Introduction to Artificial Intelligence

Tatjana Petrov R

Today

" Informed Search
= Heuristics
" Greedy Search
" A* Search

Recap: Search

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

The One Queue

+ All these search algorithms are the
same except for fringe strategies

4+ Conceptually, all fringes are priority
gueues (i.e. collections of nodes with
attached priorities)

+ Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

4+ Can even code one implementation
that takes a variable queuing object

Search and Models

+Search operates over models of
the world

+The agent doesn’t actually try all
the plans out in the real world!

+Planning is all “in simulation”

+Your search is only as good as
your models...

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

N\ (-
Action: flip top two A{ Path to reach goal:
Cost: 2 Flip four, flip three

Total cost: 7

Uninformed Search

Uniform Cost Search

= Strategy: expand lowest path cost

" The good: UCS is complete and optimal!

= The bad:

= Explores options in every “direction”
= No information about goal location

Video of Demo Contours UCS Empty

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Search Heuristics

* An heuristic function h(n):

= Estimates how close a state n is to a goal /F-\\
NOPE=S T\ Goavt

= Designed for a particular search problem
= |
ﬂ >
____-_HeurId'T-Trun J

= Examples: Manhattan distance, Euclidean distance for pathing

Heuristi - Tron

Example: Heuristic Function

Straight—line distance \

to Bucharest
Arad 366
Bucharest 0
75 Craiova 160
Dobreta 242
Arad Eforie 161
Fagaras 178
Giurgiu 77
118 M Vaslui Hirsova 151
Iasi 226
Timisoara Lugoj 244
142 Mehadia 241
Neamt 234
Oradea 380
98 . Pitesti 98

Hirsova \ . .
] Mehadia Urziceni Rimnicu Vilcea 193
75 86 Sibiu 253
Bucharest Timisoara 329
Dobreta [] 90 Urziceni 80
=l Craiova Eforia Vaslui 199
[] Giurgiu Zerind 374

\ _J
h(X)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

4=/37 h(x)
4L 32\\
33— 0 —/]——
= \
4 ——_ W 3 —
$ 4 — S~
4 —

Greedy Search

Greedy Search

= Expand the node that seems closest...

i.e. evaluation function f(n) = h(n)
 Amd {

p :iSibiL_l /-//

X 329 374 Arad 366 Mehadia 241
Bucharest 0 Neamt 234
e & o 1
Gnniw Vices) e, g Beemsn

329

380 193 - 5 Giurgiu 77 Timisoara
| P ’ Hirsova 151 Urziceni 80
g | Tasi 226 Vaslui 199
- g Lugoj 244 Zerind 374

Bucharest
Straight-line distances

= What can go wrong?

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

" Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

h=o

When should A* terminate?

= Should we stop when we enqueue a goal?

= No: only stop when we dequeue a goal

Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

Admissible Heuristics

Heuristi - Tron @

ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs

Admissible Heuristics
= A heuristic h is admissible (optimistic) if:
0 < h(n) <h"(n)

where h*(n) isthe true cost to a nearest goal

4 ——

" Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Consistent Heuristics

= A heuristic h is consistent if, for every node n and every
successor n’ of n generated by an action a, we have:

h(n) < c(n,a,n") + h(n")

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

= Ais an optimal goal node

= Bis asuboptimal goal node
" hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

" |magine B is on the fringe

= Some ancestor n of Ais on the
fringe, too (maybe Al)

= Claim: n will be expanded before B

1. f(n) =f(4)

Optimality of A* Tree Search: Blocking

1. f(n) = f(4)

= Definition of f-cost says:
f(n) =gm)+ h(n) =(path cost to n) + (est. cost of nto A)
f(A) =g(A) + h(A) =(path cost to A) + (est. cost of Ato 4

= The admissible heuristic must underestimate the true cost
h(A) = (est.costof AtoA)= 0

= So now, we have to compare:
f(m) =gm) + h(n)
f(A) =g(A)
* h(n) must be an underestimate of the true cost fromn to A
gn) + h(n) < g(4)
f(n) =7(A)

Optimality of A* Tree Search: Blocking

Proof:

" |magine B is on the fringe

= Some ancestor n of Ais on the
fringe, too (maybe Al)

= Claim: n will be expanded before B

1. f(n) =f(4)
2. f(4) =f(B)

Optimality of A* Tree Search: Blocking

2. f(A) < f(B)
= We know that:
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of Ato A) n -

f(B) = g(B) + h(B) = (path cost to B) + (est. cost of Bto B
= The heuristic must underestimate the true cost: A T
h(A) =h(B)=0
\

= So now, we have to compare:
fA) = g(4)
f(B) = g(B)
= We assumed that B is suboptimal! So
g(4) < g(B)
f(4) < f(B)

Optimality of A* Tree Search: Blocking

Proof:

" |magine B is on the fringe

Some ancestor n of A is
fringe, too (maybe Al)

Claim: n will be expanded before B

1. f(n) =f(4)

2. f(A) < f(B)

3. n expands before B
All ancestors of A expan
A expands before B
A* search is optimal

on the

dﬁ f(n) < f(A) < f(B) J

Properties of A*

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

" Uniform-cost expands equally in all

“directions”
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

g o el
I

MEMLI

" Video games

A* Applications

Pathing / routing problems
Resource planning problems
Robot motion planning

_anguage analysis

Video of Demo Pacman (Tiny Maze) — UCS / A*

File Edit MNavigate Search Project Run Window |Jelp

- $+0-Qr 0 F> @il prte Gy 7 [Pyder) £° Team
@ 1searchdemo enply =0
¢ e' 2 search -« contours greedy vs ucs (greedy) "
i & 3 search -- contours greedy vs ucs (ucs) c=
@ A search -- contours greedy vs ucs (astar)
e' S seacch - plan tiny astar
p' 6 search -« plan tiny ucs
& 7 vearch - g id', bad
& 8 search - greedy good
& 9 sesrch demo moze
@ vearch demno costs
Run As ’
Run Configurations...
Organize Favorites

s ™ nwa - = ™
[J Console : X % xgilFle] a @~m"~"0
<terminated> empty.tat
Nurkber of unigue ncdes expandea: 113 -

Fr ol ®

Video of Demo Empty Water Shallow/Deep — Guess Algorithm

File Edit Nawigste Search Project Run Window |jelp

B B~0~Q~ B ¥~ ¥ % 7 oy = T [Pydev | A° Team
1 search -- plan Liny astar ‘ =
4 2 seaech - plan try ucs | s
! 3 search demo empty =3

4 search -- contours greedy v ucs (greedy)
5 search -~ cantours greedy vs ucs (ucs)

§ search -- contours greedy vs ucs (astar)

[vearch -« greedy bad

8 search < groeedy good

9 search deme masze

search -.L‘?-c Costs

Run As ’

TEET L L

Run Corfigurations

Organize Favorites

J Console X % %G «@-r-=0
<terminated> 1 S
Tozal cost: 27 -

Numbey of nodea expanded: 182

Nunber of unigue nodes expanded: 182

Facman emxerges victoraigus! Scozxe: 573
'

["mum¥11ls
{ReEnl il

(0], 'resulra': ['Win’']), ‘numMovean‘: [27]), ‘'scarea’':

	Slide 1: Introduction to Artificial Intelligence
	Slide 2: Today
	Slide 3: Recap: Search
	Slide 4: Recap: Search
	Slide 5: The One Queue
	Slide 6: Search and Models
	Slide 7: Example: Pancake Problem
	Slide 8: Example: Pancake Problem
	Slide 9: Example: Pancake Problem
	Slide 10: General Tree Search
	Slide 11: Uninformed Search
	Slide 12: Uniform Cost Search
	Slide 13: Video of Demo Contours UCS Empty
	Slide 14: Video of Demo Contours UCS Pacman Small Maze
	Slide 15: Informed Search
	Slide 16: Search Heuristics
	Slide 17: Example: Heuristic Function
	Slide 18: Example: Heuristic Function
	Slide 19: Greedy Search
	Slide 20: Greedy Search
	Slide 21: Greedy Search
	Slide 22: Video of Demo Contours Greedy (Empty)
	Slide 23: Video of Demo Contours Greedy (Pacman Small Maze)
	Slide 24: A* Search
	Slide 25: A* Search
	Slide 26: Combining UCS and Greedy
	Slide 27: When should A* terminate?
	Slide 28: Is A* Optimal?
	Slide 29: Admissible Heuristics
	Slide 30: Idea: Admissibility
	Slide 31: Admissible Heuristics
	Slide 32: Consistent Heuristics
	Slide 33: Optimality of A* Tree Search
	Slide 34: Optimality of A* Tree Search
	Slide 36: Optimality of A* Tree Search: Blocking
	Slide 37: Optimality of A* Tree Search: Blocking
	Slide 39: Optimality of A* Tree Search: Blocking
	Slide 40: Optimality of A* Tree Search: Blocking
	Slide 41: Optimality of A* Tree Search: Blocking
	Slide 42: Properties of A*
	Slide 43: Properties of A*
	Slide 44: UCS vs A* Contours
	Slide 45: Video of Demo Contours (Empty) -- UCS
	Slide 46: Video of Demo Contours (Empty) -- Greedy
	Slide 47: Video of Demo Contours (Empty) – A*
	Slide 48: Video of Demo Contours (Pacman Small Maze) – A*
	Slide 49: Comparison
	Slide 50: A* Applications
	Slide 51: A* Applications
	Slide 52: Video of Demo Pacman (Tiny Maze) – UCS / A*
	Slide 53: Video of Demo Empty Water Shallow/Deep – Guess Algorithm

