grams, are used, which clearly show Rossby waves as diagonal alignments
of crests and troughs moving westward. An example of this is given in
Fig.5.7, where SSHA data from the Indian Ocean are plotted for the lati-
tude 20oS from 1993 till May 2005; in the left panel the row data are plotted
while in the right panel the data have been filtered with a westward filter
to better show Rossby wave propagation.

By this technique, Rossby waves are detected in all basins and altime-
try has been used also in the Southern Ocean (Hughes, 1995) where two
dynamical systems were found, a supercritical and a subcritical one with

Figure 5.6: Sea surface height anomalies showing the propagation of plan-
etary waves in the Pacific Ocean. Also clear is the β-effect inducing larger
phase speeds towards the equator [from Chelton and Schlax (1996)].
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Figure 5.7: Time-longitude plot of the sea surface height anomalies (in me-
ters) in the Indian Ocean at 20oS. On the left panels, the original altimeter
data. On the right panel, the corresponding westward-filtered signature.
There is a clear evidence of crests and troughs propagating westward with
a biannual period (Courtesy of P. Cipollini).
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respect to Rossby waves, the first one being able to advect the waves east-
ward.

Rossby waves are also detected by other sensors like the Along-track
Scanning Radiometer (ATSR) in sea surface temperature (SST) and, re-
cently, SeaWiFS in ocean colour.

As an example, Hill et al. (2000) used a SST record to compute Rossby
wave phase speeds finding good agreement with Killworth et al. (1997).
They were also able to detect topographic effects such as those predicted
by Killworth and Blundell (1999).

One of the latest applications has been using ocean colour. Cipollini
et al. (2001) found for the first time Rossby waves in SeaWiFS datasets,
although they are neither very clear nor ubiquitous. A preliminary expla-
nation for this detectability was in term of the vertical displacements of the
thermocline associated with the Rossby wave and subsequently changes
in the nutrient upwelling.

5.3.4 Computing Rossby wave phase speeds

In order to compute the gravity wave phase speeds and Rossby radii of de-
formation we need to solve the generalized eigenvalue problem of Sturm-
Liouville form:

d2ϕ

dz2 +
N2(z)

C2 ϕ = 0 (5.56)

subject to the following boundary conditions

ϕ = 0 at z = 0,−H (5.57)

where H is the local mean water depth and N2 is the Brunt-Väisälä fre-
quency, computed from the potential density method as outlined in Chel-
ton et al. (1998). Solution of the system (5.56)-(5.57) leads to an infinite set
of eigenvalues C−2

m , the baroclinic gravity wave phase speeds, and corre-
sponding eigenfunctions ϕm.

However, Chelton et al. (1998) showed that a WKB approximation of
the gravity wave speed is generally in good agreement with the solution
given by the system (5.56)-(5.57), and this is:

Cm ≈ CWKB
m = (mπ)−1

∫ 0

−H
N(z)dz, m ≥ 1. (5.58)

Then, within the extratropical regions, the Rossby radii of deformation
are simply found by applying

Lm
d =

Cm

| f (θ)| . (5.59)
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We will be focusing on extratropical regions only (|θ| ≥ 10◦), leaving the
equatorial wave dynamics response aside.

Now, we can compute the unperturbed long Rossby wave speeds

cm = −βC2
m/ f 2. (5.60)

Since model data provide potential density ρθ, we can compute the
stratification directly from the potential density method of the non-equispaced
vertical levels k:

N2(z) = −g/ρ0

[
ρθ(z)− ρθ(z + 1)/(δk(z)− δk(z + 1))

]
(5.61)

The gravity wave speed can be obtained from two different method.
First, as a good approximation, we can infer it from the WKB method as
suggested in Chelton et al. (1998):

Cm = (mπ)−1
∫ 0

−H
N(z)dz, m ≥ 1. (5.62)

After obtaining N2 and Cm, the Rossby radii of deformation are readily
computed as

Lm
d =

Cm

| f (θ)| , |θ| ≥ 5◦ (5.63)

Lm
d =

Cm

2|β(θ)| , |θ| ≤ 5◦. (5.64)

or, for the extratropical band: Lm
d = (| f |mπ)−1

∫ 0
−H N(z)dz

For the linear, long and extratropical waves, we can simply compute
the Rossby wave phase speed as

cm = −β(Lm
d )

2 (5.65)
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Figure 5.8: A global contour map of the baroclinic gravity wave phase speed [from
Chelton et al., 1998] and its zonal mean.
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Figure 5.9: A global contour map of the baroclinic Rossby radius of deformation
and its zonal mean. [data from Chelton et al., 1998]
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Figure 5.10: A global contour map of the baroclinic Rossby wave phase speed and
its zonal mean. [data from Chelton et al., 1998]

Page 82



5.4 Kelvin and Rossby waves in the general oceanic
adjustment

The importance of Rossby waves in the spinup of the ocean and in the
adjustment of the ocean interior was also recently shown by Johnson and
Marshall (2002). They proposed a theory for surface Atlantic response to
thermohaline variability; in their work they study the reaction of the ocean
to a perturbation of the rate of deep water formation at high latitudes.
These changes initiate Kelvin waves which propagate along the western
boundary, in a similar response of that demonstrated by Kawase (1987),
and then cross the basin as equatorial Kelvin waves until they reach the
eastern boundary where they propagate northwards and southwards. The
final part of the response is the radiation of Rossby waves from the east-
ern boundary, communicating the thermocline displacement to the ocean
interior which is clearly illustrated with a series of snapshots (Fig. 5.11).

5.4.1 Implications in climate change scenarios

Saenko (2006) recently showed that, within the IPCC models, there is clear
evidence of an increase of the first baroclinic Rossby radius with increas-
ing oceanic stratification in the warmer climate. The changes range from
15 to 20% depending on the model and latitude. This would imply a
greater length scale for mesoscale eddies and modified characteristics for
oceanic Rossby waves, whose speed is proportional to the squared baro-
clinic Rossby radius of deformation. Also, the adjustment time scale in the
ocean would decrease as well as in any ocean-atmosphere climate variabil-
ity process where Rossby waves set the dominant period. Equally impor-
tant, if not more in certain basins, is the change in the background baro-
clinic mean flow and its subsequent effect on the propagation of Rossby
waves. This effect was not considered in Saenko (2006).

Modifications to the background stratification and mean flows are ob-
served between pre-industrial and climate-change runs in the GFDL CM4
model (Fig.5.12). However, the question of the quantification of these ef-
fects on the Rossby wave activity, as well as the changes induced by a
modified background mean flow, is still unanswered. We expect to show
considerable alterations to the Rossby wave phase speeds at different lat-
itudes, leading to important changes in the ocean adjustment time-scale
and coupled ocean-atmosphere interactions where Rossby waves set the
clock (Fig.5.13 and Fig.5.14).
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Figure 5.11: Surface layer thickness after a thermohaline overturning of 10 Sv
is switched on at time t = 0 in the northwest corner of an ocean initially at rest.
There is no wind forcing, and the surface layer is initially 500 m deep. The contour
interval is 2 m, and thicknesses less than 499 m are shaded. Note that the thickness
anomaly on the western boundary is much greater than that in the interior. [from
Johnson and Marshall, JPO2022]
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Figure 5.12: The baroclinic gravity wave phase speed computed from the GFDL-
CM4.0 model under historical conditions for years 2010-2014 (in black) and for
the future scenario SSP585 (in red).
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Figure 5.13: The Rossby radius computed from the GFDL-CM4.0 model under
historical conditions for years 2010-2014 (in black) and for the future scenario
SSP585 (in red).
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Figure 5.14: The baroclinic Rossby wave phase speed computed from the GFDL-
CM4.0 model under historical conditions for years 2010-2014 (in black) and for
the future scenario SSP585 (in red).
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Chapter 6
Frictional Dynamics

So far we have dealt with frictionless flows, where the dominant balance is
between the Coriolis and pressure gradient forces. That was shown to be a
rather good approximation for flows away from boundaries (topography,
surface of the ocean, side boundaries, etc.) but this balance does not hold
anymore when a boundary is approached, and frictional forces become
important. The region where frictional terms have to be taken into account
is called a boundary layer (see Fig.6.1). Here we will consider the following:

• The boundary layer is Boussinesq.

• The boundary layer has a finite depth, δ, that is less than the total
depth of the fluid, H. The depth is given by the level at which fric-
tional stresses vanish. Within the boundary layer, frictional terms are
important, whereas geostrophic balance holds beyond it.

• Nonlinear time-dependent terms in the equations of motion are neg-
ligible, hydrostasy holds in the vertical, and buoyancy is constant,
not varying in the horizontal.

In atmosphere and ocean dynamics, where the focus is on rapidly ro-
tating turbulent fluids, this boundary layer is called Ekman layer.
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Figure 6.1: An idealized boundary layer. The boundary layer has thickness δ,
within a typical vertical scale H and typical velocity U, which varies rapidly
within the boundary layer in order to satisfy the rigid lid boundary condition.
[from Vallis (2006)]

The Ekman Layer
The development of the theories for the wind-driven circulation ac-
tually has as a foundation the discovery of the so-called Ekman layer
and its circulation. In 1898, the polar explorer Nansen observed that
icebergs in the Arctic drifted in a direction to the right of the direc-
tion of the surface winds, roughly bewteen 20◦ and 40◦ to right of
the wind stress. This qualitative observation can be explained by
the presence of frictional forces. In fact, wind force applied to the
surface of the ocean will try to transmit momentum in the same di-
rection. However, as soon as the fluid starts to move, the Coriolis
force will come into action deflecting its movement to the right. Im-
portantly, there is also a frictional force within the fluid that will
exert some resistance to this movement, and its direction is opposite
to the direction of the fluid. The final balance between wind force,
Coriolis and frictional forces, will determine the actual direction and
velocity of the fluid, which will be to the right of the wind direction
in the northern hemisphere.
As we shall see later, Ekman explained quantitatively how the ro-
tation of the earth was responsible for the deflection of the current
which Nansen observed.
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6.1 Equations of motion

Let us now include frictional effects in our equations of motion
D u
D t

− f v = −1
ρ 0

∂p
∂x

+ Fx (6.1)

D v
D t

+ f u = −1
ρ 0

∂p
∂y

+ Fy (6.2)

(6.3)

Here, Fx and Fy are the friction components per unit mass. Assuming no
accelerations in the fluid we are left with a balance between three forces

− f v = −1
ρ 0

∂p
∂x

+ Fx (6.4)

f u = −1
ρ 0

∂p
∂y

+ Fy. (6.5)

We can now make progress on the frictional terms. For a geophysical fluid,
the vertical component dominates. The Newton’s law of friction states that
the friction stress τ, which is the force per unit area, is given by

τ = µ
∂u
∂z

= ρ0ν
∂u
∂z

= ρ0Az
∂u
∂z

, (6.6)

where µ is the dynamic viscosity and ν = µ/ρ0 the kinematic viscosity.
For a turbulent fluid such as the ocean, eddy viscosity Az (coming about
from the Reynolds stresses −u′w′ = Az∂u/∂z) has a value ∼ 10−1 m2 s−1.

The eddy friction stress can be expressed in terms of a mass of fluid,
where for the vertical component leads to frictional force per unit mass

1
ρ 0

∂τ

∂z
=

1
ρ 0

∂

∂z

(
ρ0Az

∂u
∂z

)
= Az

∂2u
∂z2 . (6.7)

Our equations of motion thus reduce to

− f v = −1
ρ 0

∂p
∂x

+ Az
∂2u
∂z2 (6.8)

f u = −1
ρ 0

∂p
∂y

+ Az
∂2v
∂z2 . (6.9)

Or simply

f × u = −1
ρ 0
∇z p + A

∂2u
∂z2 . (6.10)

The momentum equation in the vertical is the hydrostatic balance, and
the set is completed with mass continuity, ∇ · u = 0.
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The Ekman number

We now apply the usual scaling arguments to the equations and obtain the
Ekman number

Ek =
( A

f0H2

)
, (6.11)

which determines the importance of frictional terms in the horizontal equa-
tions. For interior flows, Ek < 1, and the flow is geostrophic. Within the
Ekman layer, Ek ≥ 1, and friction is important. The difference between the
geostrophic equations and the equations of motion when frictional effects
are retained is thus clear.

This implies that the vertical velocities w are not negligible within the
boundary layer, near the sea surface and bottom. Friction terms are small
enough to be neglected only in the interior of the ocean. If we do not
neglect the friction term in the momentum equation this means that the
friction term is comparable in size to the Coriolis term

Az
∂2u
∂z2 ≃ f u (6.12)

A scaling analysis reveals that

Az(U/H2) ≃ f U (6.13)

For typical values Az = 10−1 m2 s−1 and f = 10−4s−1 we get

H2 ≃ AzU
f U

= 10−1/10−4 = 103m2. (6.14)

A typical boundary layer is in the order of H ≃ 30 m and frictional effects
can be felt up to a 100 m or so.

Momentum balance

We write the velocity field and the pressure field as the sum of interior
geostrophic part and a boundary layer correction:

u = ug + uE, p = pg + pE, (6.15)

where the Ekman layer corrections are negligible away from the bound-
ary layer. In the fluid interior we have, by hydrostatic balance, ∂pg

∂z = 0,
because we have considered the fluid to have constant buoyancy b =

−gρ′/ρ0. In the boundary layer, we still have ∂pg
∂z = 0 and, to satisfy
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hydrostasy, ∂pE
∂z = 0. But because pE vanishes away from the boundary,

pE = 0 everywhere. This implies that there is no boundary layer in the
pressure field. For the Ekman layer then, the horizontal momentum equa-
tion becomes

f × uE = Az
∂2uE

∂z2 , (6.16)

the dominant force balance in the Ekman layer is thus between the Cori-
olis force and friction.

We can now estimate the depth over which the Ekman layer extends.
Recalling the Ekman number:

Ek =
Az

Ωd2 ≃ 1, (6.17)

this implies that d = (Az/Ω)1/2. With typical values A = 10−1 m2 s−1

and Ω = 10−4 s−1, we get a boundary layer of the order of 30 m.

6.2 Integral properties of the Ekman layer

Let’s now deduce the properties of the Ekman layer without specifying
the frictional stress tensor τij.

The Ekman mass transport

The frictional-geostrophic balance is

f × u = −1
ρ 0
∇z p +

1
ρ 0

∂τ

∂z
, (6.18)

where τ is zero at the edge of the Ekman layer. In the Ekman layer we
have

f × uE =
1
ρ 0

∂τ

∂z
. (6.19)

As we seek properties for the entire boundary layer, let’s integrate over its
thickness

f ×
∫

Ek
ρ0uE dz = τT − τB, (6.20)

where subscripts T and B are for the stresses at the top and bottom of the
Ekman boundary layer.
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Figure 6.2: Meridional Ekman volume transport, -τx/( f ρ0), from QuickSCAT.

We now define the ageostrophic mass transport in the Ekman layer as

ME =
∫

Ek
ρ0uE dz. (6.21)

For a bottom Ekman layer, stress at the top will be zero. For a top
Ekman layer, stress at the bottom will be zero:

Top : f × ME = τT (6.22)
Bottom : f × ME = −τB (6.23)

which is equivalent to writing

Top : ME = −1
f

k × τT (6.24)

Bottom : ME =
1
f

k × τB. (6.25)

Take a situation in which τx = 0 and therefore MyE =
∫

Ek ρ0vE dz = 0
but MxE > 0 with τy > 0. The net transport is thus at right angles to
the stress at the surface (to the right for f > 0), and proportional to the
magnitude of the stress.
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Figure 6.3: (a) Meridional Ekman volume flux, -τx/( f ρ0), for each of the world
oceans as a function of latitude. Note the maximum of VE at about 45◦N and the
changeover between westerlies and easterlies at about 30◦N. (b) Vertical Ekman
volume flux, we, for the world’s oceans (see also Levitus, 1988).

Integrated over the depth of the Ekman layer, the surface stress must
be balanced by the Coriolis force, which in turn acts at right angles to
the mass transport. Mass transports in a top oceanic and bottom atmo-
spheric Ekman layers are equal and opposite, because the stress is con-
tinuous across the ocean-atmosphere interface (see Fig.6.4).

The Ekman vertical velocity: Ekman Pumping

We now obtain an expression for the vertical velocity induced by an Ek-
man layer. We start from the mass conservation equation

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (6.26)

and we integrate this over the Ekman layer∫
Ek

(∂u
∂x

+
∂v
∂y

)
dz = −

∫
Ek

∂w
∂z

dz. (6.27)

Remembering that we have defined ME =
∫

Ek ρ0uE dz,

1
ρ 0
∇ · ME = −

∫
Ek

∂w
∂z

dz (6.28)

1
ρ 0
∇ · ME = −(wT − wB). (6.29)
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Figure 6.4: The directions, for the northern hemisphere, and magnitude of the
steady Ekman mass transports in the atmosphere and oceanic boundary layers
when stress at the surface has the direction shown. Note that the sum of the at-
mospheric and oceanic Ekman mass transports is zero. When there is no pressure
gradient, the force per unit area exerted by the surface stress on each boundary
layer is equal to the product of mass per unit area and the Coriolis acceleration of
the layer. The latter quantity is f times the Ekman mass transport and is directed
at right angles to the stress. [from Gill (1982)]

Using Eq.6.20:
f × ME = τT − τB, (6.30)

and taking its curl we find

∇ · ME = curlz[(τT − τB)/ f ] (6.31)

where we have used the curlz operator on a vector A defined as curlzA ≡
∂x Ay − ∂y Ax.

We now make use of Eq.6.29 and we obtain

1
ρ 0
∇ · ME = −(wT − wB) =

1
ρ 0

curlz[(τT − τB)/ f ]. (6.32)

For a top Ekman layer we have:

wB =
1
ρ 0

curlz

(
τT/ f

)
(6.33)
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For a bottom Ekman layer we have:

wT =
1
ρ 0

curlz

(
τB/ f

)
(6.34)

Friction induces a vertical velocity in the Ekman layer, proportional to
the curl of the stress at the surface. This vertical velocity is called Ekman
pumping (see Fig.6.3). The production of a vertical velocity at the edge of
the Ekman layer is one of the most important effects of the layer, especially
with regard to the large-scale circulation, for it provides an efficient means
whereby surface fluxes are communicated to the interior flow.

6.3 A bottom boundary layer

We now derive the properties for the bottom boundary layer. If you are
more atmospherically inclined, think of this bottom boundary layer as the
one generated by the wind over some topography.

Our momentum equations (Eq.6.10) are completed by the mass conser-
vation equation

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (6.35)

and hydrostatic balance in the vertical

0 = −1
ρ 0

∂p
∂z

. (6.36)

Remember we are in a Boussinesq fluid. The flow can be divided into an
interior geostrophic part

− f vg = −1
ρ 0

∂p
∂x

(6.37)

f ug = −1
ρ 0

∂p
∂y

, (6.38)

(6.39)

or

f (ug, vg) = (−∂ϕ

∂y
,

∂ϕ

∂x
) (6.40)
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where ϕ ≡ p/ρ0. And a boundary layer correction

− f v = −1
ρ 0

∂p
∂x

+ A
∂2u
∂z2 (6.41)

f u = −1
ρ 0

∂p
∂y

+ A
∂2v
∂z2 . (6.42)

(6.43)

Given Eq.6.40, the frictional-geostrophic balance can be written as

− f (v − vg) = A
∂2u
∂z2 (6.44)

f (u − ug) = A
∂2v
∂z2 , (6.45)

or even better as

f × (u − ug) = A
∂2u
∂z2 . (6.46)

Our boundary conditions will be

at z=0: u = 0, v = 0 (no slip boundary condition) (6.47)
as z→ ∞: u = ug, v = vg (a geostrophic interior). (6.48)

We seek solutions of the form

u = ug + A0eαz, v = vg + B0eαz, (6.49)

where A0 and B0 are constants. Substituting into Eq.6.46 leads to

f A0 − AB0α2 = 0, − f B0 − AA0α2 = 0. (6.50)

Remember that, given the absence of temperature horizontal gradients,
via thermal wind, ∂zug = ∂zvg = 0.

For non-trivial solutions we have α4 = − f 2/A2, from which we find
α = ±(1 ± i)(1/d), where d = (2A/ f )1/2. Using the boundary conditions
we obtain the solution

u = ug − e−z/d
[
ugcos(z/d) + vgsin(z/d)

]
(6.51)

v = vg + e−z/d
[
ugsin(z/d)− vgcos(z/d)

]
. (6.52)

We have used d = (2A/ f )1/2, the depth of the Ekman layer. It is apparent
that the solution decays exponentially from the surface with an e-folding
scale equal to d.
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Now let’s suppose a flow that is directed eastward and has zero merid-
ional component (ug > 0, vg = 0). Velocities reduce to

u = ug[1 − e−z/dcos(z/d)] (6.53)

v = ug e−z/dsin(z/d). (6.54)

This is already telling us that the meridional velocity within the bound-
ary layer is not zero. As z → 01 we have

u = ug[1 − (1 − z/d)] = ugz/d (6.55)

v = ug (1 − z/d)z/d = ugz/d −�����:0
ugz2/d2. (6.56)

Hence, u and v are equal and generate a flow that is 45◦ to the left of the
direction of the interior flow (to the right when f < 0).

We can find a local maximum for the velocity in the boundary layer

∂u
∂z

= 0 → ∂z[ug − uge−z/dcos(z/d)] = 0 (6.57)

1
d

uge−z/dcos(z/d) +
1
d

uge−z/dsin(z/d) = 0

cos(z/d) + sin(z/d) = 0

tan(z/d) = −1

And so the depth of maximum velocity is

z =
3π

4
d.

At this depth

u = ug

(
1 − e

3π
4 cos(

3π

4
)
)
= 1.07ug. (6.58)

Hence, the theoretical value of u reaches values larger then the interior
geostrophic flow because of frictional effects and redistribution of momen-
tum within the boundary layer.

The bottom Ekman layer can be seen in Fig.6.5, where the Ekman spiral
is depicted. At the bottom, the flow is at 45◦ to the left of the interior
geostrophic flow. The maximum u is obtained at z/d = 3π

4

1Taylor expanding and neglecting higher order terms e−z/d = 1 − z/d +�����:z2/(2d2);
cos(z/d) = 1 −�����:z2/(2d2); sin(z/d) = z/d −�����:z3/(3d3)
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Figure 6.5: The idealized Ekman layer solution at the bottom for vg = 0. [from
Vallis (2006)]

Transport and vertical velocity

We now find an expression for the (cross-isobaric) transport produced by
frictional effects. For vg = 0, we have

V =
∫ ∞

0
v dz =

∫ ∞

0
uge−z/dsin(z/d)dz =

d
2

ug (6.59)

U =
∫ ∞

0
(u − ug)dz = −

∫ ∞

0
uge−z/dsin(z/d)dz = −d

2
ug, (6.60)

and the general case with vg ̸= 0 is simply

V =
d
2
(ug − vg) (6.61)

U = −d
2
(ug + vg). (6.62)

The total mass transport caused by frictional forces is thus

ME =
ρ0d
2

[
− i(ug + vg) + j(ug − vg)

]
. (6.63)

Recalling that the frictionally induced transport in the Ekman layer is re-
lated to the stress at the surface by ME = (k × τB)/ f , a full picture of
stress, cross-isobaric velocity and total transport is given in Fig.6.6.
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Figure 6.6: A bottom Ekman layer, generated from an eastward geostrophic flow
above. An overbar denotes a vertical integral over the Ekman layer. so that − f ×
uE is the Coriolis force on the vertically integrated Ekman velocity. ME is the
frictionally induced boundary layer transport, and τ is the stress. [from Vallis
(2006)]

The flow within the Ekman layer has a nonzero divergence, indeed:

∂U
∂x

+
∂V
∂y

= −d
2

[
∂x(ug + vg)− ∂y(ug − vg)

]
(6.64)

=
d
2

[
− (∂xug + ∂yvg)− ∂xvg + ∂yug

]
. (6.65)

The first term on the r.h.s. is zero because the interior flow is non-
divergent, hence:

∂U
∂x

+
∂V
∂y

= −d
2
(∂xvg − ∂yug) = −d

2
ζg (6.66)

The vertical velocity at the top of the Ekman layer is, for a constant f (and
using Eq.6.34)

wE = −1
ρ 0
∇ · ME =

1
ρ 0

curlz

(
τB/ f

)
=

d
2

ζg (6.67)

There will be divergence if the interior geostrophic flow presents vor-
ticity. The vertical velocity at the top of the bottom Ekman layer, which
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arises because of the frictionally-induced divergence of the flow in the
Ekman layer, is proportional to the geostrophic vorticity and to the Ek-
man layer height.

6.4 A surface boundary layer

We now look for solutions for a surface Ekman layer. In this case, the
wind provides a stress on the upper ocean, and the Ekman layer serves to
communicate this to the ocean interior.

We start again with our momentum equations, which for the interior
geostrophic flow are

− f vg = −1
ρ 0

∂p
∂x

(6.68)

f ug = −1
ρ 0

∂p
∂y

, (6.69)

or

f (ug, vg) = (−∂ϕ

∂y
,

∂ϕ

∂x
) (6.70)

where ϕ ≡ p/ρ0. And for the Ekman layer

− f v = −1
ρ 0

∂p
∂x

+ A
∂2u
∂z2 (6.71)

f u = −1
ρ 0

∂p
∂y

+ A
∂2v
∂z2 . (6.72)

(6.73)

The frictional-geostrophic balance can be written again as

− f (v − vg) = A
∂2u
∂z2 (6.74)

f (u − ug) = A
∂2v
∂z2 , (6.75)

or even better as

f × (u − ug) = A
∂2u
∂z2 (6.76)
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Our boundary conditions will be

at z=0: τx = ρ0A
∂2u
∂z2 , (a given surface stress) (6.77)

τy = ρ0A
∂2v
∂z2 (6.78)

as z→ −∞: u = ug (a geostrophic interior) (6.79)
v = vg (6.80)

We now introduce the kinematic wind stress at the surface, τ̃ = τ/ρ0,
and seek solutions by the same method we used for the bottom layer:

u = ug +

√
2

f d
ez/d

[
τ̃xcos(z/d − π/4)− τ̃ysin(z/d − π/4)

]
, (6.81)

v = vg +

√
2

f d
ez/d

[
τ̃xsin(z/d − π/4) + τ̃ycos(z/d − π/4)

]
. (6.82)

Note that the boundary layer correction depends only on the imposed
surface stress, and not on the interior flow. In the absence of an imposed
stress the boundary layer correction is zero, and u = ug. Similar to the
bottom boundary layer, the velocity vector traces a diminishing spiral as
it descend into the interior (Fig.6.7). The velocity within the boundary
depends on its depth, d =

√
2A

f , which depends on the eddy viscosity A.
If the fluid is not very viscous, it will generate a small Ekman layer, and
the velocity within the layer can be large for small stresses.

What is the value and direction of the surface velocity? at z = 0 we
have

u(0) = ug +

√
2

f d

[
τ̃xcos(−π/4)− τ̃ysin(−π/4)

]
, (6.83)

v(0) = vg +

√
2

f d

[
τ̃xsin(−π/4) + τ̃ycos(−π/4)

]
. (6.84)

Since cos(−π/4) =
√

2/2 and sin(−π/4) = −
√

2/2, the solution is

u(0) = ug +

√
2

f d

[
τ̃x

√
2

2
+ τ̃y

√
2

2

]
, (6.85)

v(0) = vg +

√
2

f d

[
− τ̃x

√
2

2
+ τ̃y

√
2

2

]
. (6.86)
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Figure 6.7: An idealized Ekman spiral in the southern hemisphere ocean, driven
by an imposed wind stress. The net transport is at right angles to the wind,
independent of the detailed form of the friction. The angle of the surface flow is at
45◦ to the wind (only for a Newtonian viscosity). [from Vallis (2006)]

Suppose the surface wind is eastward. In this case τ̃y = 0 and the
solutions reduce to

u(0) = ug +

√
2

f d

[
τ̃x

√
2

2

]
, (6.87)

v(0) = vg −
√

2
f d

[
τ̃x

√
2

2

]
. (6.88)

The velocity at the surface of the Ekman layer are simply

u(0)− ug =
τ̃x

f d
, (6.89)

v(0)− vg = − τ̃x

f d
. (6.90)

Therefore the magnitudes of the frictional flow in the x and y directions
are equal to each other, and the ageostrophic flow is 45◦ to the right (for
f > 0) of the wind. This result does not depend on the size of the viscosity.
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Transport and vertical velocity (or Ekman pumping / suction)

The transport induced by the surface stress is obtained by integrating
(6.81) and (6.82)

U =
∫ 0

−∞
(u − ug)dz =

τ̃y

f
(6.91)

V =
∫ 0

−∞
(v − vg)dz = − τ̃x

f
, (6.92)

which indicates that the ageostrophic transport is perpendicular to the
wind stress, as previously noted (see Fig.6.8). It should be noted that these
results are correct even if the details of the Ekman spiral are not.

Again the ageostrophic flow will be divergent

∂U
∂x

+
∂V
∂y

=
∫ 0

−∞
dz

(∂U
∂x

+
∂V
∂y

)
=

1
f

(
∂xτ̃y − ∂yτ̃x

)
= (6.93)

wE =
1
f

curlzτ̃. (6.94)

As previously noted in (6.33). At the edge of the Ekman layer the vertical
velocity (Ekman pumping) is proportional to the curl of the wind stress.

The Ekman pumping is associated with the frictionally induced ver-
tical velocity wE. This vertical Ekman velocity starts with zero due to

Figure 6.8: An idealized Ekman velocity spiral.
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the boundary condition at the surface, followed by an exponential pattern
within the top Ekman layer, and approaches a constant below.

It is quite hard to observe Ekman spirals both in the ocean and atmo-
sphere (but not in a laboratory where you can control viscosity and back-
ground conditions!). The theory does not take into account stratification,
gravity waves and assumes a steady wind. Nevertheless both the Ekman
mass transport and vertical velocity are independent of details of the Ek-
man layer, and only depend on the imposed stress (Fig. 6.9 and Fig. 6.11).
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Figure 6.9: Climatological zonal and meridional wind stress from QuickSCAT.
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Figure 6.10: Climatological wind stress curl and Ekman pumping velocity, we
(m/year), from QuickSCAT. It is positive in the subtropical regions on the order
of 20-50 m per year and mostly negative over the subpolar regions. Towards the
equator, f goes to zero, and Ekman pumping and Ekman transport become ill-
defined.
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Paul Ullrich The Wind-Driven Circulation Spring 2020

The global pattern of Ekman 
vertical velocity appears to the 
right using the mean observed 
wind stress and Ekman theory.

The equatorial strip is a region of 
upwelling since the trade winds 
drive fluid away from the equator 
in the surface layer.  This process 
then requires a supply of water 
from below.

Figure:  The direction of Ekman pumping and 
suction is responsible for the odd bi-modal 
shape of the ocean’s density anomaly.

Equatorial Upwelling

Abyss

Cold, fresh, 
well-mixed

Warm, salty, 
stratified

Thermocline

Ekman Pumping / Suction

Figure 6.11: The direction of Ekman pumping and suction is responsible for the
odd bi-modal shape of the ocean’s density anomaly.
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Figure 6.12: Section through a cyclonic wind over the ocean. The geostrophic
wind gives a cyclonic rotation around the low-pressure center. The Ekman mass
transport in the atmospheric boundary layer is inward, bringing mass to fill the
low, and the associated vertical pumping velocity is therefore upward. The Ekman
mass transport in the oceanic boundary layer is equal and opposite to that in the
atmosphere, so there is an outward mass transport and upward pumping velocity
in the ocean. This tends to raise the thermocline. The upper Ekman layer in the
ocean is primarily driven by an imposed wind stress, whereas the lower Ekman
layer in the ocean largely results from the interaction of interior geostrophic ve-
locity and a rigid lower surface [from Vallis (2006) and Gill (1982)].
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Ekman velocity Spiral

• Frictionally induced surface velocity to the right of the wind
(for f > 0, due to Coriolis)

• Surface layer pushes next layer down slightly to the right, gen-
erating a slightly weaker current

• Next layer pushes next layer, slightly to right and generating a
slightly weaker current

• Producing a “spiral” of the current vectors, to the right in
the northern hemisphere, with decreasing speed as depth in-
creases

• Details of the spiral depend on the vertical viscosity (how fric-
tional the flow is, and also whether friction depends on depth)

• The total transport only depends on the imposed wind stress

• Typical transport size: for a wind stress 0.1 N m−2, ME =
τ/(ρ f ) =1 m2 s−1. Integrate this over ‘width’ of the ocean,
say 5000 km, we get a total transport of 5 × 106 m3 s−1= 5 Sv
(1 Sv ≡ 106 m3 s−1)
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6.5 Upwelling

6.5.1 Coastal Upwelling

Suppose we have a wind which is entirely meridional, τx = 0, and there-
fore My

E = 0 and Mx
E > 0 for τy > 0. The net transport will be to the

left of and at right angles to the wind direction (for f < 0). Continuity re-
quires that there must be inflow from the right of the wind direction. If the
wind is blowing parallel to a coastline which is on the right of the wind, as
the wind causes an Ekman frictionally induced transport to the left away
from the coast, water is replaced from below, generating a so-called coastal
upwelling near the region of divergence along the coast.

Coastal upwelling is accompanied by a rise in upper ocean isopycnals
toward the coast. This creates an equatorward geostrophic surface flow,
the eastern boundary current. Poleward undercurrents are observed at about
200 m depth beneath the equatorward surface currents (Fig.6.13c). Pole-
ward undercurrents are created mainly by the alongshore pressure gra-
dient that drives the onshore subsurface geostrophic flow that feeds the
upwelling.

Given the prevailing wind directions, the largest coastal upwelling re-
gions happen to be on eastern boundaries of ocean basins. Eastern bound-
ary upwelling systems (EBUS) cover less than 3% of the world ocean sur-
face yet they have a significant role in the climate system, and are home
to the largest contribution of ocean biological productivity with up to 40%
of the reported global fish catch (Fig.6.14). The upwelled water does not
come from great depths. Observations and models show that upwelled
water comes from depths not greater than 200-300 m. Usually the up-
welled water has high nutrient content, and plankton production may be
promoted with important biological consequences when photosynthesis
is activated in the photic zone.

Coupled with the vast coastal human populations, these regions play
key biological and socio-economical roles. There are common features
to eastern boundary upwelling regions: wind-driven flows, alongshore
currents, steep shelves and large vertical and offshore nutrient transports.
Despite the commonality, each of the main upwelling systems (California,
Humboldt, Canary and Benguela Current Systems), exhibits substantial
differences in primary productivity, phytoplankton biomass, and commu-
nity structures. The reasons for these differences are not fully understood.

Many coupled climate models generate very large sea surface tempera-
ture (SST) biases in the coastal upwelling regions of the California Current
System, the Humboldt Current system and the Benguela Current System,
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Figure 6.13: Ekman transport divergence near the equator driven by easterly
trade winds. (a) Ekman transports. (b) Meridional cross-section showing effect
on the thermocline and surface temperature. (c) Coastal upwelling system due to
an alongshore wind with offshore Ekman transport ( f > 0). The accompanying
isopycnal deformations and equatorward eastern boundary current and poleward
undercurrent are also shown. [from Talley et al. (2011)]
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upwelling and cholorophyll

SeaWiFS Sep. ‘97 - Aug. ‘98
coastal upwelling

Figure 6.14: A false-color image depicting chlorophyll-a concentration as mea-
sured from the SeaWIFS satellite data. Eastern Boundary Upwelling systems
(EBUS) regions (California, Peru, Canary and Benguela) are shown by the pink
ovals.

where simulated mean SSTs are much warmer than observed (typically in
excess of 3◦C and as high as 10◦C; see Fig.6.15). Furthermore, these SST
biases have significant remote effects on surface and subsurface tempera-
ture and salinity, and on precipitation and hence atmospheric heating and
circulation. The warm temperature biases associated with upwelling re-
gions strongly limit the prediction of future evolution of these regions.
Increased model resolution, achieved via nesting or adaptive gridding,
improves simulations of the regional climate and affects the large-scale
climate system through feedbacks.
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Figure 6.15: Time-mean (1985-2004) SST bias for (a) CMIP5, (b) CMIP6 and (c)
HighResMIP multi-model mean relative to OISST. Every contour represents an
SST bias of 1 K. Black dots show regions where all models agree on the sign of the
bias. The poles are excluded in order to highlight the biases in the EBUS regions,
which present the highest SST anomalies. The 4 major EBUS are: the California
Current System (CCS), the Canary Current System (CaCS), the Humboldt Cur-
rent system (HCS) and the Benguela Current System (BCS). [from Farneti et al.
(2022)]
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6.5.2 Equatorial Upwelling

Equatorial upwelling due to Ekman transport results from the westward
wind stress (trade winds). These cause northward Ekman transport north
of the equator and southward Ekman transport south of the equator. This
results in upwelling along the equator, even though the wind stress curl is
small because of the Coriolis parameter dependence in (6.33).

At the equator, where the Coriolis parameter changes sign, zonal (east-
west) winds can cause Ekman convergence or divergence even without
any variation in the wind (Fig.6.13a). Right on the equator, there is no
Ekman layer since the Coriolis force that would create it is zero ( f = 0). If
the equatorial wind is westward (a trade wind), then the Ekman transport
just north of the equator is northward, and the Ekman transport just south
of the equator is southward, and there must be upwelling into the surface
layer on the equator.

Trade winds are relatively steady easterlies. They are driven by warm
waters in the western region and cooler waters in the east, which creates
rising air in the west and sinking air in the east, and a thermally direct flow
from east to west to feed this (Walker cell). In the ocean the true equatorial
region is much narrower - about 2 degrees wide. Easterly trade winds at
the equator drive (1) poleward Ekman transport and (2) westward surface
flow, as follows. The easterly trade winds cause northward Ekman trans-
port just to the north of the equator and southward Ekman transport just
to the south of the equator. This causes upwelling at the equator. As a
result, the pycnocline shoals towards the equator (Fig.6.13b). This drives
a westward geostrophic flow at the sea surface.

Directly on the equator, the effect of rotation on the circulation van-
ishes, and so the concepts of geostrophic and Ekman flow do not apply.
At the equator, the easterly trade winds push the surface water directly
(frictionally) from east to west. This water piles up gently in the western
Pacific (0.5 meters higher there than in the eastern Pacific). The pycnocline
is deeper in the west also as a result, and much warmer water is found
there (so-called “warm pool”). Upwelling in the east draws cool water to
the surface because of the shallow pycnocline there, but intense eastward-
flowing upwelling in the west cannot create cold water at the surface there
because of the thickness of the warm pool.

Because the sea surface is higher in the west than in the east, there is
a pressure difference that causes the flow just beneath the surface layer
to be eastward. This strong eastward flow is the Equatorial Undercur-
rent. It is centered at about 150 to 200 m depth. EUC speeds are in excess
of 100 cm/sec. The current is exceptionally thin vertically (about 150 m
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thick). The Equatorial Undercurrent shoals towards the east, as does the
pycnocline. The shoaling is associated with upwelling of cool water in the
central/eastern Pacific, giving rise to the ”cold tongue” (in non-El Niño
years). Steady trade winds, which cause equatorial upwelling, are more
prevalent in the east than in the west. When the trade winds weaken
or even reverse, the flow of water westward at the equator weakens or
reverses and upwelling weakens or stops. Surface waters in the eastern
Pacific warm significantly since upwelling is no longer bringing the cool
waters to the surface. The deep warm pool in the western Pacific thins as
its water sloshes eastward along the equator in the absence of the trade
winds which maintain it.
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Exercices

1. For A = 10−1 m2 s−1 and f = 10−4 s−1, what would be the typical
depth of an Ekman layer?

2. Assume that the atmospheric Ekman layer over the earth’s surface
at latitude 45◦N can be modeled with a turbulent kinematic viscos-
ity ν = 10m2 s−1. If the geostrophic velocity above the layer is 10
m s−1 and is uniform, what is the vertically integrated flow across
the isobars (pressure contours)? Is there any vertical velocity?

3. Meteorological observations above New York City (41◦N) reveal a
neutral atmospheric boundary layer (no convection and no stratifi-
cation) and a westerly geostrophic wind of 12 m s−1 at 1000 m above
street level. Under neutral conditions, Ekman layer dynamics apply.
Using an eddy viscosity of 10 m2 s−1, determine the wind speed and
direction atop the World Trade Center (height: 411 m).

4. Between 15◦N and 45◦N, the winds over the North Pacific consist
mostly of the easterly trades (15◦N to 30◦N) and the westerlies (30◦N
to 45◦N. An adequate representation is

τx = τ0sin
(πy

2L

)
, τy = 0, −L ≤ y ≤ L, (6.95)

where τ0 = 0.15 N/m2 is the maximum wind stress and L = 1670 km.
Taking ρ0 = 1028 kg/m3 and the value of the Coriolis parameter
corresponding to 30◦N, calculate the Ekman pumping. Which way
is it directed? Calculate the vertical volume flux over the entire 15◦N-
45◦N strip of the North Pacific (width = 8700 km). Express your
answer in Sverdrup units (1 Sverdrup = 1 Sv ≡ 106 m3 s−1).
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