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Dynamical Systems

• Most natural model for describing most physical systems

• Continuous/discrete systems that continuously evolve over time

• It is represented by differential equations that involve the rates of change of 
quantities

• Quantities describe the state of the phenomena, modeled as state variables
• Pressure, Temperature, Velocity, Acceleration, Current, Voltage, etc.

• Could include algebraic relations between state variables



Continuous-time Component (Algebraic)
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error = (x – xref)

real x

real xref

real error

 Input variables: x and xref of type real, Output variable: error of type real

 No state variables

 Signals: Assignments of values to variables as a function of time

 At each time t, error(t) = x(t) – xref(t)

 Input/Output relation expressed algebraically instead of as an assignment 
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Input u(t) Output y(t)

ሶ𝐱 = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)

Continuous-time component (differential)

𝑥, 𝑢 ∈ 𝐶𝑃



Model of a simple car

Position 𝑥

Velocity 𝑣

Force 𝐹

Friction 𝑘𝑣

Newton’s law of motion: 𝐹 = 𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑘𝑣 ; 𝑣 =

𝑑𝑥

𝑑𝑡



State-Space representation
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ሶ𝐱 = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)

Example:
               Convert 

➢ It is numerically efficient to solve
➢ It can handle complex systems
➢ It  allows for a more geometric understanding of dynamic systems
➢ It  forms the basis for much of modern control theory

ሶ𝑥 = 𝑣 𝑡

ሶ𝑣 =
𝐹 𝑡 − 𝑘𝑣 𝑡

𝑚



State-Space representation
All derivatives are with respect to single independent variable, often representing time.

Order of ODE is determined by highest-order derivative of state variable function appearing 
in ODE

ODE with higher-order derivatives can be transformed into equivalent first-order system.

𝑥(𝑘) = 𝑓(𝑥,… , 𝑥 𝑘−1 )

𝑧1 = 𝑥, 𝑧2 = ሶ𝑥, … , 𝑧𝑘= 𝑥(𝑘−1)

ሶ𝑧1
ሶ𝑧2
ሶ𝑧3
.
.
.
ሶ𝑧𝑘

𝑧2
𝑧3
𝑧4
.
.
.

𝑓(𝑥,… , 𝑥 𝑘−1 )

=



Model of a simple car
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𝑚
𝑑2𝑥

𝑑𝑡2
= 𝐹 − 𝑘𝑣

𝑣 =
𝑑𝑥

𝑑𝑡

𝐹

real 𝑥𝑙𝑜𝑤 ≤ 𝑥 ≤ 𝑥ℎ𝑖𝑔ℎ

ሶ𝑥 = 𝑣

real 𝑣𝑙𝑜𝑤 ≤ 𝑣 ≤ 𝑣ℎ𝑖𝑔ℎ

ሶ𝑣 =
𝐹 − 𝑘𝑣

𝑚

𝑥
𝑣

 Rate of change of 
each state variable 
and output variables 
defined using 
expressions over 
inputs and states

Expressions, not 
assignments!



 Let 𝕋 represent a set representing time instants, i.e. 𝕋 ⊆ ℝ≥0

 Input Signal: Function 𝐹 from 𝕋 → ℝ
 Input signal is assumed to be continuous or piecewise-continuous

 Given an initial state (𝑥0, 𝑣0) and an input signal 𝐹(𝑡), the execution of the system 
is defined by state-trajectories 𝑥 𝑡 and 𝑣 𝑡 (from 𝕋 to ℝ) that satisfy the initial-
value problem:

 𝑥 0 = 𝑥0; 𝑣 0 = 𝑣0

 ሶ𝑥 = 𝑣 𝑡 ; ሶ𝑣 =
𝐹 𝑡 −𝑘𝑣 𝑡

𝑚

Executions of Car
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Suppose ∀𝑡: 𝐹 𝑡 = 0, 𝑥0 = 5 m, 𝑣0 = 20 m/s, 𝑚 = 1000kg, 𝑘 = 50𝑁𝑠/𝑚

 Then, we need to solve:
 𝑥 0 = 5; 𝑣 0 = 20

 ሶ𝑥 = 𝑣; ሶ𝑣 = −
𝑘𝑣

𝑚

 Solution to above differential equation (solve for 𝑣 first, then 𝑥):

𝑣 𝑡 = 𝑣0𝑒
−
𝑘𝑡

𝑚 ; 𝑥 𝑡 =
𝑚𝑣0

𝑘
1 − 𝑒−

𝑘𝑡

𝑚

 Note, as 𝑡 → ∞, 𝑣 𝑡 → 0, and 𝑥 𝑡 →
𝑚𝑣0

𝑘

Sample Execution of Car
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Plots
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Differential Equation 

Example: Temperature equations

𝑑𝑇

𝑑𝑡
= −𝑎𝑇 + 𝑇𝑒𝑥𝑡 + 𝐾𝐻𝑢

The state of the system is characterized by state variables, which describe the system. The rate of change is 
(usually) expressed with respect to time



 Set 𝐼 of real-valued input variables 

 Set 𝑂 or real-valued output variables

 Set 𝑋 of real-valued (continuous) state variables

 Initialization 𝐼𝑛𝑖𝑡 specifying a set 𝑋0of initial values for states

 Dynamics: for each state variable, 𝑥, a real valued expression 𝑓 over 𝐼 and 𝑋

 Output Function: for each output variable, 𝑦, a real valued expression ℎ over 𝐼 and 𝑋.

Continuous-Time Component Definition
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 Convention: 𝐱 = 𝑥1, 𝑥2, … 𝑥𝑛 , 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑚)

 Given an input signal 𝑢: 𝕋 → ℝ, an execution consists of a differentiable 
state signal 𝐱 t , and an output signal 𝐲 𝑡 , such that:
1. 𝐱 0 ∈ 𝑋0
2. For each output variable 𝑦 and time t, 𝑦 𝑡 = ℎ 𝑢 𝑡 , 𝑥 𝑡

3. For each state variable 𝑥, 
𝑑

𝑑𝑡
𝑥 𝑡 = 𝑓(𝑢 𝑡 , 𝑥 𝑡 )

Execution Definition
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Input u(t) Output y(t)

ሶ𝐱 = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)



Order Differential Equation 

𝑢

real 𝑥𝑙𝑜𝑤 ≤ 𝑥 ≤ 𝑥ℎ𝑖𝑔ℎ

𝑦

ሶ𝐱 = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)



 Given an input signal 𝑢(𝑡), when are we guaranteed that the system has at least 
one execution? Is there nondeterminism in continuous-time components?

 Input signal should be piecewise-continuous, and additional conditions need to be 
imposed on the RHS of dynamics (𝑓) and output functions (ℎ)

 Related to solutions for the initial value problem in the classical theory of ODEs

Existence and Uniqueness of Solutions
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ሶ𝐱 = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)



 There exists at least one solution 𝐱(𝑡) if the function 𝑓 is continuous

 Definition of continuity uses notion of distance between points
 Euclidean distance: 𝑑 𝐱, 𝐲 = 𝐱 − 𝐲 2 = 𝑥1 − 𝑦1

2 +⋯+ 𝑥𝑛 − 𝑦𝑛
2

 𝑓 is continuous if for all 𝐱 ∈ ℝ𝑛, for all 𝜖 > 0, there exists a 𝛿 > 0, such that for all 
𝐲 ∈ ℝ𝑛, if 𝐱 − 𝐲 2 < 𝛿, then 𝑓 𝐱 − 𝑓 𝐲 2 < 𝜖.

 Example when solution does not globally exist:



𝑑𝑥

𝑑𝑡
= ቊ

1 if x = 0
0 otherwise



𝑑𝑥

𝑑𝑡
= 1/𝑡

Existence

17



 Solution to initial value problem is unique if 𝑓 is Lipschitz continuous

 Lipschitz-continuity is a stronger version of continuity: upper bounds how fast a function 
can change

 Function 𝑓 is Lipschitz-continuous if there exists a constant 𝐿 (called the Lipschitz 
constant) such that: 

∀𝐱, 𝐲 ∈ ℝ𝑛: 𝑓 𝐱 − 𝑓 𝐲 ≤ 𝐿 𝐱 − 𝐲

 Examples: 
 Linear functions (e.g. 𝑥1 − 3𝑥2) are Lipschitz continuous
 Functions: 𝑥2, 𝑥 are not Lipschitz continuous over ℝ𝑛

 Can restrict 𝕋 and 𝑋 to some bounded and closed set such that 𝑓 is piecewise-continuous 
and Lipschitz to get unique solutions over such compact domains

Uniqueness

18



 Allow modeling arbitrarily complex functions: even functions with 
unbounded discontinuities 

 May not be even possible to check for Lipschitz conditions for what’s 
implemented in a Matlab function/Simulink model

 Rely on numerical integration schemes/solvers to obtain solutions
 ode45, ode23, ode15, etc.

What do numeric solvers/simulators do?
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 Equation of simple car dynamics can be written compactly as:

ሶ𝑥
ሶ𝑣
=

0 1
0 −𝑘/𝑚

𝑥
𝑣

+
0
1
[𝐹]

 Letting 𝐴 =
0 1
0 −𝑘/𝑚

, 𝐵 =
0
1

, we can re-write above equation in the 

form:

 ሶ𝐱 = 𝐴𝐱 + B𝐮, where 𝐱 = 𝑥 𝑣 , and 𝐮 = 𝐹

Linear Systems

20



Linear Dynamical Systems
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 Special kind of dynamical system
ሶ𝐱 = 𝒇 𝐱, 𝐮
𝒚 = 𝒉(𝐱, 𝐮)

 𝑓 is of the form 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 + 𝑏1𝑢1 +⋯+ 𝑏𝑚𝑢𝑚 or compactly, 𝑓 = 𝐴𝐱 + 𝐵𝐮

 ℎ is of the form 𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛 + 𝑑1𝑢1 +⋯+ 𝑑𝑚𝑢𝑚 or compactly, ℎ = 𝐶𝐱 + 𝐷𝐮

 Linear algebra was invented to reason about linear systems!

 Linear systems have many nice properties: 
 Many analysis methods in the frequency domain (using Fourier/Laplace transform 

methods)

 Superposition principle (net response to two or more stimuli is the sum of responses to 
each stimulus)



 Autonomous linear system has no inputs: ሶ𝐱 = 𝐴𝐱

 Solution of autonomous linear system can be fully characterized:
 𝐱 𝑡 = 𝑒𝐴𝑡𝐱0
 Computing 𝑒𝐴 is easy if 𝐴 is a diagonal matrix (non-zero elements are only on the 

diagonal)

 For a linear system with exogenous inputs?

 𝑥 𝑡 = 𝑒𝐴𝑡𝑥0 + 
0

𝑡
𝑒𝐴 𝑡−𝜏 𝐵𝑢 𝜏 𝑑𝜏

 In practice, numerical integration methods outperform matrix exponential

Solutions to Linear Systems
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Model with disturbance

Newton’s law of motion: 𝐹 = 𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑘𝑣 +𝑚𝑔 sin(𝜃)

𝜃



Model with disturbance
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𝐹

real 𝑥𝑙𝑜𝑤 ≤ 𝑥 ≤ 𝑥ℎ𝑖𝑔ℎ

ሶ𝑥 = 𝑣

real 𝑣𝑙𝑜𝑤 ≤ 𝑣 ≤ 𝑣ℎ𝑖𝑔ℎ

ሶ𝑣 =
𝐹 − 𝑘𝑣 −𝑚𝑔𝑠𝑖𝑛𝜃

𝑚

𝑣

𝜃



Time Invariant System 
The system is time invariant because the output does not depend on the particular 

time the input is applied.

The underlying physical laws themselves do not typically depend on time.



 Property capturing the ability of a system to return to a quiescent state after 
perturbation
 Stable systems recover after disturbances, unstable systems may not

 Almost always a desirable property for a system design

 Fundamental problem in control: design controllers to stabilize a system

Stability of Systems
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 Problem: Cart-pole is inherently unstable, aim: keep it upright

 Solution Strategy: Move cart in direction in the same direction 
as the pendulum’s falling direction

 Design problem: Design a controller to stabilize the system by 
computing velocity and direction for cart travel



 System ሶ𝐱 = 𝑓 𝐱 with f Lipschitz continuous

 Equilibrium point when 𝑓 𝐱 is zero (say 𝐱∗)

 Equilibrium point 𝐱∗ is Lyapunov-stable if:
 For every 𝜖 > 0, 

 There exists a 𝛿 > 0, such that

• if 𝐱 0 − 𝐱∗ < 𝛿, then, 

• for every 𝑡 ≥ 0, we have 𝐱 𝑡 − 𝐱∗ < 𝜖

Lyapunov stability
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𝐱∗

𝛿-ball

𝐱(0)

𝜖-ball

Solutions starting 𝛿close from equilibrium point 
must remain close (within 𝜖) forever



 System ሶ𝐱 = 𝑓 𝐱

 Equilibrium point 𝐱∗ is asymptotically-stable if:
 𝐱∗ is Lyapunov-stable +

 There exists 𝛿 > 0 s.t. if 𝐱 0 − 𝐱∗ < 𝛿, then lim
𝑡→∞

‖𝐱 𝑡 − 𝐱∗‖ = 0

Asymptotic Stability
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Solutions not only remain close, but also converge to the equilibrium



Solutions not only converge to the equilibrium, but in fact converge at least as 
fast as a known exponential rate

 All stable linear systems are exponentially stable

 This need not be true for nonlinear systems!

Exponential Stability

 System ሶ𝐱 = 𝑓 𝐱

 Equilibrium point 𝐱∗ is exponentially-stable if:
 𝐱∗is asymptotically stable +

 There exist 𝛼 > 0, 𝛽 > 0 s.t. if 𝐱 0 − 𝐱∗ < 𝛿, then for all 𝑡 ≥ 0:

𝐱 𝑡 − 𝐱∗ ≤ 𝛼 𝐱 0 − 𝐱∗ 𝑒−𝛽𝑡



 Eigenvalues of a matrix 𝐴:
 Value 𝜆 satisfying the equation 𝐴𝐯 = λ𝐯. 𝐯 is called the eigenvector

 Equivalent to saying: values satisfying 𝐴 − 𝜆𝐼 = 0, where 𝐼 is the identity matrix

 Interesting result for linear systems: System ሶ𝐱 = 𝐴𝐱 is asymptotically stable 
if and only if every eigenvalue of 𝐴 has a negative real part

 Lyapunov stable if and only if every eigenvalue has non-positive real part

 Nonlinear systems: no simple analysis technique exists
 Lyapunov’s methods allow reasoning about stability of nonlinear systems

Analyzing stability for linear systems
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 Manual way: solve the characteristic equation of the matrix 𝐴

𝐴 =
1 −1
3 2

 Characteristic equation: 𝐴 − 𝜆𝐼 = 0, i.e.
1 − 𝜆 −1
3 2 − 𝜆

= 0, or 1 − 𝜆 2 − 𝜆 + 3 = 0

 𝜆2 − 3𝜆 + 2 + 3 = 0

 i.e., 𝜆 =
3 ± 9−4×5

2
= 1.5 ± 1.65𝑖

 Real part is positive ⇒ 𝐴 represents an unstable linear system

Stability analysis example for linear systems
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𝐴 =
1 −1
3 −2

 Characteristic equation: 𝐴 − 𝜆𝐼 = 0, i.e.

1 − 𝜆 −1
3 −2 − 𝜆

= 0, or 1 − 𝜆 −2 − 𝜆 + 3 = 0

 𝜆2 + 𝜆 − 2 + 3 = 0

 i.e., 𝜆 =
−1± −3

2
= −0.5 ± 𝑖 3

 Real part is negative ⇒ 𝐴 represents a stable linear system

Stability analysis example for linear systems
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 A signal 𝐱 is bounded if there is a 
constant 𝑐, s.t. ∀𝑡: 𝐱 t < c

 Bounded signals:
 Constant signal : 𝑥 𝑡 = 1

 Exponential signal: 𝑥 𝑡 = 𝑎𝑒𝑏𝑡, for 𝑏 ≤ 0

 Sinusoidal signals: 𝑥 𝑡 = 𝑎sin 𝜔𝑡

 Not bounded: 
 𝑥 𝑡 = 𝑎 + 𝑏𝑡 for any 𝑏 ≠ 0

 Exponential signal: 𝑥 𝑡 = 𝑎𝑒𝑏𝑡, for 𝑏 > 0

Bounded signals
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𝑡

‖𝑥‖

𝑡

‖𝑥‖

𝑡

‖𝑥‖

𝑡

‖𝑥‖

𝑡

‖𝑥‖



The dynamical system is seen as a transformer, mapping input signals to 
output signals, and demands that a small change to the input signal 
should cause only a small change to the output signal. 

 A system with Lipschitz-continuous dynamics is BIBO-stable if:

For every bounded input 𝐮 𝑡 , the output 𝐲(𝑡) from initial state 
𝐱 0 = 0 is bounded

Bounded-Input-Bounded-Output (BIBO) stability
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Difference Equation 

𝑢

real 𝑥𝑙𝑜𝑤 ≤ 𝑥 ≤ 𝑥ℎ𝑖𝑔ℎ

𝑦

𝐱+ = 𝐺 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)

𝐱 (0) = 𝐱𝟎

𝐱 k + 1 = G(x k , u(k))



Difference Equation 

𝑢1, 𝑢2

real −𝜋 ≤ 𝜃 ≤ 𝜋

𝑦

x1
+ = x1 + d sin 𝜃 u1

x2
+ = x2 + d 𝑐𝑜𝑠 𝜃 u1
𝜃+ = 𝜃 + c 𝑢2

y = 𝜃

x1 (0) = 0
x2 (0) = 0
𝜃 (0) = 0

force, angular speed
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