1 Search and Heuristics

Imagine a car-like agent wishes to exit a maze like the one shown below:
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1. The agent is directional and at all times faces some direction d € (N, S, E,W).

2. With a single action, the agent can either move forward at an adjustable velocity v or turn. The turning
actions are left and right, which change the agent’s direction by 90 degrees. Turning is only permitted
when the velocity is zero (and leaves it at zero).

3. The moving actions are fast and slow. Fast increments the velocity by 1 and slow decrements the velocity
by 1; in both cases the agent then moves a number of squares equal to its NEW adjusted velocity (see
example below).

4. A consequence of this formulation is that it is impossible for the agent to move in the same nonzero
velocity for two consecutive timesteps.

5. Any action that would result in a collision with a wall or reduce v below 0/above a maximum speed Vijpax
is illegal.

6. The agent’s goal is to find a plan which parks it (stationary) on the exit square using as few actions (time
steps) as possible.

As an example: if at timestep t the agent’s current velocity is 2, by taking the fast action, the agent first
increases the velocity to 3 and move 3 squares forward, such that at timestep ¢ 4+ 1 the agent’s current velocity
will be 3 and will be 3 squares away from where it was at timestep ¢. If instead the agent takes the slow action,
it first decreases its velocity to 1 and then moves 1 square forward, such that at timestep ¢ + 1 the agent’s
current velocity will be 1 and will be 1 squares away from where it was at timestep ¢. If, with an instantaneous
velocity of 1 at timestep ¢ + 1, it takes the slow action again, the agent’s current velocity will become 0, and it
will not move at timestep ¢ 4+ 1. Then at timestep ¢ + 2, it will be free to turn if it wishes. Note that the agent
could not have turned at timestep ¢ + 1 when it had a current velocity of 1, because it has to be stationary to
turn.

(a) If the grid is M by N, what is the size of the state space? Justify your answer. You should assume that
all configurations are reachable from the start state.
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(b)

(c)

The size of the state space is 4M N (V. + 1). The state representation is (direction facing, x, y, speed).
Note that the speed can take any value in {0, ..., Viyaz }-

Is the Manhattan distance from the agent’s location to the exit’s location admissible? Why or why not?

No, Manhattan distance is not an admissible heuristic. The agent can move at an average speed of greater
than 1 (by first speeding up to Vj,4. and then slowing down to 0 as it reaches the goal), and so can reach
the goal in less time steps than there are squares between it and the goal. A specific example: A timestep
0, the agent’s starts stationary at square 0 and the target is 9 squares away at square 9. At timestep 0,
the agent takes the fast action and ends up at square 1 with a velocity of 1. At timestep 1, the agent
takes the fast action and ends up at square 3 with a velocity of 2. At timestep 2, the agent takes the fast
action and ends up at square 6 with a velocity of 3. At timestep 3, the agent takes the slow action and
ends up at square 8 with a velocity of 2. At timestep 4, the agent takes the slow action and ends up at
square 9 with a velocity of 1. At timestep 5, the agent takes the slow action and stays at square 9 with a
velocity of 0. Therefore, the agent can move 9 squares by taking 6 actions.

State and justify a non-trivial admissible heuristic for this problem which is not the Manhattan distance
to the exit.

There are many answers to this question. Here are a few, in order of weakest to strongest:

(a) The number of turns required for the agent to face the goal.

(b) Counsider a relaxation of the problem where there are no walls, the agent can turn, change speed
arbitrarily, and maintain constant velocity. In this relaxed problem, the agent would move with
Vinaz, and then suddenly stop at the goal, thus taking diannattan/Vimas time.

(¢c) We can improve the above relaxation by accounting for the acceleration and deceleration dynamics.
In this case the agent will have to accelerate from 0 from the start state, maintain a constant velocity
of V,ax, and slow down to 0 when it is about to reach the goal. Note that this heuristic will always
return a greater value than the previous one, but is still not an overestimate of the true cost to reach
the goal. We can say that this heuristic dominates the previous one.

In particular, let us assume that d,anhattan 1S greater than and equal to the distance it takes to
accelerate to and decelerate from V4, (In the case that dannattan 1S smaller than this distance,
we can still use dpmanhattan/Vimaz as a heuristic). We can break up the diannattan into three parts:
daccels dv,, ., and dgece;. The agent travels a distance of dgecer When it accelerates from 0 to Viax
velocity. The agent travels a distance of dge.e; when it decelerates from V,,,,, to 0 velocity. In between
acceleration and deceleration, the agent travels a distance of dy, . = dmanhattan — accel — ddecel-
daccel =14+2+3+ Vmam — W and ddecel — (Vmaw - 1) + (Vmam - 2) +..+14+0=
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takes V42 steps to travel the initial dgecer, Tr—mar steps to travel the middle dy,,,, and
Vinaz steps to travel the last dgece;. Therefore, our heuristic is
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(d)

(e)

(f)

If we used an inadmissible heuristic in A* graph search, would the search be complete? Would it be
optimal?

If the heuristic function is bounded, then A* graph search would visit all the nodes eventually, and would
find a path to the goal state if there exists one. An inadmissible heuristic does not guarantee optimality
as it can make the good optimal goal look as though it is very far off, and take you to a suboptimal goal.

If we used an admissible heuristic in A* graph search, is it guaranteed to return an optimal solution?
What if the heuristic was consistent? What if we were using A* tree search instead of A* graph search?

Although admissible heuristics guarantee optimality for A* tree search, they do not necessarily guarantee
optimality for A* graph search; they are only guaranteed to return an optimal solution if they are consistent
as well.

Give a general advantage that an inadmissible heuristic might have over an admissible one.

The time to solve an A* search problem is a function of two factors: the number of nodes expanded, and
the time spent per node. An inadmissible heuristic may be faster to compute, leading to a solution that
is obtained faster due to less time spent per node. It can also be a closer estimate to the actual cost
function (even though at times it will overestimate!), thus expanding less nodes. We lose the guarantee of
optimality by using an inadmissible heuristic. But sometimes we may be okay with finding a suboptimal
solution to a search problem.



Q2. Pacfriends Unite

Pacman and his Pacfriends have decided to combine forces and go on the offensive, and are now chasing ghosts
instead! In a grid of size M by N, Pacman and P — 1 of his Pacfriends are moving around to collectively
eliminate all of the ghosts in the grid by stepping on the same square as each of them. Moving onto the same
square as a ghost will eliminate it from the grid, and move the Pacman into that square.

Every turn, Pacman and his Pacfriends may choose one of the following four actions: left, right, up, down, but
may not collide with each other. In other words, any action that would result in two or more Pacmen occupying
the same square will result in no movement for either Pacman or the Pacfriends. Additionally, Pacman and his
Pacfriends are indistinguishable from each other. There are a total of G ghosts, which are indistinguishable
from each other, and cannot move.

Treating this as a search problem, we consider each configuration of the grid to be a state, and the goal state to
be the configuration where all of the ghosts have been eliminated from the board. Below is an example starting
state, as well as an example goal state:

)

(a) Possible Start State (b) Possible Goal State

Assume each of the following subparts are independent from each other. Also assume that regardless of
how many Pacmen move in one turn, the total cost of moving is still 1.

(a) Suppose that Pacman has no Pacfriends, so P = 1.

(i) What is the size of the minimal state space representation given this condition? Recall that P = 1.
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Since P = 1, we only need to keep track of the position of Pacman, as well as whether each of the G
ghosts has been eliminated. We can keep track of this with M N and 29 respectively; therefore, the
size of the minimal representation is the product of the two, which is M N (2)“. Note that we do not
need to keep track of the ghosts’ positions since they are stationary.

For each of the following heuristics, select whether the heuristic is only admissible, only consistent, neither,
or both. Recall that P = 1.
Note that consistency implies admissibility, so just ’consistent’ will never be the correct answer.

(ii) h(n) = the sum of the Manhattan distances from Pacman to every ghost.
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In this case, we can consider a dummy example, such that all the ghosts are adjacent and lined up
horizontally, and Pacman is one square to their left. If there are three ghosts, then the sum of their
Manhattan distances from Pacman is 1 + 2 + 3 = 6, which is an overestimate of the actual cost 3,
since the Pacman only needs to move three spaces to actually eliminate all the ghosts.



(iii) h(n) = the number of ghosts times the maximum Manhattan distance between Pacman and any of

the ghosts.
(O only admissible @ ncither
(O only consistent O both

Considering the same example as in the previous part, this heuristic also overestimates the cost, since
the number of ghosts x Manhattan distance between Pacman and the furthest ghost is 3x3 =9 > 3.
This question was randomized to say 'minimum Manhattan distance’ as well, but the answer is still
neither. Consider the case where Pacman is very far from the closest ghost, but all the ghosts are
next to each other. The heuristic will give us an overestimate to collect all the ghosts, because going
the minimum distance value to each ghost is an overestimate once you've reached the closest ghost.

(iv) h(n) = the number of remaining ghosts.
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Without his Pacfriends, Pacman can only eliminate at most one ghost each turn, and therefore the
number of ghosts will be a lower bound on the number of moves necessary to eliminate all the ghosts,
making this heuristic admissible. Additionally, since between moves, the number of ghosts can only
be reduced by at most one, the heuristic is also consistent.

(b) Suppose that Pacman has exactly one less Pacfriend than there are number of ghosts; therefore P = G.
Recall that Pacman and his Pacfriends are indistinguishable from each other.

(i) What is the size of the minimal state space representation given this condition? Recall that P = G.
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Since P can be any number of Pacman and Pacfriends, arbitrarily equal to G, we need to keep track
of the position of all the Pacmen, as well as whether each of the G ghosts has been eliminated;
however, since the Pacmen are indistinguishable from each other, we can consider states where
different Pacmen have swapped positions to be the same. Therefore, we can keep track of unique
Pacmen configurations using (JV;N ), which is the number of ways to select P Pacman positions from
a grid of M by N. Therefore, the size of the minimal representation is the product of this and 2%,
which is (*V)2¢.

For each of the following heuristics, select whether the heuristic is only admissible, only consistent, neither,

or both. Recall that P = G.

Note that consistency implies admissibility, so just 'consistent’ will never be the correct answer.

(ii) h(n) = the largest of the Manhattan distances between each Pacman and its closest ghost.

(O only admissible @ ncither
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Consider the case where we have two Pacmen and two ghosts, and one Pacman is very close to both
ghosts, while the other is very far away. This heuristic would overestimate the cost since it would
take the distance from the furthest Pacman to the ghosts as its metric, when the closer Pacman could
just eliminate both ghosts quicker.

(iii) h(n) = the smallest of the Manhattan distances between each Pacman and its closest ghost.



(iv)
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At minimum, it will take the smallest of the distances between each Pacman and its closest ghost for
any of the ghosts to be eliminated. Therefore this heuristic will always underestimate the true cost
and is therefore admissible. To see that this is consistent, we can say that the difference between
h(a) — h(b) for going from any state to the next state is an underestimate of the cost between states.
In fact, consider the scenario with two Pacmen and two ghosts, where one ghost is next to one Pacman
and far from the other, while the other ghost is far from both. The heuristic for this state will be 1,
since one of the ghosts is adjacent to one of the Pacmen, but as soon as that Pacman eliminates that
ghost, the subsequent state will have a much larger heuristic value, since the minimum Manhattan
distance between either Pacman and the remaining ghost will be very high; even in this edge case,
h(A) — h(B) will be negative, meaning that it is still an underestimate of the cost between states.
Therefore, the heuristic is consistent.

h(n) = the number of remaining ghosts.
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Since multiple ghosts could be eliminated in one move because there is more than one Pacman
eliminating them, this heuristic can overestimate the cost to the goal state, and is therefore neither
consistent nor admissible.

__ number of remaining ghosts
h(n) = P ‘
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Since we are given that P = G, the maximum value of this heuristic is 1, since hg(n) is at most
G. Therefore this heuristic is admissible since it has a value always less than or equal to 1, the cost
of taking a turn, and when there are no remaining ghosts left, the heuristic evaluates to 0, so it
will underestimate the cost to the goal state. It is also consistent since the heuristic value decreases
fractionally in increments less than 1, and so it always underestimates the cost between two states.



