
Introduction to Artificial Intelligence

Informed Search

Instructor: Tatjana Petrov

University of Trieste, Italy
[slides adapted from Dan Klein, Pieter Abbeel, Stuart Russell, et al for CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

Tatjana Petrov R

Today

▪ Informed Search

▪ Heuristics

▪ Greedy Search

▪ A* Search

Recap: Search

Recap: Search

▪ Search problem:
▪ States (configurations of the world)

▪ Actions and costs

▪ Successor function (world dynamics)

▪ Start state and goal test

▪ Search tree:
▪ Nodes: represent plans for reaching states

▪ Plans have costs (sum of action costs)

▪ Search algorithm:
▪ Systematically builds a search tree

▪ Chooses an ordering of the fringe (unexplored nodes)

▪ Optimal: finds least-cost plans

The One Queue

All these search algorithms are the
same except for fringe strategies
Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)

Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

Can even code one implementation
that takes a variable queuing object

Search and Models

Search operates over models of
the world

The agent doesn’t actually try all
the plans out in the real world!

Planning is all “in simulation”

Your search is only as good as
your models…

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3

4

3

4

2

General Tree Search

Action: flip top two
Cost: 2

Action: flip all four
Cost: 4

Path to reach goal:
Flip four, flip three

Total cost: 7

Uninformed Search

Uniform Cost Search

▪ Strategy: expand lowest path cost

▪ The good: UCS is complete and optimal!

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

Start Goal

…

c  3

c  2

c  1

Video of Demo Contours UCS Empty

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Search Heuristics

▪ An heuristic function ℎ(𝑛):
▪ Estimates how close a state 𝑛 is to a goal

▪ Designed for a particular search problem

▪ Examples: Manhattan distance, Euclidean distance for pathing

10

5

11.2

Example: Heuristic Function

h(x)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

4

3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Greedy Search

Greedy Search

▪ Expand the node that seems closest…
i.e. evaluation function 𝑓(𝑛) = ℎ(𝑛)

▪ What can go wrong?

Straight-line distances

Greedy Search

▪ Strategy: expand a node that you think is
closest to a goal state
▪ Heuristic: estimate of distance to nearest goal for

each state

▪ A common case:
▪ Best-first takes you straight to the (wrong) goal

▪ Worst-case: like a badly-guided DFS

…
b

…
b

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

UCS Greedy

A*

Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)

▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1
1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

▪ Should we stop when we enqueue a goal?

▪ No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0h = 3

Is A* Optimal?

▪ What went wrong?

▪ Actual bad goal cost < estimated good goal cost

▪ We need estimates to be less than actual costs!

A

GS

1 3

h = 6

h = 0

5

h = 7

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down
bad plans but never outweigh true costs

Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4
15

Consistent Heuristics

▪ A heuristic ℎ is consistent if, for every node 𝑛 and every
successor 𝑛′ of 𝑛 generated by an action 𝑎, we have:

ℎ(𝑛) ≤ 𝑐(𝑛, 𝑎, 𝑛′) + ℎ(𝑛′)

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

▪ A is an optimal goal node

▪ B is a suboptimal goal node

▪ h is admissible

Claim:

▪ A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. 𝑓(𝑛) ≤ 𝑓(𝐴)

…

Optimality of A* Tree Search: Blocking

1. 𝑓(𝑛) ≤ 𝑓(𝐴)

▪ Definition of f-cost says:
𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) =(path cost to n) + (est. cost of n to A)
𝑓(𝐴) = 𝑔(𝐴) + ℎ(𝐴) =(path cost to A) + (est. cost of A to A)

▪ The admissible heuristic must underestimate the true cost
ℎ(𝐴) = (est. cost of A to A) = 0

▪ So now, we have to compare:
𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)
𝑓(𝐴) = 𝑔(𝐴)

▪ ℎ(𝑛) must be an underestimate of the true cost from n to A
𝑔 𝑛 + ℎ 𝑛 ≤ 𝑔 𝐴

 𝑓(𝑛) ≤ 𝑓(𝐴)

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. 𝑓(𝑛) ≤ 𝑓(𝐴)

2. 𝑓(𝐴) ≤ 𝑓(𝐵)

…

Optimality of A* Tree Search: Blocking

2. 𝑓(𝐴) ≤ 𝑓(𝐵)

▪ We know that:
𝑓(𝐴) = 𝑔(𝐴) + ℎ(𝐴) = (path cost to A) + (est. cost of A to A)
𝑓(𝐵) = 𝑔(𝐵) + ℎ(𝐵) = (path cost to B) + (est. cost of B to B)

▪ The heuristic must underestimate the true cost:
ℎ(𝐴) = ℎ(𝐵) = 0

▪ So now, we have to compare:
𝑓 𝐴 = 𝑔 𝐴

 𝑓(𝐵) = 𝑔(𝐵)

▪ We assumed that B is suboptimal! So

 𝑔 𝐴 < 𝑔 𝐵

 𝑓(𝐴) < 𝑓(𝐵)

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n of A is on the
fringe, too (maybe A!)

▪ Claim: n will be expanded before B

1. 𝑓(𝑛) ≤ 𝑓(𝐴)

2. 𝑓 𝐴 < 𝑓 𝐵

3. 𝑛 expands before B

▪ All ancestors of A expand before B

▪ A expands before B

▪ A* search is optimal

…

Properties of A*

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

▪ Uniform-cost expands equally in all
“directions”

▪ A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy Uniform Cost A*

A* Applications

A* Applications

▪ Video games

▪ Pathing / routing problems

▪ Resource planning problems

▪ Robot motion planning

▪ Language analysis

▪ …

Video of Demo Pacman (Tiny Maze) – UCS / A*

Video of Demo Empty Water Shallow/Deep – Guess Algorithm

	Slide 1: Introduction to Artificial Intelligence
	Slide 2: Today
	Slide 3: Recap: Search
	Slide 4: Recap: Search
	Slide 5: The One Queue
	Slide 6: Search and Models
	Slide 7: Example: Pancake Problem
	Slide 8: Example: Pancake Problem
	Slide 9: Example: Pancake Problem
	Slide 10: General Tree Search
	Slide 11: Uninformed Search
	Slide 12: Uniform Cost Search
	Slide 13: Video of Demo Contours UCS Empty
	Slide 14: Video of Demo Contours UCS Pacman Small Maze
	Slide 15: Informed Search
	Slide 16: Search Heuristics
	Slide 17: Example: Heuristic Function
	Slide 18: Example: Heuristic Function
	Slide 19: Greedy Search
	Slide 20: Greedy Search
	Slide 21: Greedy Search
	Slide 22: Video of Demo Contours Greedy (Empty)
	Slide 23: Video of Demo Contours Greedy (Pacman Small Maze)
	Slide 24: A* Search
	Slide 25: A* Search
	Slide 26: Combining UCS and Greedy
	Slide 27: When should A* terminate?
	Slide 28: Is A* Optimal?
	Slide 29: Admissible Heuristics
	Slide 30: Idea: Admissibility
	Slide 31: Admissible Heuristics
	Slide 32: Consistent Heuristics
	Slide 33: Optimality of A* Tree Search
	Slide 34: Optimality of A* Tree Search
	Slide 36: Optimality of A* Tree Search: Blocking
	Slide 37: Optimality of A* Tree Search: Blocking
	Slide 39: Optimality of A* Tree Search: Blocking
	Slide 40: Optimality of A* Tree Search: Blocking
	Slide 41: Optimality of A* Tree Search: Blocking
	Slide 42: Properties of A*
	Slide 43: Properties of A*
	Slide 44: UCS vs A* Contours
	Slide 45: Video of Demo Contours (Empty) -- UCS
	Slide 46: Video of Demo Contours (Empty) -- Greedy
	Slide 47: Video of Demo Contours (Empty) – A*
	Slide 48: Video of Demo Contours (Pacman Small Maze) – A*
	Slide 49: Comparison
	Slide 50: A* Applications
	Slide 51: A* Applications
	Slide 52: Video of Demo Pacman (Tiny Maze) – UCS / A*
	Slide 53: Video of Demo Empty Water Shallow/Deep – Guess Algorithm

