esercizio

Il petrolio intubato dentro ad un foro di trivellazione a causa delle spinte interne di natura geologica, ha una pressione verso l'alto di $2800N/cm^2$. Per contrastare la risalita del greggio si immette nel tubo una miscela di acqua e fango, di densità $d=2,5\cdot 10^3~Kg/m^3$. Quanto deve essere alta la colonna di fango per contrastare adequatamente la fuoriuscita del greggio?

R.1141.7 m

esercizio

Si deve sollevare un'automobile di massa $m_a = 1200 Kg$ con un torchio idraulico, poggiandola su una piattaforma di $S_a = 5m^2$ di superficie. Avendo a disposizione un pistone di superficie $S_P = 3,5 dm^2$, calcolare quale è la mimima forza da applicare sul pistone per poter sollevare l'automobile.

R. 82.40 N

esercizio

Un fusto metallico vuoto di m=4Kg di massa e capacità di 5 litri viene completamente immerso attraverso una fune in una vasca piena di olio $d=765Kg/m^3$. Calcolare la spinta di Archimede subita dal fusto e la tensione che deve avere la fune per mantenerlo in equilibrio all'interno del liquido.

R: 37.52 N; 1.71 N

esercizio

Un pallone areostatico di $10~m^3$ di volume è pieno di elio $d_{He}=0,178\cdot 10^{-3}g/cm^3$. Calcolare quale è la forza con cui l'aria $d_{aria}=1,292\cdot 10^{-3}g/cm^3$ lo spinge in alto. Quale zavorra sarebbe necessaria per mantenere in equilibrio il pallone?

R: 11.12 kg

esercizio

Un oggetto di alluminio (densita' 2.65 g/cm³) avente la forma di un cubo di spigolo l=3.0 cm, viene sospeso ad una molla il cui allungamento all'equilibrio e' x=5.0 mm rispetto alla molla indeformata. Successivamente l'oggetto, sempre sospeso alla molla, viene completamente immerso in acqua. Determinare: (a) la costante elastica della molla; (b) l'allungamento x' che presenta la molla in condizioni di equilibrio quando il corpo e' immerso in acqua.

R: 140 N/m; 3.11 mm

esercizio

Un tubo orizzontale di sezione S1, in cui fluisce acqua in regime stazionario, presenta un restringimento di sezione S2. Il raggio corrispondente alla sezione S1 e' r1 = 5 cm, quello corrispondente alla sezione S2 e' r2 = 3.5 cm; la differenza fra la pressione dinamica in S1 e la pressione dinamica in S2 e' (p1-p2)=1.48103 Pa. Assimilando l'acqua ad un fluido ideale calcolare le velocita' del fluido in corrispondenza delle due sezioni.

R. v1 = 0.94 m/s, v2 = 1.92 m/s

Esercizio

In tre tubi B, C, D, il cui diametro interno e' di 1.0 cm, fluisce acqua con portata rispettivamente di 30 litri/min, 25 litri/min, e 15 litri/min. I tre tubi confluiscono in un tubo A il cui diametro e' di 2.0 cm.

- (a) Ouale e' la portata del tubo A?
- (b) Quale e' la velocita' dell'acqua nel tubo B e nel tubo A?

R. (a) 70litri/min; (b) tubo B 6.37 m/s, tubo A 3.71 m/s

esercizio

Un lastrone di ghiaccio (densita' = 917 kg/m) ha a forma di parallelepipedo, con spessore 80 cm e spigoli 3,5 m e 9 m; calcolare il volume immerso nell'acqua di mare (densita' = 1025 kg/m3). Se su di esso lasciamo al centro della superficie del ghiaccio un cubo di marmo avente spigolo pari a 70 cm, qual e' il volume immerso?

R: 22.5 m³; 23.4 m³

esercizio

Un gruppo di bambini sta giocando in riva al mare con una vasca pneumatica cilindrica di peso trascurabile. Essa ha diametro esterno 1.5 m ed altezza 50 cm. I bambini salgono tutti nella vasca che risulta quindi immersa per 2/5 nell'acqua.

Quanti sono i bambini se ognuno di essi ha massa 30 kg?

R.12

Esercizio

Due cubetti di ghiaccio, ciascuno di massa 10 g, vengono lasciati cadere in un bicchiere di capacita' termica trascurabile, contenente 200 cm³ di acqua e succo d'arancia alla temperatura iniziale di 25 °C. Se il ghiaccio e' stato estratto da un congelatore a -15 °C, quale e' la temperatura finale della bibita? Si assegni al ghiaccio il calore specifico di 0.5 cal/g °C e il calore latente di fusione di 80 cal/g. La bibita ha lo stesso calore specifico e densita' dell'acqua.

R:14.8 °C

Esercizio

Un maniscalco ha portato ad alta temperatura un ferro di cavallo, di massa 1 kg e , dopo averlo lavorato, lo ha lasciato cadere in un secchio contenente 15 litri di acqua alla temperatura iniziale di $20\,^{\circ}\mathrm{C}$; di conseguenza nell'acqua si e' determinato un innalzamento termico di $3.2\,^{\circ}\mathrm{C}$. Assegnando al calore specifico del ferro il valore di $0.11\,$ cal/g $^{\circ}\mathrm{C}$ e trascurando la capacita' termica del secchio e le dispersioni di calore verso l'ambiente, determinare la temperatura che l'oggetto aveva un istante prima di cadere in acqua?

R: 460 °C